Skip to main content

Herbal Drugs Against Polio Infections: Ethnopharmacology, Chemistry, and Clinical and Preclinical Studies

  • Living reference work entry
  • First Online:
Anti-Viral Metabolites from Medicinal Plants

Abstract

One of the most common viral diseases, polio, is caused by poliovirus, an enterovirus C serotype, belonging to the family of Picornaviridae. It is a positive-stranded RNA virus; the infection majorly occurs through the fecal-oral route. In 95% of the cases, the infection is majorly asymptomatic, and it mainly attacks the central nervous system, thus leading to temporary or permanent paralysis. Although polio has been successfully eradicated from India, the World Health Organization (WHO) has taken major initiatives to eradicate the disease from the world. Herbal medicines and extracts isolated from medicinal plants are promising products to be considered as potent candidate drugs. Herbal drugs are a combined outcome of pharmacognosy, ethnopharmacology, phytochemistry, and botany. After successful clinical trials, these herbal drugs can be implemented in infected patients to estimate its efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

A1PI:

Alpha-1-proteinase inhibitor

Ach:

Acetylcholine

AE:

Aqueous extracts

Ala:

Alanine

BFA:

Brefeldin A

BGM:

Buffalo Green Monkey

CC50:

Cytotoxic concentration

CCB:

Calcium channel blockers

CNS:

Central nervous system

CPE:

Cytopathic effect

EC50:

Effective concentration

EPTT:

End point titration technique

ER:

Endoplasmic reticulum

ERD2:

ER lumen protein-retaining receptor

Gln:

Glutamine

Glu:

Glutamic acid

HAE:

Hydroalcoholic extracts

HBB:

Hydroxybenzyl-benzimidazole

HRV:

Human rhinoviruses

IC50:

Inhibitory concentration of 50%

ICAM-1:

Intercellular adhesion molecule-1

IFA:

Immunofluorescence assay

Ile:

Isoleucine

IRES:

Internal ribosome entry site

KDEL:

Lysine-aspartic acid-glutamic acid-leucine receptor

Met:

Methionine

MHC:

Major histocompatibility complex

MNTD:

Maximum nontoxic dose

MTT:

(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)

PV:

Poliovirus

PV1:

Poliovirus serotype 1

PV2:

Poliovirus serotype 2

PV3:

Poliovirus serotype 3

PVR:

Poliovirus receptor

Rf:

Reduction factor

RNA:

Ribonucleic acid

Ser:

Serine

SGC:

Stack of Golgi cisternae

SI:

Selectivity index

Thr:

Threonine

References

  1. Chattopadhyay D, Sarkar M, Chatterjee T et al (2009) Recent advancements for the evaluation of anti-viral activities of natural products. New Biotechnol 25:347–368. https://doi.org/10.1016/j.nbt.2009.03.007

    Article  CAS  Google Scholar 

  2. Sarrazin C, Zeuzem S (2010) Resistance to direct antiviral Agents in patients with hepatitis C virus infection. Gastroenterology 138:447–462. https://doi.org/10.1053/j.gastro.2009.11.055

    Article  CAS  PubMed  Google Scholar 

  3. Poland G, Jacobson R, Ovsyannikova I (2009) Influenza virus resistance to antiviral Agents: a plea for rational use. Clin Infect Dis 48:1254–1256. https://doi.org/10.1086/598989

    Article  PubMed  Google Scholar 

  4. Gibbons S (1995) In: Kinghorn AD, Balandrin MF (eds) Human medicinal agents from plants. American Chemical Society, Washington, DC, 1993, xii + 356 pp., price US $89.95. ISBN 0 8412 2705 5. Journal of Chemical Technology AND Biotechnology 63:196–196. https://doi.org/10.1002/jctb.280630219

    Chapter  Google Scholar 

  5. Ieven M, Vlietinick A, Berghe D et al (1982) Plant antiviral Agents. III. Isolation of alkaloids from Clivia miniata regel (Amaryllidaceae). J Nat Prod 45:564–573. https://doi.org/10.1021/np50023a009

    Article  CAS  PubMed  Google Scholar 

  6. Vanden Berghe DA, Vlietinck AJ, Van Hoof L (1986) Plant products as potential antiviral agents. Bull Inst Pasteur 84:101–147

    CAS  Google Scholar 

  7. Li Y, But P, Ooi V (2005) Antiviral activity and mode of action of caffeoylquinic acids from Schefflera heptaphylla (L.) Frodin. Antivir Res 68:1–9. https://doi.org/10.1016/j.antiviral.2005.06.004

    Article  CAS  PubMed  Google Scholar 

  8. Li S, Chen C, Zhang H et al (2005) Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antivir Res 67:18–23. https://doi.org/10.1016/j.antiviral.2005.02.007

    Article  CAS  PubMed  Google Scholar 

  9. Rueckert RR (1996) Picornaviridae: the viruses and their replication. Lippincott Raven, Philadelphia

    Google Scholar 

  10. Tolskaya E, Romanova L, Kolesnikova M et al (1995) Apoptosis-inducing and apoptosis-preventing functions of poliovirus. J Virol 69:1181–1189. https://doi.org/10.1128/jvi.69.2.1181-1189.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Agol V, Belov G, Bienz K et al (2000) Competing death programs in poliovirus-infected cells: commitment switch in the middle of the infectious cycle. J Virol 74:5534–5541. https://doi.org/10.1128/jvi.74.12.5534-5541.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Etchison D, Milburn S, Edery I et al (1982) Inhibition of HeLa cell protein synthesis following poliovirus infection correlates with the proteolysis of a 220,000-dalton polypeptide associated with eucaryotic initiation factor 3 and a cap binding protein complex. J Biol Chem 257:14806–14810. https://doi.org/10.1016/s0021-9258(18)33352-0

    Article  CAS  PubMed  Google Scholar 

  13. Gradi A, Svitkin Y, Imataka H, Sonenberg N (1998) Proteolysis of human eukaryotic translation initiation factor eIF4GII, but not eIF4GI, coincides with the shutoff of host protein synthesis after poliovirus infection. Proc Natl Acad Sci 95:11089–11094. https://doi.org/10.1073/pnas.95.19.11089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Clark M, Lieberman P, Berk A, Dasgupta A (1993) Direct cleavage of human TATA-binding protein by poliovirus protease 3C in vivo and in vitro. Mol Cell Biol 13:1232–1237. https://doi.org/10.1128/mcb.13.2.1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yalamanchili P, Datta U, Dasgupta A (1997) Inhibition of host cell transcription by poliovirus: cleavage of transcription factor CREB by poliovirus-encoded protease 3Cpro. J Virol 71:1220–1226. https://doi.org/10.1128/jvi.71.2.1220-1226.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Doedens J, Kirkegaard K (1995) Inhibition of cellular protein secretion by poliovirus proteins 2B and 3A. EMBO J 14:894–907. https://doi.org/10.1002/j.1460-2075.1995.tb07071.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bienz K, Egger D, Rasser Y, Bossart W (1983) Intracellular distribution of poliovirus proteins and the induction of virus-specific cytoplasmic structures. Virology 131:39–48. https://doi.org/10.1016/0042-6822(83)90531-7

    Article  CAS  PubMed  Google Scholar 

  18. Suhy D, Giddings T, Kirkegaard K (2000) Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: an autophagy-like origin for virus-induced vesicles. J Virol 74:8953–8965. https://doi.org/10.1128/jvi.74.19.8953-8965.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Irurzun A, Arroyo J, Alvarez A, Carrasco L (1995) Enhanced intracellular calcium concentration during poliovirus infection. J Virol 69:5142–5146. https://doi.org/10.1128/jvi.69.8.5142-5146.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guskey L, Smith P, Wolff D (1970) Patterns of cytopathology and lysosomal enzyme release in poliovirus-infected HEp-2 cells treated with either 2-(α-Hydroxybenzyl)-Benzimidazole or guanidine HCl. J Gen Virol 6:151–161. https://doi.org/10.1099/0022-1317-6-1-151

    Article  CAS  PubMed  Google Scholar 

  21. Melnick JL (1996) Enteroviruses: polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses. In: Fields BN, Knipe DM, Howley PM (eds) Fields virology, 3rd edn. Lippincott-Raven Publishers, Philadelphia, pp 655–712

    Google Scholar 

  22. Rueckert RR (1996) Picornaviridae: the viruses and their replication. In: Fields BN, Knipe DM, Howley PM (eds) Fields virology, 3rd edn. Lippincott-Raven Publishers, Philadelphia, pp 609–654

    Google Scholar 

  23. Pallansch MA, Roos RP (2001) Enteroviruses: polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses. In: Knipe DM, Howley PM (eds) Fields virology, vol 1, 4th edn. Lippincott/The Williams & Wilkins Co., Philadelphia, pp 723–775

    Google Scholar 

  24. Filman D, Syed R, Chow M et al (1989) Structural factors that control conformational transitions and serotype specificity in type 3 poliovirus. EMBO J 8:1567–1579. https://doi.org/10.1002/j.1460-2075.1989.tb03541.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hogle J, Chow M, Filman D (1985) Three-dimensional structure of poliovirus at 2.9 Å resolution. Science 229:1358–1365. https://doi.org/10.1126/science.2994218

    Article  CAS  PubMed  Google Scholar 

  26. Lentz K, Smith A, Geisler S et al (1997) Structure of poliovirus type 2 Lansing complexed with antiviral agent SCH48973: comparison of the structural and biological properties of the three poliovirus serotypes. Structure 5:961–978. https://doi.org/10.1016/s0969-2126(97)00249-9

    Article  CAS  PubMed  Google Scholar 

  27. Hendry E, Hatanaka H, Fry E et al (1999) The crystal structure of coxsackievirus A9: new insights into the uncoating mechanisms of enteroviruses. Structure 7:1527–1538. https://doi.org/10.1016/s0969-2126(00)88343-4

    Article  CAS  PubMed  Google Scholar 

  28. Muckelbauer J, Kremer M, Minor I et al (1995) The structure of coxsackievirus B3 at 3.5 å resolution. Structure 3:653–667. https://doi.org/10.1016/s0969-2126(01)00201-5

    Article  CAS  PubMed  Google Scholar 

  29. Filman D, Wien M, Cunningham J, Bergelson J, Hogle J (1998) Structure determination of echovirus 1. Acta Crystallogr D Biol Crystallogr 54:1261–1272. https://doi.org/10.1107/s0907444998002790

    Article  CAS  PubMed  Google Scholar 

  30. Rossmann M, Arnold E, Erickson J, Frankenberger E, Griffith J, Hecht H, Johnson J, Kamer G, Luo M, Mosser A, Rueckert R, Sherry B, Vriend G (1985) Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317:145–153. https://doi.org/10.1038/317145a0

    Article  CAS  PubMed  Google Scholar 

  31. Mendelsohn C, Wimmer E, Racaniello V (1989) Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell 56:855–865. https://doi.org/10.1016/0092-8674(89)90690-9

    Article  CAS  PubMed  Google Scholar 

  32. Bernhardt G, Bibb J, Bradley J, Wimmer E (1994) Molecular characterization of the cellular receptor for poliovirus. Virology 199:105–113. https://doi.org/10.1006/viro.1994.1102

    Article  CAS  PubMed  Google Scholar 

  33. Chothia C, Jones E (1997) The molecular structure of cell adhesion molecules. Annu Rev Biochem 66:823–862. https://doi.org/10.1146/annurev.biochem.66.1.823

    Article  CAS  PubMed  Google Scholar 

  34. Koike S, Horie H, Ise I, Okitsu A, Yoshida M, Iizuka N, Takeuchi K, Takegami T, Nomoto A (1990) The poliovirus receptor protein is produced both as membrane-bound and secreted forms. EMBO J 9:3217–3224. https://doi.org/10.1002/j.1460-2075.1990.tb07520.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Arita M, Koike S, Aoki J, Horie H, Nomoto A (1998) Interaction of poliovirus with its purified receptor and conformational alteration in the Virion. J Virol 72:3578–3586. https://doi.org/10.1128/jvi.72.5.3578-3586.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Burns W (2008) East meets west: how China almost cured malaria. Endeavour 32:101–106. https://doi.org/10.1016/j.endeavour.2008.07.001

    Article  CAS  PubMed  Google Scholar 

  37. Cordell G, Colvard M (2005) Some thoughts on the future of ethnopharmacology. J Ethnopharmacol 100:5–14. https://doi.org/10.1016/j.jep.2005.05.027

    Article  PubMed  Google Scholar 

  38. Patwardhan B (2007) Drug Discovery & Development: traditional medicine and Ethnopharmacology. New India Publishing

    Book  Google Scholar 

  39. Raza M (2006) A role for physicians in ethnopharmacology and drug discovery. J Ethnopharmacol 104:297–301. https://doi.org/10.1016/j.jep.2006.01.007

    Article  PubMed  Google Scholar 

  40. Gautam M, Gairola S, Jadhav S, Patwardhan B (2008) Ethnopharmacology in vaccine adjuvant discovery. Vaccine 26:5239–5240. https://doi.org/10.1016/j.vaccine.2008.07.045

    Article  CAS  PubMed  Google Scholar 

  41. Gilani A, Rahman A-u (2005) Trends in ethnopharmacology. J Ethnopharmacol 100:43–49. https://doi.org/10.1016/j.jep.2005.06.001

    Article  PubMed  Google Scholar 

  42. Singh A (2007) Phcog rev.: a report herbal medicine–dream unresolved. Pharmacogn Rev 1(2)

    Google Scholar 

  43. Wardwell W (1994) Alternative medicine in the United States. Soc Sci Med 38:1061–1068. https://doi.org/10.1016/0277-9536(94)90223-2

    Article  CAS  PubMed  Google Scholar 

  44. Alves R, Rosa I (2007) Biodiversity, traditional medicine and public health: where do they meet? J Ethnobiol Ethnomed. https://doi.org/10.1186/1746-4269-3-14

  45. Anonymous (1998) Indian herbal pharmacopoeia, vol 1. Indian Drug Manufacturers Association, Mumbai

    Google Scholar 

  46. Chung B (2000) Natural plant extracts: export market opportunities in the USA: a Report for the Rural Industries Research and Development Corporation. RIRDC

    Google Scholar 

  47. Singh A (ed) (2011) Herbalism, phytochemistry and ethnopharmacology. CRC Press

    Google Scholar 

  48. Wasik J (1999) The truth about herbal supplements. Consum Dig 2:75–79

    Google Scholar 

  49. Cowan M (1999) Plant products as antimicrobial Agents. Clin Microbiol Rev 12:564–582. https://doi.org/10.1128/cmr.12.4.564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Viladomat F, Bastida J, Codina C, Nair JJ, Campbell WE (1997) Alkaloids of the South African Amaryllidaceae. Recent Res Dev Phytochem 1:131–171

    Google Scholar 

  51. Meerow A, Snijman D (1998) Amaryllidaceae. In: Flowering plants monocotyledons. Springer-Verlag, pp 83–110. https://doi.org/10.1007/978-3-662-03533-7_11

    Chapter  Google Scholar 

  52. Heinrich M, Lee Teoh H (2004) Galanthamine from snowdrop—the development of a modern drug against Alzheimer’s disease from local Caucasian knowledge. J Ethnopharmacol 92:147–162. https://doi.org/10.1016/j.jep.2004.02.012

    Article  CAS  PubMed  Google Scholar 

  53. Heinrich M (2010) Galanthamine from Galanthus and other Amaryllidaceae – chemistry and biology based on traditional use. Alkaloids Chem Biol:157–165. https://doi.org/10.1016/s1099-4831(10)06804-5

  54. Semple S, Reynolds G, O’Leary M, Flower R (1998) Screening of Australian medicinal plants for antiviral activity. J Ethnopharmacol 60:163–172. https://doi.org/10.1016/s0378-8741(97)00152-9

    Article  CAS  PubMed  Google Scholar 

  55. Vanden Berghe DAR, Haemers A, Vlietinck AJ (1993) Antiviral agents from higher plants and an example of structure-activity relationship of 3-methoxyflavones. In: Colegate SM, Molyneux RJ (eds) Bioactive natural products. Detection, isolation, and structural determination. CRC Press, Boca Raton, pp 405–440

    Google Scholar 

  56. Taylor R, Manandhar N, Hudson J, Towers G (1996) Antiviral activities of Nepalese medicinal plants. J Ethnopharmacol 52:157–163. https://doi.org/10.1016/0378-8741(96)01409-2

    Article  CAS  PubMed  Google Scholar 

  57. Caris P (2000) Floral development of three Maesa species, with special emphasis on the position of the genus within Primulales. Ann Bot 86:87–97. https://doi.org/10.1006/anbo.2000.1163

    Article  Google Scholar 

  58. Chandrasekhar C, Prabhu K, Venkateswarlu V (1970) Isolation of a new quinone from Maesa macrophylla. Phytochemistry 9:415–417. https://doi.org/10.1016/s0031-9422(00)85155-9

    Article  CAS  Google Scholar 

  59. Verpoorte R (2000) Pharmacognosy in the new millennium: leadfinding and biotechnology. J Pharm Pharmacol 52(3):253–262

    Article  CAS  PubMed  Google Scholar 

  60. Martins ER, Castro DM, Castellani DC, Dias JE (1998) Plantas medicinais. EDUFV, Viçosa

    Google Scholar 

  61. Moura-Costa G, Nocchi S, Ceole L et al (2012) Antimicrobial activity of plants used as medicinals on an indigenous reserve in Rio das Cobras, Paraná, Brazil. J Ethnopharmacol 143:631–638. https://doi.org/10.1016/j.jep.2012.07.016

    Article  PubMed  Google Scholar 

  62. De Clercq E (2004) Antiviral drugs in current clinical use. J Clin Virol 30:115–133. https://doi.org/10.1016/j.jcv.2004.02.009

    Article  CAS  PubMed  Google Scholar 

  63. Rajakani R, Narnoliya L, Sangwan N et al (2014) Subtractive transcriptomes of fruit and leaf reveal differential representation of transcripts in Azadirachta indica. Tree Genet Genomes 10:1331–1351. https://doi.org/10.1007/s11295-014-0764-7

    Article  Google Scholar 

  64. Subapriya R, Nagini S (2005) Medicinal properties of neem leaves: a review. Curr Med Chem AntiCancer Agents 5:149–156. https://doi.org/10.2174/1568011053174828

    Article  CAS  PubMed  Google Scholar 

  65. SaiRam M, Ilavazhagan G, Sharma S et al (2000) Anti-microbial activity of a new vaginal contraceptive NIM-76 from neem oil (Azadirachta indica). J Ethnopharmacol 71:377–382. https://doi.org/10.1016/s0378-8741(99)00211-1

    Article  CAS  PubMed  Google Scholar 

  66. Faccin-Galhardi L, Aimi Yamamoto K, Ray S et al (2012) The in vitro antiviral property of Azadirachta indica polysaccharides for poliovirus. J Ethnopharmacol 142:86–90. https://doi.org/10.1016/j.jep.2012.04.018

    Article  CAS  PubMed  Google Scholar 

  67. González M, Alarcón B, Carrasco L (1987) Polysaccharides as antiviral agents: antiviral activity of carrageenan. Antimicrob Agents Chemother 31:1388–1393. https://doi.org/10.1128/aac.31.9.1388

    Article  PubMed  PubMed Central  Google Scholar 

  68. Orwa C, Mutua A, Kindt R, Jamnadass R, Simons A (2009) An agroforestree database: a tree reference and selection guide. Version 4.0. International Centre for Research in Agroforestry, Nairobi

    Google Scholar 

  69. Von Maydell HJ (1986) Trees and shrubs of the Sahel, their characteristics and uses. GTZ, Eschborn

    Google Scholar 

  70. Jemiseye F, Akinlade J, Ogunwole O, Adedeji B (2020) Piliostigma thonningii leaves as dry season feed supplement for West African dwarf goats. Niger J Anim Prod 46:276–283. https://doi.org/10.51791/njap.v46i2.45

    Article  Google Scholar 

  71. Beentje H, Oyen L, Lemmens R et al (2003) Plant resources of tropical Africa. Kew Bull 58:510. https://doi.org/10.2307/4120640

    Article  Google Scholar 

  72. Morton J (1987) Cashew apple. In: Fruits of warm climates. Julia F. Morton, Miami, pp 239–240

    Google Scholar 

  73. Bicalho B, Rezende C (2001) Volatile compounds of cashew apple (Anacardium occidentale L.). Zeitschrift für Naturforschung C 56:35–39. https://doi.org/10.1515/znc-2001-1-206

    Article  CAS  Google Scholar 

  74. Thomas M, Filho J (1985) Anti-inflammatory actions of tannins isolated from the bark of Anacardium occidentale L. J Ethnopharmacol 13:289–300. https://doi.org/10.1016/0378-8741(85)90074-1

    Article  PubMed  Google Scholar 

  75. Patra JK, Singdevsachan SK, Swain MR (2016) Biochemical composition and antioxidant potential of fermented tropical fruits juices. Agro Food Indus Hi Tech 27:29–33

    CAS  Google Scholar 

  76. Honfo F, Akissoe N, Linnemann A et al (2013) Nutritional composition of Shea products and chemical properties of Shea butter: a review. Crit Rev Food Sci Nutr 54:673–686. https://doi.org/10.1080/10408398.2011.60414

    Article  Google Scholar 

  77. Pearson D (1976) The chemical analysis of foods, 7th edn. Churchill Livingstone, London, pp 7–11. ISBN-13: 9780700014576

    Google Scholar 

  78. Nwinyi FC, Binda L, Ajoku GA et al (2004) Evaluation of the aqueous extract of Boswellia dalzielii stem bark for antimicrobial activities and gastrointestinal effects. Afr J Biotechnol 3:284–288. https://doi.org/10.5897/ajb2004.000-2052

    Article  Google Scholar 

  79. Alemika TE, Onawunmi GO, Olugbade TA (2006) Antibacterial phenolics from Boswellia dalzielii. Niger J Nat Prod Med 10:108–110

    CAS  Google Scholar 

  80. Gokaraju GR, Gokaraju RR, Gokaraju VK, Golakoti T, Bhupathiraju K, Inventors; Laila Nutraceuticals, Assignee (2013) Boswellia low polar gum resin extract and its synergistic compositions. United States patent US 8,551,496

    Google Scholar 

  81. Kudi A, Myint S (1999) Antiviral activity of some Nigerian medicinal plant extracts. J Ethnopharmacol 68:289–294. https://doi.org/10.1016/s0378-8741(99)00049-5

    Article  CAS  PubMed  Google Scholar 

  82. Thongsaard W, Pongsakorn S, Sudsuang R et al (1997) Barakol, a natural anxiolytic, inhibits striatal dopamine release but not uptake in vitro. Eur J Pharmacol 319:157–164. https://doi.org/10.1016/s0014-2999(96)00850-3

    Article  CAS  PubMed  Google Scholar 

  83. Vrijsen R, Vanden Berghe D, Vlietinck A, Boeyé A (1986) Lycorine: a eukaryotic termination inhibitor? J Biol Chem 261:505–507. https://doi.org/10.1016/s0021-9258(17)36118-5

    Article  CAS  PubMed  Google Scholar 

  84. Wang P, Yuan H, Zhang X et al (2014) Novel Lycorine derivatives as anticancer Agents: synthesis and in vitro biological evaluation. Molecules 19:2469–2480. https://doi.org/10.3390/molecules19022469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Luo Z, Wang F, Zhang J et al (2012) Cytotoxic alkaloids from the whole plants of Zephyranthes candida. J Nat Prod 75:2113–2120. https://doi.org/10.1021/np3005425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Omonike OO, Adekunle J, Edith AO, Festus AD (2013) Anti-poliovirus activity of medicinal plants selected from the Nigerian ethno-medicine. Afr J Biotechnol 12(24):3878–3883

    Google Scholar 

  87. Yamazaki Z, Tagaya I (1980) Antiviral effects of atropine and caffeine. J Gen Virol 50:429–431. https://doi.org/10.1099/0022-1317-50-2-429

    Article  CAS  PubMed  Google Scholar 

  88. Koch A, György E (1969) Heart glycosides in poliovirus host cell interaction. I. Effect of digoxin and digitoxin and their aglucons on one step growth curves. Acta Microbiol Acad Sci Hung 16(2):189–196

    CAS  PubMed  Google Scholar 

  89. Acevedo-Rodriguez P, Strong M (2012) Catalogue of seed plants of the West Indies. Smithson Contrib Bot 98:1–1192. https://doi.org/10.5479/si.0081024x.98.1

    Article  Google Scholar 

  90. Anonymous (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467. https://doi.org/10.1038/nature06148

    Article  CAS  Google Scholar 

  91. Kongor J, Hinneh M, de Walle D et al (2016) Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile – a review. Food Res Int 82:44–52. https://doi.org/10.1016/j.foodres.2016.01.012

    Article  CAS  Google Scholar 

  92. Davis A, Govaerts R, Bridson D, Stoffelen P (2006) An annotated taxonomic conspectus of the genus Coffea (Rubiaceae). Bot J Linn Soc 152:465–512. https://doi.org/10.1111/j.1095-8339.2006.00584.x

    Article  Google Scholar 

  93. Olmstead R, Pamphilis C, Wolfe A et al (2001) Disintegration of the Scrophulariaceae. Am J Bot 88:348–361. https://doi.org/10.2307/2657024

    Article  CAS  PubMed  Google Scholar 

  94. Uphof JC (1959) Dictionary of economic plants. J. Cramer, Weinheim

    Google Scholar 

  95. Martínez-Torres M (2006) Organic coffee. Ohio University Center for International Studies, Athens

    Google Scholar 

  96. Silveira R, Mattos F, Saes M (2016) The reaction of coffee futures Price volatility to crop reports. Emerg Mark Financ Trade 53:2361–2376. https://doi.org/10.1080/1540496x.2016.1205976

    Article  Google Scholar 

  97. Speer K, Kölling-Speer I (2006) The lipid fraction of the coffee bean. Braz J Plant Physiol 18:201–216

    Article  CAS  Google Scholar 

  98. Mølgaard P, Ravn H (1988) Evolutionary aspects of caffeoyl ester distribution in Dicotyledons. Phytochemistry 27:2411–2421. https://doi.org/10.1016/0031-9422(88)87005-5

    Article  Google Scholar 

  99. DeLong DC, Nelson JD, Wu CY, Warren B, Wikel J, Chamberlin J, Montgomery D, Paget CJ (1978) Virus inhibition studies with AR-336 I. Tissue culture activity. In: Annual meeting of the American Society for Microbiology, p 234

    Google Scholar 

  100. DeLong DC, Nelson JD, Wu E, Warren B, Wikel J, Templeton RJ, Dinner A (1978) Virus inhibition studies with AR-336. III. Relative activity of syn and anti-isomers, abstr. 34. In: Program and abstracts of the 18th Interscience conference on antimicrobial Agents and chemotherapy. American Society for Microbiology, Washington, DC

    Google Scholar 

  101. Wikel J, Paget C, DeLong D et al (1980) Synthesis of syn and anti-isomers of 6-[[(hydroxyimino)phenyl]methyl]-1-[(1-methylethyl)sulfonyl]-1H-benzimidazol-2-amine. Inhibitors of rhinovirus multiplication. J Med Chem 23:368–372. https://doi.org/10.1021/jm00178a004

    Article  CAS  PubMed  Google Scholar 

  102. Wu CY, Nelson JD, Warren BR, DeLong DC (1978) Virus inhibition studies with AR-336 II. Mode of action studies. In: Annual meeting of the American Society for Microbiology, p 234

    Google Scholar 

  103. DeLong D, Reed S (1980) Inhibition of rhinovirus replication in organ culture by a potential antiviral drug. J Infect Dis 141:87–91. https://doi.org/10.1093/infdis/141.1.87

    Article  CAS  PubMed  Google Scholar 

  104. Phillpotts R, Delong D, Wallace J et al (1981) The activity of enviroxime against rhinovirus infection in man. Lancet 317:1342–1344. https://doi.org/10.1016/s0140-6736(81)92520-4

    Article  Google Scholar 

  105. Shepard D, Heinz B, Rueckert R (1993) WIN 52035-2 inhibits both attachment and eclipse of human rhinovirus 14. J Virol 67:2245–2254. https://doi.org/10.1128/jvi.67.4.2245-2254.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mosser A, Rueckert R (1993) WIN 51711-dependent mutants of poliovirus type 3: evidence that virions decay after release from cells unless drug is present. J Virol 67:1246–1254. https://doi.org/10.1128/jvi.67.3.1246-1254.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pincus S, Diamond D, Emini E, Wimmer E (1986) Guanidine-selected mutants of poliovirus: mapping of point mutations to polypeptide 2C. J Virol 57:638–646. https://doi.org/10.1128/jvi.57.2.638-646.1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Pincus S, Wimmer E (1986) Production of guanidine-resistant and -dependent poliovirus mutants from cloned cDNA: mutations in polypeptide 2C are directly responsible for altered guanidine sensitivity. J Virol 60:793–796. https://doi.org/10.1128/jvi.60.2.793-796.1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Heinz B, Vance L (1995) The antiviral compound enviroxime targets the 3A coding region of rhinovirus and poliovirus. J Virol 69:4189–4197. https://doi.org/10.1128/jvi.69.7.4189-4197.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Holland J, Spindler K, Horodyski F et al (1982) Rapid evolution of RNA genomes. Science 215:1577–1585. https://doi.org/10.1126/science.7041255

    Article  CAS  PubMed  Google Scholar 

  111. Giachetti C, Hwang S, Semler B (1992) Cis-acting lesions targeted to the hydrophobic domain of a poliovirus membrane protein involved in RNA replication. J Virol 66:6045–6057. https://doi.org/10.1128/jvi.66.10.6045-6057.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lama J, Paul A, Harris K, Wimmer E (1994) Properties of purified recombinant poliovirus protein 3aB as substrate for viral proteinases and as co-factor for RNA polymerase 3Dpol. J Biol Chem 269:66–70. https://doi.org/10.1016/s0021-9258(17)42314-3

    Article  CAS  PubMed  Google Scholar 

  113. Cunningham B, Wells J (1989) High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis. Science 244:1081–1085. https://doi.org/10.1126/science.2471267

    Article  CAS  PubMed  Google Scholar 

  114. Wedman KF, Drubin DG, Botstein D (1992) Systematic mutational analysis of the yeast ACTl gene. Genetics 132:337–350

    Article  Google Scholar 

  115. Giachetti C, Semler BL (1990) Molecular genetic analysis of poliovirus RNA replication by mutagenesis of a VPg precursor polypeptide. New aspects of positive-strand RNA viruses. American Society for Microbiology, Washington, DC, pp 83–93

    Google Scholar 

  116. Semler B, Anderson C, Hanecak R et al (1982) A membrane-associated precursor to poliovirus VPg identified by immunoprecipitation with antibodies directed against a synthetic heptapeptide. Cell 28:405–412. https://doi.org/10.1016/0092-8674(82)90358-0

    Article  CAS  PubMed  Google Scholar 

  117. Carrasco L (1994) Picornavirus inhibitors. Pharmacol Ther 64:215–290. https://doi.org/10.1016/0163-7258(94)90040-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Castrillo J, Berghe D, Carrasco L (1986) 3-methylquercetin is a potent and selective inhibitor of poliovirus RNA synthesis. Virology 152:219–227. https://doi.org/10.1016/0042-6822(86)90386-7

    Article  CAS  PubMed  Google Scholar 

  119. González M, Martínez-Abarca F, Carrasco L (1990) Flavonoids: potent inhibitors of poliovirus RNA synthesis. Antivir Chem Chemother 1:203–209. https://doi.org/10.1177/095632029000100304

    Article  Google Scholar 

  120. Ishitsuka H, Ninomiya Y, Ohsawa C et al (1982) Direct and specific inactivation of rhinovirus by chalcone Ro 09-0410. Antimicrob Agents Chemother 22:617–621. https://doi.org/10.1128/aac.22.4.617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ishitsuka H, Ohsawa C, Ohiwa T et al (1982) Antipicornavirus flavone Ro 09-0179. Antimicrob Agents Chemother 22:611–616. https://doi.org/10.1128/aac.22.4.611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Castrillo J, Carrasco L (1987) Action of 3-methylquercetin on poliovirus RNA replication. J Virol 61:3319–3321. https://doi.org/10.1128/jvi.61.10.3319-3321.1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sandoval I, Carrasco L (1997) Poliovirus infection and expression of the poliovirus protein 2B provoke the disassembly of the Golgi complex, the organelle target for the antipoliovirus drug Ro-090179. J Virol 71:4679–4693. https://doi.org/10.1128/jvi.71.6.4679-4693.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wehland J, Henkart M, Klausner R, Sandoval I (1983) Role of microtubules in the distribution of the Golgi apparatus: effect of taxol and microinjected anti-alpha-tubulin antibodies. Proc Natl Acad Sci 80:4286–4290. https://doi.org/10.1073/pnas.80.14.4286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wehland J, Sandoval I (1983) Cells injected with guanosine 5′-[alpha, beta-methylene]triphosphate, an alpha, beta-nonhydrolyzable analog of GTP, show anomalous patterns of tubulin polymerization affecting cell translocation, intracellular movement, and the organization of Golgi elements. Proc Natl Acad Sci 80:1938–1941. https://doi.org/10.1073/pnas.80.7.1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lenk R, Penman S (1979) The cytoskeletal framework and poliovirus metabolism. Cell 16:289–301. https://doi.org/10.1016/0092-8674(79)90006-0

    Article  CAS  PubMed  Google Scholar 

  127. Alcalde J, Egea G, Sandoval I (1994) gp74 a membrane glycoprotein of the cis-Golgi network that cycles through the endoplasmic reticulum and intermediate compartment. J Cell Biol 124:649–665. https://doi.org/10.1083/jcb.124.5.649

    Article  CAS  PubMed  Google Scholar 

  128. Turner J, Tartakoff A (1989) The response of the Golgi complex to microtubule alterations: the roles of metabolic energy and membrane traffic in Golgi complex organization. J Cell Biol 109:2081–2088. https://doi.org/10.1083/jcb.109.5.2081

    Article  CAS  PubMed  Google Scholar 

  129. Lippincott-Schwartz J, Yuan L, Bonifacino J, Klausner R (1989) Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER. Cell 56:801–813. https://doi.org/10.1016/0092-8674(89)90685-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lippincott-Schwartz J, Donaldson J, Schweizer A et al (1990) Microtubule-dependent retrograde transport of proteins into the ER in the presence of brefeldin A suggests an ER recycling pathway. Cell 60:821–836. https://doi.org/10.1016/0092-8674(90)90096-w

    Article  CAS  PubMed  Google Scholar 

  131. Donaldson J, Finazzi D, Klausner R (1992) Brefeldin A inhibits Golgi membrane-catalysed exchange of guanine nucleotide onto ARF protein. Nature 360:350–352. https://doi.org/10.1038/360350a0

    Article  CAS  PubMed  Google Scholar 

  132. Helms J, Rothman J (1992) Inhibition by brefeldin A of a Golgi membrane enzyme that catalyses exchange of guanine nucleotide bound to ARF. Nature 360:352–354. https://doi.org/10.1038/360352a0

    Article  CAS  PubMed  Google Scholar 

  133. Orcl L, Tagaya M, Amherdt M et al (1991) Brefeldin A, a drug that blocks secretion, prevents the assembly of non-clathrin-coated buds on Golgi cisternae. Cell 64:1183–1195. https://doi.org/10.1016/0092-8674(91)90273-2

    Article  Google Scholar 

  134. Schekman R, Orci L (1996) Coat proteins and vesicle budding. Science 271:1526–1533. https://doi.org/10.1126/science.271.5255.1526

    Article  CAS  PubMed  Google Scholar 

  135. Saraste J, Palade G, Farquhar M (1986) Temperature-sensitive steps in the transport of secretory proteins through the Golgi complex in exocrine pancreatic cells. Proc Natl Acad Sci 83:6425–6429. https://doi.org/10.1073/pnas.83.17.6425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Saraste J, Svensson K (1991) Distribution of the intermediate elements operating in ER to Golgi transport. J Cell Sci 100:415–430. https://doi.org/10.1242/jcs.100.3.415

    Article  CAS  PubMed  Google Scholar 

  137. Schweizer A, Fransen JA, Matter K, Kreis TE, Ginsel L, Hauri HP (1990) Identification of an intermediate compartment involved in protein transport from endoplasmic reticulum to Golgi apparatus. Eur J Cell Biol 53(2):185–196

    CAS  PubMed  Google Scholar 

  138. Lewis M, Pelham H (1992) Ligand-induced redistribution of a human KDEL receptor from the Golgi complex to the endoplasmic reticulum. Cell 68:353–364. https://doi.org/10.1016/0092-8674(92)90476-s

    Article  CAS  PubMed  Google Scholar 

  139. Tang B, Wong S, Qi X et al (1993) Molecular cloning, characterization, subcellular localization and dynamics of p23, the mammalian KDEL receptor. J Cell Biol 120:325–338. https://doi.org/10.1083/jcb.120.2.325

    Article  CAS  PubMed  Google Scholar 

  140. Carrasco L (1995) Modification of membrane permeability by animal viruses. Adv Virus Res:61–112. https://doi.org/10.1016/s0065-3527(08)60058-5

  141. Bienz K, Egger D, Pasamontes L (1987) Association of polioviral proteins of the P2 genomic region with the viral replication complex and virus-induced membrane synthesis as visualized by electron microscopic immunocytochemistry and autoradiography. Virology 160:220–226. https://doi.org/10.1016/0042-6822(87)90063-8

    Article  CAS  PubMed  Google Scholar 

  142. Bienz K, Egger D, Pfister T (1994) Characteristics of the poliovirus replication complex. Arch Virol Suppl 9:147–157. https://doi.org/10.1007/978-3-7091-9326-6_15

    Article  CAS  PubMed  Google Scholar 

  143. Bienz K, Egger D, Wolff D (1973) Virus replication, cytopathology, and lysosomal enzyme response of mitotic and interphase hep-2 cells infected with poliovirus. J Virol 11:565–574. https://doi.org/10.1128/jvi.11.4.565-574.1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Rothman J (1994) Mechanisms of intracellular protein transport. Nature 372:55–63. https://doi.org/10.1038/372055a0

    Article  CAS  PubMed  Google Scholar 

  145. Schlegel A, Giddings T, Ladinsky M, Kirkegaard K (1996) Cellular origin and ultrastructure of membranes induced during poliovirus infection. J Virol 70:6576–6588. https://doi.org/10.1128/jvi.70.10.6576-6588.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Guinea R, Carrasco L (1990) Phospholipid biosynthesis and poliovirus genome replication, two coupled phenomena. EMBO J 9:2011–2016. https://doi.org/10.1002/j.1460-2075.1990.tb08329.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Carrasco L (1978) Membrane leakiness after viral infection and a new approach to the development of antiviral agents. Nature 272:694–699. https://doi.org/10.1038/272694a0

    Article  CAS  PubMed  Google Scholar 

  148. Carrasco L, Otero MJ, Castrillo JL (1989) Modification of membrane permeability by virus infection. Pharmacol Ther 23:109–145

    Article  Google Scholar 

  149. Korant B, Chow N, Lively M, Powers J (1980) Proteolytic events in replication of animal viruses. Ann N Y Acad Sci 343:304–318. https://doi.org/10.1111/j.1749-6632.1980.tb47260.x

    Article  CAS  PubMed  Google Scholar 

  150. Hutchinson D (1985) Metal chelators as potential antiviral agents. Antivir Res 5:193–205. https://doi.org/10.1016/0166-3542(85)90024-5

    Article  CAS  PubMed  Google Scholar 

  151. Tershak DR, Yin FH, Korant BD (1982) Guanidine. In: Chemotherapy of viral infections. Springer, Berlin/Heidelberg, pp 343–375

    Chapter  Google Scholar 

  152. Miller P, Milstrey K, Trown P (1968) Specific inhibition of viral ribonucleic acid replication by Gliotoxin. Science 159:431–432. https://doi.org/10.1126/science.159.3813.431

    Article  CAS  PubMed  Google Scholar 

  153. Eggers HJ (1982) Benzimidazoles. In: Chemotherapy of viral infections. Springer, Berlin/Heidelberg, pp 377–417

    Chapter  Google Scholar 

  154. Kaul T, Middleton E, Ogra P (1985) Antiviral effect of flavonoids on human viruses. J Med Virol 15:71–79. https://doi.org/10.1002/jmv.1890150110

    Article  CAS  PubMed  Google Scholar 

  155. Selway JT (1986) Antiviral activity of flavones and flavans. Prog Clin Biol Res 213:521–536

    CAS  PubMed  Google Scholar 

  156. Vrijsen R, Everaert L, Boeye A (1988) Antiviral activity of flavones and potentiation by ascorbate. J Gen Virol 69:1749–1751. https://doi.org/10.1099/0022-1317-69-7-1749

    Article  CAS  PubMed  Google Scholar 

  157. Harborne JB (1988) The flavonoids. Chapman and Hall, London

    Book  Google Scholar 

  158. Prusoff W, Lin T, Zucker M (1986) Potential targets for antiviral chemotherapy. Antivir Res 6:311–328. https://doi.org/10.1016/0166-3542(86)90014-8

    Article  CAS  PubMed  Google Scholar 

  159. Agents A (1988) The development and assessment of antiviral chemotherapy, vol 1. CRC Press, Boca Raton

    Google Scholar 

  160. Agents A (1988) The development and assessment of antiviral chemotherapy, vol 2. CRC Press, Boca Raton

    Google Scholar 

  161. Robin V, Boustie J, Amoros M, Girre L (1998) In-vitro antiviral activity of seven Psiadia species, Asteraceae: isolation of two antipoliovirus flavonoids from Psiadia dentata. Pharm Pharmacol Commun 1:61–64

    Google Scholar 

  162. Eggeling WJ (1952) The indigenous trees of the Uganda Protectorate. Government Printer, Entebbe

    Google Scholar 

  163. De Meyer N, Haemers A, Mishra L et al (1991) 4′-Hydroxy-3-methoxyflavones with potent antipicornavirus activity. J Med Chem 34:736–746. https://doi.org/10.1021/jm00106a039

    Article  PubMed  Google Scholar 

  164. Yang D, Wang F, Su J, Zeng L (2000) Chemical composition of essential oil in stems, leaves and flowers of Agastache rugosa. Zhong yao cai Zhongyaocai Journal of Chinese Medicinal Materials 23(3):149–151

    CAS  PubMed  Google Scholar 

  165. Wang Y, Hostettmann K (1990) Polyphenols from Psiadia trinervia (Asteraceae). Bulletin de Liaison Groupe Polyphenols (France)

    Google Scholar 

  166. Robin V, Irurzun A, Amoros M et al (2001) Antipoliovirus Flavonoids from Psiadia Dentata. Antivir Chem Chemother 12:283–291. https://doi.org/10.1177/095632020101200503

    Article  CAS  PubMed  Google Scholar 

  167. Subba Rao G, Sinsheimer J, Cochran K (1974) Antiviral activity of triterpenoid saponins containing acylated β-amyrin aglycones. J Pharm Sci 63:471–473. https://doi.org/10.1002/jps.2600630341

    Article  Google Scholar 

  168. Aumeeruddy-Elalfi Z, Gurib-Fakim A, Mahomoodally M (2016) Kinetic studies of tyrosinase inhibitory activity of 19 essential oils extracted from endemic and exotic medicinal plants. S Afr J Bot 103:89–94. https://doi.org/10.1016/j.sajb.2015.09.010

    Article  CAS  Google Scholar 

  169. Marie D, Gurib-Fakim A, Gray A, Waterman P (2006) Constituents of Psiadia terebinthina A.J. Scott, an endemic Asteraceae from Mauritius. Nat Prod Res 20:1169–1175. https://doi.org/10.1080/14786410600898847

    Article  CAS  PubMed  Google Scholar 

  170. Fortin H, Tomasi S, Jaccard P et al (2001) A Prenyloxycoumarin from Psiadia dentata. Chem Pharm Bull 49:619–621. https://doi.org/10.1248/cpb.49.619

    Article  CAS  Google Scholar 

  171. Vimalanathan S, Ignacimuthu S, Hudson J (2009) Medicinal plants of Tamil Nadu (southern India) are a rich source of antiviral activities. Pharm Biol 47:422–429. https://doi.org/10.1080/13880200902800196

    Article  Google Scholar 

  172. Hudson J (1990) Antiviral compounds from plants. Plant extracts. CRC Press, Boca Raton, pp 179–192

    Google Scholar 

  173. Täkholm V (1974) Students’ Flora of Egypt. The Graphical Service, Beirut

    Google Scholar 

  174. Boulos L (1995) Flora of Egypt. checklist. Al Hadara Publishing, Cairo

    Google Scholar 

  175. Van Den Berghe DA, Ieven M, Mertens F, Vlietinck AJ (1978) Screening of higher plants for biological activities. II. Antiviral activity. Lloydia 41(5):463–471

    PubMed  Google Scholar 

  176. Das PK, Goswami S, Chinniah A, Panda N, Banerjee S, Sahu NP, Achari B (2007) Woodfordia fruticosa: traditional uses and recent findings. J Ethnopharmacol 110(2):189–199

    Article  CAS  PubMed  Google Scholar 

  177. Baka Z (2014) Antifungal activity of extracts from five Egyptian wild medicinal plants against late blight disease of tomato. Arch Phytopathol Plant Protect 47:1988–2002. https://doi.org/10.1080/03235408.2013.865878

    Article  Google Scholar 

  178. Al-Gaby A, Allam R (2000) Chemical analysis, antimicrobial activity, and the essential oils from some wild herbs in Egypt. J Herbs Spices Med Plants 7:15–23. https://doi.org/10.1300/j044v07n01_03

    Article  Google Scholar 

  179. Al Samarrai AM, Al Sawah DA, Ali MA (2003) Thin layer and gas chromatographic studies on essential oil of Achillea fragrantissima (Forsk.) Sch. Bip. Iraqi J Vet Sci 17:41–46

    Google Scholar 

  180. Soliman F, Moussa M, Osman S (2007) Study of volatile oil and lipid content of Jasonia montana (vahl.) Botsch. Egypt J Biomed Sci. https://doi.org/10.4314/ejbs2.v23i1.40301

  181. Mudawi MM, Abd El-wahab MF, Yassin AY, Habeballa RS, Alshehri MM (2017) Evaluation of anticonvulsant activity and HPLC–DAD profiling of Achillea fragrantissima (Gaisoom) extracts growing in Saudi Arabia. Asian J Pharm Res Health Care 9(3):92–100

    Article  Google Scholar 

  182. Eissa TF, Gonzalez-Burgos E, Carretero ME, Gomez-Serranillos MP (2018) Chemical characterization of polyphenols of Egyptian Achillea fragrantissima with in vitro antioxidant study. Chiang Mai J Sci 45(2):897–904

    CAS  Google Scholar 

  183. Merxmuller H, Liens P, Roesseler H (1977) In: Heywood JB, Harborne B, Turner L (eds) The biology and chemistry of composite. Academic, New York, p 590

    Google Scholar 

  184. Scartezzini P, Speroni E (2000) Review on some plants of Indian traditional medicine with antioxidant activity. J Ethnopharmacol 71(1–2):23–43

    Article  CAS  PubMed  Google Scholar 

  185. Ahmed AA, Jakupovic J (1990) Sesqui- and monoterpenes from Jasonia montana. Phytochemistry 29(11):3658–3661

    Article  CAS  Google Scholar 

  186. Al-Howiriny TA, Al-Rehaily AJ, Pols JR, Porter JR, Mossa JS, Ahmed B (2005) Three new diterpenes and the biological activity of different extracts of Jasonia montana. Nat Prod Res 19(3):253–265

    Article  CAS  PubMed  Google Scholar 

  187. IRMNG (2019). Globularia Linnaeus, 1753. Retrieved through: Interim Register of Marine and Non-marine Genera on 25 January 2019

    Google Scholar 

  188. RHS A-Z encyclopedia of garden plants (2008) Dorling Kindersley, United Kingdom, p 1136. ISBN 978-1405332965

    Google Scholar 

  189. WC E. Trease and Evans’ pharmacognosy (2002) University of Nottingham, Nottingham, p 21

    Google Scholar 

  190. Poonkodi K, Vimaladevi K, Suganthi M, Gayathri N (2019) Essential oil composition and biological activities of Aegle marmelos (L.) Correa grown in Western Ghats region-South India. J Essent Oil Bear Plants 22:1013–1021. https://doi.org/10.1080/0972060x.2019.1653796

    Article  CAS  Google Scholar 

  191. Eldin A, Elsebakhy N, Elghazouly M (1985) Methoxylated flavonoids of tanacetum-santolinoiddes and Jasonia-montana. Acta Pharm Jugosl 35(4):283–287

    CAS  Google Scholar 

  192. Al-Howiriny T, Al-Rehaily A, Pols J et al (2005) Three new diterpenes and the biological activity of different extracts of Jasonia Montana. Nat Prod Res 19:253–265. https://doi.org/10.1080/14786410410001712715

    Article  CAS  PubMed  Google Scholar 

  193. Mohamed A (2007) Jasonone, a nor-sesquiterepene from Jasonia Montana. Zeitschrift für Naturforschung B 62:125–128. https://doi.org/10.1515/znb-2007-0119

    Article  CAS  Google Scholar 

  194. Mahmoud A (2006) Jasomontanone, a novel bicyclic sesquiterpene from the leaves of Jasonia montana. Nat Prod Commun 1:1934578X0600100. https://doi.org/10.1177/1934578x0600100103

    Article  Google Scholar 

  195. Ashraf AEB, Amal MK (2006) Montanone, a new sesquiterpene from Jasonia montana. Saudi Pharm J 14:126–128

    Google Scholar 

  196. Soltan M, Zaki A (2009) Antiviral screening of forty-two Egyptian medicinal plants. J Ethnopharmacol 126:102–107. https://doi.org/10.1016/j.jep.2009.08.001

    Article  PubMed  Google Scholar 

  197. Houghton P (2000) Chemistry and biological activity of natural and semi-synthetic chromone alkaloids. Bioactive Nat Prod (Part B):123–155. https://doi.org/10.1016/s1572-5995(00)80005-8

  198. Elisabetsky E, Wannmacher L (1993) The status of ethnopharmacology in Brazil. J Ethnopharmacol 38:129–135. https://doi.org/10.1016/0378-8741(93)90008-s

    Article  Google Scholar 

  199. Guo J (2006) In vitro screening of traditionally used medicinal plants in China against enteroviruses. World J Gastroenterol 12:4078. https://doi.org/10.3748/wjg.v12.i25.4078

    Article  PubMed  PubMed Central  Google Scholar 

  200. De Toledo C, Britta E, Ceole L et al (2011) Antimicrobial and cytotoxic activities of medicinal plants of the Brazilian cerrado, using Brazilian cachaça as extractor liquid. J Ethnopharmacol 133:420–425. https://doi.org/10.1016/j.jep.2010.10.021

    Article  PubMed  Google Scholar 

  201. Faccin L, Benati F, Rincão V et al (2007) Antiviral activity of aqueous and ethanol extracts and of an isolated polysaccharide from Agaricus brasiliensis against poliovirus type 1. Lett Appl Microbiol 45:24–28. https://doi.org/10.1111/j.1472-765x.2007.02153.x

    Article  CAS  PubMed  Google Scholar 

  202. Linh N, Ha N, Tra N et al (2021) Medicinal plant Centipeda Minima: a resource of bioactive compounds. Mini-Rev Med Chem 21:273–287. https://doi.org/10.2174/1389557520666201021143257

    Article  CAS  PubMed  Google Scholar 

  203. On H, Kwon B, Baek N et al (2006) Inhibitory activity of 6-O-angeloylprenolin from Centipeda minima on farnesyl protein transferase. Arch Pharm Res 29:64–66. https://doi.org/10.1007/bf02977470

    Article  Google Scholar 

  204. Jeffrey C (1988) The Vernonieae in East tropical Africa: notes on compositae: V. Kew Bull 43:195. https://doi.org/10.2307/4113734

    Article  Google Scholar 

  205. Abhimannue AP, Mohan MC, Prakash Kumar B (2016) Inhibition of tumor necrosis factor-α and interleukin-1β production in lipopolysaccharide-stimulated monocytes by methanolic extract of elephantopus scaber Linn and identification of bioactive components. Appl Biochem Biotechnol 179:427–443. https://doi.org/10.1007/s12010-016-2004-0

    Article  CAS  PubMed  Google Scholar 

  206. Hao D, Gu X, Xiao P (2017) Anemone medicinal plants: ethnopharmacology, phytochemistry and biology. Acta Pharm Sin B 7:146–158. https://doi.org/10.1016/j.apsb.2016.12.001

    Article  PubMed  PubMed Central  Google Scholar 

  207. Sai Ram M, Ilavazhagan G, Sharma S et al (2000) Anti-microbial activity of a new vaginal contraceptive NIM-76 from neem oil (Azadirachta indica). J Ethnopharmacol 71:377–382. https://doi.org/10.1016/s0378-8741(99)00211-1

    Article  CAS  PubMed  Google Scholar 

  208. Racaniello VR (2007) Picornaviridae, the virus and their replication. In: Knipe DM, Howley PM (eds) Fields virology, 5th edn. Lippincott Williams and Wilkins, Philadelphia, pp 795–838

    Google Scholar 

  209. Kew O, Sutter R, de Gourville E et al (2005) Vaccine-derived polioviruses and the endgame strategy for global polio eradication. Annu Rev Microbiol 59:587–635. https://doi.org/10.1146/annurev.micro.58.030603.123625

    Article  CAS  PubMed  Google Scholar 

  210. Saddi N (1987) New species of Kielmeyera (Guttiferae) from Brazil. Kew Bull 42:221. https://doi.org/10.2307/4109907

    Article  Google Scholar 

  211. Cruz F, Silva-Neto J, Guedes M (2001) Xanthones and coumarins from Kielmeyera lathrophyton. J Braz Chem Soc 12:117–122. https://doi.org/10.1590/s0103-50532001000100016

    Article  CAS  Google Scholar 

  212. Vicentin P, Cambuim J, Florsheim S et al (2021) Longitudinal variation of wood basic density and anatomy of Curatella Americana L. Sci Electron Arch. https://doi.org/10.36560/141020211396

  213. Brown M, Dobrikova E, Dobrikov M et al (2014) Oncolytic polio virotherapy of cancer. Cancer 120:3277–3286. https://doi.org/10.1002/cncr.28862

    Article  PubMed  Google Scholar 

  214. Mueller S, Wimmer E, Cello J (2005) Poliovirus and poliomyelitis: a tale of guts, brains, and an accidental event. Virus Res 111:175–193. https://doi.org/10.1016/j.virusres.2005.04.008

    Article  CAS  PubMed  Google Scholar 

  215. Brandenburg B, Lee L, Lakadamyali M et al (2007) Imaging poliovirus entry in live cells. PLoS Biol 5:e183. https://doi.org/10.1371/journal.pbio.0050183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Attardi G, Smith J (1962) Virus specific protein and a ribonucleic acid associated with ribosomes in poliovirus infected HeLa cells. Cold Spring Harb Symp Quant Biol 27:271–292. https://doi.org/10.1101/sqb.1962.027.001.026

    Article  CAS  PubMed  Google Scholar 

  217. Jang S, Kräusslich H, Nicklin M et al (1988) A segment of the 5′ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol 62:2636–2643. https://doi.org/10.1128/jvi.62.8.2636-2643.1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Carter J, Saunders V (2018) Virology principles and applications. Wiley, p 166

    Google Scholar 

  219. Choudhary M (2001) Bioactive natural products as a potential source of new pharmacophores. A theory of memory. Pure Appl Chem 73:555–560. https://doi.org/10.1351/pac200173030555

    Article  Google Scholar 

  220. Choudhary M, Nawaz S, Zaheer-ul-Haq et al (2005) Juliflorine: a potent natural peripheral anionic-site-binding inhibitor of acetylcholinesterase with calcium-channel blocking potential, a leading candidate for Alzheimer’s disease therapy. Biochem Biophys Res Commun 332:1171–1179. https://doi.org/10.1016/j.bbrc.2005.05.068

    Article  CAS  PubMed  Google Scholar 

  221. Choudhary M, Nawaz S, Zaheer-ul-Haq et al (2005) Withanolides, a new class of natural cholinesterase inhibitors with calcium antagonistic properties. Biochem Biophys Res Commun 334:276–287. https://doi.org/10.1016/j.bbrc.2005.06.086

    Article  CAS  PubMed  Google Scholar 

  222. Khalid A, Zaheer-ul-Haq, Ghayur M et al (2004) Cholinesterase inhibitory and spasmolytic potential of steroidal alkaloids. J Steroid Biochem Mol Biol 92:477–484. https://doi.org/10.1016/j.jsbmb.2004.08.003

    Article  CAS  PubMed  Google Scholar 

  223. Devasagayam TP, Sainis KB (2002) Immune system and antioxidants, especially those derived from Indian medicinal plants. Indian J Exp Biol 40:639–655

    CAS  PubMed  Google Scholar 

  224. Dahanukar SA, Kulkarni RA, Rege NN (2000) Pharmacology of medicinal plants and natural products. Indian J Pharmacol 32(4):S81–S118

    CAS  Google Scholar 

  225. Vaidya AD, Vaidya RA, Nagral SI (2001) Ayurveda and a different kind of evidence: from Lord Macaulay to Lord Walton (1835 to 2001 AD). J Assoc Physicians India 49:534–537

    CAS  PubMed  Google Scholar 

  226. Sharma P, Tyagi A, Bhansali P, Pareek S, Singh V, Ilyas A, and Poddar NK (2021) Saponins: Extraction, bio-medicinal properties and way forward to anti-viral representatives. Food and Chemical Toxicology, 150:112075

    Google Scholar 

  227. Classification of medicinal plants showing anti-viral activity, classified by family and viral infection types

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nandi, S.S. et al. (2023). Herbal Drugs Against Polio Infections: Ethnopharmacology, Chemistry, and Clinical and Preclinical Studies. In: Pal, D. (eds) Anti-Viral Metabolites from Medicinal Plants. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-83350-3_14-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83350-3_14-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83350-3

  • Online ISBN: 978-3-030-83350-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics