Skip to main content

Biodegradable Materials: Fundamentals, Importance, and Impacts

  • Living reference work entry
  • First Online:

Abstract

This chapter covers the fundamentals of the biodegradation process, including its importance and impacts on many strategic areas, such as the environment, health, industry, technology, food, and agriculture. The future trends in this area were also discussed. Significant advancements have been achieved in biomaterials in the last few decades. These biomaterials include ceramics, glasses, polymers, composites, glass-ceramics, and metal alloys. A wide range of biodegradable materials is currently in use. Examples of these materials are the bio-medical implants that are intended to break down or be resorbed by the body so that the implant does not need to be removed after its purpose has been fulfilled. Therefore, several parameters, including mechanical properties, non-toxicity, surface modification, degradation rate, biocompatibility, corrosion rate, and design, should be considered when designing a scaffold.

This is a preview of subscription content, log in via an institution.

References

  1. Gorejová R, Haverová L, Oriňaková R, Oriňak A, and Oriňak M (2019) Recent advancements in Fe-based biodegradable materials for bone repair. Journal of Materials Science 54(3):1913−1947

    Article  CAS  Google Scholar 

  2. Li C, Guo C, Fitzpatrick V, Ibrahim A, Zwierstra MJ, Hanna P, Lechtig A, Nazarian A, Lin SJ, and Kaplan DL (2020) Design of biodegradable, implantable devices towards clinical translation. Nature Reviews Materials 5(1):61−81

    Article  Google Scholar 

  3. Seitz JM, Durisin M, Goldman J, and Drelich JW (2015) Recent Advances in Biodegradable Metals for Medical Sutures: A Critical Review. Advanced Healthcare Materials 4(13):1915−1936

    Article  CAS  Google Scholar 

  4. Biswal T, BadJena SK, and Pradhan D (2020) Sustainable biomaterials and their applications: A short review. Materials Today: Proceedings 30:274−282

    CAS  Google Scholar 

  5. Jurak M, Wiącek AE, Ładniak A, Przykaza K, and Szafran K (2021) What affects the biocompatibility of polymers? Advances in Colloid and Interface Science 294

    Google Scholar 

  6. Rahmati M and Mozafari M (2019) Biocompatibility of alumina-based biomaterials–A review. Journal of Cellular Physiology 234(4):3321−3335

    Article  CAS  Google Scholar 

  7. Wang Z, Wang C, Li C, Qin Y, Zhong L, Chen B, Li Z, Liu H, Chang F, and Wang J (2017) Analysis of factors influencing bone ingrowth into three-dimensional printed porous metal scaffolds: A review. Journal of Alloys and Compounds 717:271−285

    Article  CAS  Google Scholar 

  8. Matsunaga J, Watanabe I, Nakao N, Watanabe E, Elshahawy W, and Yoshida N (2015) Joining characteristics of titanium-based orthodontic wires connected by laser and electrical welding methods. Journal of Materials Science: Materials in Medicine 26:50

    Google Scholar 

  9. Rautray TR, Narayanan R, and Kim KH (2011) Ion implantation of titanium based biomaterials. Progress in Materials Science 56(8):1137−1177

    Article  CAS  Google Scholar 

  10. Sonnow L, Könneker S, Vogt PM, Wacker F, and von Falck C (2017) Biodegradable magnesium Herbert screw − image quality and artifacts with radiography, CT and MRI, BMC Medical Imaging 17(1):1−9

    Google Scholar 

  11. Girotto F, Alibardi L, and Cossu R (2015) Food waste generation and industrial uses: A review. Waste Management 45:32−41

    Article  CAS  Google Scholar 

  12. Bowen PK, Shearier ER, Zhao S, Guillory RJ, Zhao F, Goldman J, and Drelich JW (2016) Biodegradable Metals for Cardiovascular Stents: From Clinical Concerns to Recent Zn-Alloys. Advanced Healthcare Materials 5(10):1121−1140

    Article  CAS  Google Scholar 

  13. Juan C. Sanchez-Hernandez YC and Kyoung SR (2020) Potential Use of Earthworms to Enhance Decaying of Biodegradable Plastics. ACS Sustainable Chem. Eng 8:4292-4316

    Google Scholar 

  14. Tosin M, Pischedda A, and Degli-Innocenti F (2019) Biodegradation kinetics in soil of a multi-constituent biodegradable plastic. Polymer Degradation and Stability 166:213−218

    Article  CAS  Google Scholar 

  15. Cravens A, Payne J, and Smolke CD (2019) Synthetic biology strategies for microbial biosynthesis of plant natural products. Nature Communications 10(1):1−12

    Article  CAS  Google Scholar 

  16. Liu Q, Wu L, Jackstell R, and Beller M (2015) Using carbon dioxide as a building block in organic synthesis. Nature Communications 6:5933

    Google Scholar 

  17. Bouwer EJ and Zehnder AJB (1993) Bioremediation of organic compounds - putting microbial metabolism to work. Trends in Biotechnology 11(August):360−367

    Article  CAS  Google Scholar 

  18. Davis G and Song JH (2006) Biodegradable packaging based on raw materials from crops and their impact on waste management. Industrial Crops and Products 23(2):147−161

    Article  CAS  Google Scholar 

  19. Emadian SM, Onay TT, and Demirel B (2017) Biodegradation of bioplastics in natural environments. Waste Management 59:526−536

    Article  CAS  Google Scholar 

  20. Trigo A, Valencia A, and Cases I (2009) Systemic approaches to biodegradation. FEMS Microbiology Reviews 33(1):98−108

    Article  CAS  Google Scholar 

  21. Azubuike CC, Chikere CB, and Okpokwasili GC (2016) Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World Journal of Microbiology and Biotechnology 32(11):1−18

    Article  CAS  Google Scholar 

  22. Pant G, Garlapati D, Agrawal U, Prasuna RG, Mathimani T, and Pugazhendhi A (2021) Biological approaches practised using genetically engineered microbes for a sustainable environment: A review. Journal of Hazardous Materials 405:124631

    Google Scholar 

  23. Agarwal S, Sadegh H, Monajjemi Majid, Makhlouf ASH, Ali GAM, Memar AOH, Shahryari-ghoshekandi R, Tyagi I, and Gupta VK (2016) Efficient removal of toxic bromothymol blue and methylene blue from wastewater by polyvinyl alcohol. Journal of Molecular Liquids 218:191−197

    Article  CAS  Google Scholar 

  24. Alhasan HS, Alahmadi N, Yasin SA, Khalaf MY, and Ali GAM (2022) Low-Cost and Eco-Friendly Hydroxyapatite Nanoparticles Derived from Eggshell Waste for Cephalexin Removal. Separations 9(1):10

    Article  CAS  Google Scholar 

  25. Ali GAM, Habeeb OA, Algarni H, and Chong KF (2018) CaO impregnated highly porous honeycomb activated carbon from agriculture waste: symmetrical supercapacitor study. Journal of Materials Science 54:683−692

    Article  CAS  Google Scholar 

  26. El-Maghrabi HH, Nada AA, Soliman FS, Raynaud P, Moustafa YM, Ali GAM, and Bekheet MF, Recovery of Metal Oxide Nanomaterials from Electronic Waste Materials, in Waste Recycling Technologies for Nanomaterials Manufacturing, ASH Makhlouf, GAM Ali, Editors. 2021, Springer International Publishing: Cham. p. 203−227.

    Chapter  Google Scholar 

  27. Habeeb OA, Ramesh K, Ali GAM, and Yunus RM (2017) Low-cost and eco-friendly activated carbon from modified palm kernel shell for hydrogen sulfide removal from wastewater: adsorption and kinetic studies. Desalination and Water Treatment 84:205−214

    Article  CAS  Google Scholar 

  28. Hegde G, Abdul Manaf SA, Kumar A, Ali GAM, Chong KF, Ngaini Z, and Sharma KV (2015) Biowaste sago bark based catalyst free carbon nanospheres: waste to wealth approach. ACS Sustainable Chemistry & Engineering 5(9):2247–2253

    Article  CAS  Google Scholar 

  29. Nada AA, Soliman FS, Ali GAM, Hamdy A, Selim H, Elsayed MA, Elmowafy ME, and El-Maghrabi HH, Conversion of Waste Cheap Petroleum Paraffinic Wax By-Products to Expensive Valuable Multiple Carbon Nanomaterials, in Waste Recycling Technologies for Nanomaterials Manufacturing, ASH Makhlouf, GAM Ali, Editors. 2021, Springer International Publishing: Cham. p. 729−751.

    Chapter  Google Scholar 

  30. Ali GAM, Divyashree A, Supriya S, Chong KF, Ethiraj AS, Reddy MV, Algarni H, and Hegde G (2017) Carbon nanospheres derived from Lablab purpureus for high performance supercapacitor electrodes: a green approach. Dalton Transactions 46(40):14034−14044

    Article  CAS  Google Scholar 

  31. Ali GAM, Manaf SAA, A D, Chong KF, and Hegde G (2016) Superior supercapacitive performance in porous nanocarbons. Journal of Energy Chemistry 25(4):734−739

    Google Scholar 

  32. Aboelazm EAA, Mohamed N, Ali GAM, Makhlouf ASH, and Chong KF, Recycling of Cobalt Oxides Electrodes from Spent Lithium-Ion Batteries by Electrochemical Method, in Waste Recycling Technologies for Nanomaterials Manufacturing, ASH Makhlouf, GAM Ali, Editors. 2021, Springer International Publishing: Cham. p. 91−123.

    Chapter  Google Scholar 

  33. Ali GAM (2020) Recycled MnO2 Nanoflowers and Graphene Nanosheets for Low-Cost and High Performance Asymmetric Supercapacitor. Journal of Electronic Materials 49:5411–5421

    Article  CAS  Google Scholar 

  34. Ali GAM, Bakr ZH, Safarifard V, and Chong KF, Recycled Nanomaterials for Energy Storage (Supercapacitor) Applications, in Waste Recycling Technologies for Nanomaterials Manufacturing, ASH Makhlouf, GAM Ali, Editors. 2021, Springer International Publishing: Cham. p. 175−202.

    Chapter  Google Scholar 

  35. Ali GAM and Makhlouf ASH, Fundamentals of Waste Recycling for Nanomaterial Manufacturing, in Waste Recycling Technologies for Nanomaterials Manufacturing, ASH Makhlouf, GAM Ali, Editors. 2021, Springer International Publishing: Cham. p. 3−24.

    Google Scholar 

  36. Ali GAM, Yusoff MM, Shaaban ER, and Chong KF (2017) High performance MnO2 nanoflower supercapacitor electrode by electrochemical recycling of spent batteries. Ceramics International 43:8440–8448

    Article  CAS  Google Scholar 

  37. Makhlouf ASH and Ali GAM, Waste Recycling Technologies for Nanomaterials Manufacturing. Topics in Mining, Metallurgy and Materials Engineering. 2021, Springer: Springer.

    Google Scholar 

  38. Kean T and Thanou M (2010) Biodegradation, biodistribution and toxicity of chitosan. Advanced Drug Delivery Reviews 62(1):3−11

    Article  CAS  Google Scholar 

  39. Hsu SC, Don TM, and Chiu WY (2002) Free radical degradation of chitosan with potassium persulfate. Polymer Degradation and Stability 75(1):73−83

    Article  CAS  Google Scholar 

  40. Zoldners J, Kiseleva T, and Kaiminsh I (2005) Influence of ascorbic acid on the stability of chitosan solutions. Carbohydrate Polymers 60(2):215−218

    Article  CAS  Google Scholar 

  41. Chen X and Ahn JH (2020) Biodegradable and bioabsorbable sensors based on two-dimensional materials. Journal of Materials Chemistry B 8(6):1082−1092

    Article  CAS  Google Scholar 

  42. Tan MJ, Owh C, Chee PL, Kyaw AKK, Kai D, and Loh XJ (2016) Biodegradable electronics: Cornerstone for sustainable electronics and transient applications. Journal of Materials Chemistry C 4(24):5531−5558

    Article  CAS  Google Scholar 

  43. Alhanish A and Ali GAM, Recent Developments in Wastewater Treatment Using Polymer/Clay Nanocomposites, in Advances in Nanocomposite Materials for Environmental and Energy Harvesting Applications, AE Shalan, AS Hamdy Makhlouf, S Lanceros-Méndez, Editors. 2022, Springer International Publishing: Cham. p. 419−451.

    Google Scholar 

  44. Haroun AAA, Rabie AGM, Ali GAM, and Abdelrahim MYM (2019) Improving the mechanical and thermal properties of chlorinated poly (vinyl chloride) by incorporating modified CaCO3 nanoparticles as a filler. Turkish Journal of Chemistry 43(3):750−759

    Article  CAS  Google Scholar 

  45. Mahmoodi Z, Abhari AR, Lalehloo RS, Bakr ZH, and Ali GAM (2022) Thermodynamic Studies on the Adsorption of Organophosphate Pesticides (Diazinon) onto ZnO/Polyethersulfone Nanocomposites. ChemistrySelect 7(2):e202103619

    Article  CAS  Google Scholar 

  46. Thalji MR, Ibrahim AA, and Ali GAM (2021) Cutting-edge development in dendritic polymeric materials for biomedical and energy applications. European Polymer Journal 160:110770

    Article  CAS  Google Scholar 

  47. Vroman I and Tighzert L (2009) Biodegradable polymers. Materials 2(2):307−344

    Article  CAS  Google Scholar 

  48. Albright VC and Chai Y (2021) Knowledge Gaps in Polymer Biodegradation Research. Environmental Science and Technology 55(17):11476−11488

    Article  CAS  Google Scholar 

  49. Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, and Nava-Saucedo JE (2008) Polymer biodegradation: Mechanisms and estimation techniques - A review. Chemosphere 73(4):429−442

    Article  CAS  Google Scholar 

  50. Wang GX, Huang D, Ji JH, Völker C, and Wurm FR (2021) Seawater-Degradable Polymers—Fighting the Marine Plastic Pollution. Advanced Science 8(1):1−26

    Google Scholar 

  51. Thirmizir MZA, Ishak ZAM, and Salim MS, Compatibilization and Crosslinking in Biodegradable Thermoplastic Polyester Blends, in Reactive and Functional Polymers Volume Two: Modification Reactions, Compatibility and Blends, TJ Gutiérrez, Editor. 2020, Springer International Publishing: Cham. p. 23−89.

    Chapter  Google Scholar 

  52. Al Sharabati M, Abokwiek R, Al-Othman A, Tawalbeh M, Karaman C, Orooji Y, and Karimi F (2021) Biodegradable polymers and their nano-composites for the removal of endocrine-disrupting chemicals (EDCs) from wastewater: A review. Environmental Research 202(July):111694−111694

    Article  CAS  Google Scholar 

  53. Sharma G, Thakur B, Kumar A, Sharma S, Naushad M, and Stadler FJ (2020) Atrazine removal using chitin-cl-poly(acrylamide-co-itaconic acid) nanohydrogel: Isotherms and pH responsive nature. Carbohydrate Polymers 241(May):116258−116258

    Article  CAS  Google Scholar 

  54. Sivan A (2011) New perspectives in plastic biodegradation. Current Opinion in Biotechnology 22(3):422-426

    Article  CAS  Google Scholar 

  55. Alhanish A and Ali GAM, Recycling the Plastic Wastes to Carbon Nanotubes, in Waste Recycling Technologies for Nanomaterials Manufacturing, ASH Makhlouf, GAM Ali, Editors. 2021, Springer International Publishing: Cham. p. 701−727.

    Chapter  Google Scholar 

  56. Yasin S, Bakr ZH, Ali GAM, and Saeed I, Recycling Nanofibers from Polyethylene Terephthalate Waste Using Electrospinning Technique, in Waste Recycling Technologies for Nanomaterials Manufacturing, ASH Makhlouf, GAM Ali, Editors. 2021, Springer International Publishing: Cham. p. 805−821.

    Chapter  Google Scholar 

  57. Amobonye A, Bhagwat P, Singh S, and Pillai S (2021) Plastic biodegradation: Frontline microbes and their enzymes. Science of the Total Environment 759:143536−143536

    Google Scholar 

  58. Yang Y, Yang J, and Jiang L (2016) Comment on “a bacterium that degrades and assimilates poly(ethylene terephthalate) ”. Science 353(6301):759−759

    Article  CAS  Google Scholar 

  59. Essa WK, Yasin SA, Abdullah AH, Thalji MR, Saeed IA, Assiri MA, Chong KF, and Ali GAM (2022) Taguchi L25 (54) Approach for Methylene Blue Removal by Polyethylene Terephthalate Nanofiber-Multi-Walled Carbon Nanotube Composite. Water 14(8):1242−1242

    Article  CAS  Google Scholar 

  60. Gajendiran A, Krishnamoorthy S, and Abraham J (2016) Microbial degradation of low-density polyethylene (LDPE) by Aspergillus clavatus strain JASK1 isolated from landfill soil. 3 Biotech 6(1):1−6

    Google Scholar 

  61. Usman MA, Momohjimoh I, and Usman AO (2020) Mechanical, physical and biodegradability performances of treated and untreated groundnut shell powder recycled polypropylene composites. Materials Research Express 7(3):035302

    Google Scholar 

  62. Osman M, Satti SM, Luqman A, Hasan F, Shah Z, and Shah AA (2018) Degradation of Polyester Polyurethane by Aspergillus sp. Strain S45 Isolated from Soil. Journal of Polymers and the Environment 26(1):301−310

    Article  CAS  Google Scholar 

  63. Ali SS, Elsamahy T, Al-Tohamy R, Zhu D, Mahmoud YAG, Koutra E, Metwally MA, Kornaros M, and Sun J (2021) Plastic wastes biodegradation: Mechanisms, challenges and future prospects. Science of the Total Environment 780:146590−146590

    Article  CAS  Google Scholar 

  64. Badawi AK, Abd Elkodous M, and Ali GAM (2021) Recent advances in dye and metal ion removal using efficient adsorbents and novel nano-based materials: an overview. RSC Advances 11(58):36528−36553

    Article  CAS  Google Scholar 

  65. Ethiraj AS, Rhen DS, Soldatov AV, Ali GAM, and Bakr ZH (2021) Efficient and recyclable Cu incorporated TiO2 nanoparticle catalyst for organic dye photodegradation. International Journal of Thin Film Science and Technology 10(3):169−182

    Article  Google Scholar 

  66. Seyed Arabi SM, Lalehloo RS, Olyai MRTB, Ali GAM, and Sadegh H (2019) Removal of Congo red azo dye from aqueous solution by ZnO nanoparticles loaded on multiwall carbon nanotubes. Physica E: Low-dimensional Systems and Nanostructures 106:150−155

    Article  CAS  Google Scholar 

  67. Solehudin M, Sirimahachai U, Ali GAM, Chong KF, and Wongnawa S (2020) One-pot synthesis of isotype heterojunction g-C3N4-MU photocatalyst for effective tetracycline hydrochloride antibiotic and reactive orange 16 dye removal. Advanced Powder Technology 31(5):1891−1902

    Article  CAS  Google Scholar 

  68. Shi Y, Yang Z, Xing L, Zhang X, Li X, and Zhang D (2021) Recent advances in the biodegradation of azo dyes. World Journal of Microbiology and Biotechnology 37(8):1−18

    Article  CAS  Google Scholar 

  69. Laouini SE, Bouafia A, Soldatov AV, Algarni H, Tedjani ML, Ali GAM, and Barhoum A (2021) Green Synthesized of Ag/Ag2O Nanoparticles Using Aqueous Leaves Extracts of Phoenix dactylifera L. and Their Azo Dye Photodegradation. Membranes 11(7):468

    Google Scholar 

  70. Naeimi A, Sharifi A, Montazerghaem L, Abhari AR, Mahmoodi Z, Bakr ZH, Soldatov AV, and Ali GAM (2022) Transition metals doped WO3 photocatalyst towards high efficiency decolourization of azo dye. Journal of Molecular Structure 1250:131800

    Article  CAS  Google Scholar 

  71. Selvaraj V, Swarna Karthika T, Mansiya C, and Alagar M (2021) An over review on recently developed techniques, mechanisms and intermediate involved in the advanced azo dye degradation for industrial applications. Journal of Molecular Structure 1224

    Google Scholar 

  72. Hasan KMF, Horváth PG, Bak M, and Alpár T (2021) A state-of-the-art review on coir fiber-reinforced biocomposites. RSC Advances 11(18):10548−10571

    Article  CAS  Google Scholar 

  73. Taghavi N, Udugama IA, Zhuang WQ, and Baroutian S (2021) Challenges in biodegradation of non-degradable thermoplastic waste: From environmental impact to operational readiness. Biotechnology Advances 49(February):107731−107731

    Article  CAS  Google Scholar 

  74. Ziajahromi S, Kumar A, Neale PA, and Leusch FDL (2018) Environmentally relevant concentrations of polyethylene microplastics negatively impact the survival, growth and emergence of sediment-dwelling invertebrates. Environmental Pollution 236:425−431

    Article  CAS  Google Scholar 

  75. Hwang J, Choi D, Han S, Jung SY, Choi J, and Hong J (2020) Potential toxicity of polystyrene microplastic particles. Scientific Reports 10(1):1−12

    Article  CAS  Google Scholar 

  76. Hosseini ES, Dervin S, Ganguly P, and Dahiya R (2021) Biodegradable Materials for Sustainable Health Monitoring Devices. ACS Applied Bio Materials 4(1):163−194

    Article  CAS  Google Scholar 

  77. Seitz JM, Eifler R, Bach FW, and Maier HJ (2014) Magnesium degradation products: Effects on tissue and human metabolism. Journal of Biomedical Materials Research - Part A 102(10):3744−3753

    Article  CAS  Google Scholar 

  78. Xiao C, Wang L, Ren Y, Sun S, Zhang E, Yan C, Liu Q, Sun X, Shou F, Duan J, Wang H, and Qin G (2018) Indirectly extruded biodegradable Zn-0.05wt%Mg alloy with improved strength and ductility: In vitro and in vivo studies. Journal of Materials Science and Technology 34(9):1618−1627

    Article  CAS  Google Scholar 

  79. Filiciotto L and Rothenberg G (2021) Biodegradable Plastics: Standards, Policies, and Impacts. ChemSusChem 14(1):56−72

    Article  CAS  Google Scholar 

  80. Xie Y, Niu X, Yang J, Fan R, Shi J, Ullah N, Feng X, and Chen L (2020) Active biodegradable films based on the whole potato peel incorporated with bacterial cellulose and curcumin. International Journal of Biological Macromolecules 150:480−491

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gomaa A. M. Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ali, G.A.M., Thalji, M.R., Makhlouf, A.S.H. (2022). Biodegradable Materials: Fundamentals, Importance, and Impacts. In: Ali, G.A.M., Makhlouf, A.S.H. (eds) Handbook of Biodegradable Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-83783-9_74-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83783-9_74-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83783-9

  • Online ISBN: 978-3-030-83783-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics