Skip to main content

Path Decompositions of Perturbed Reflecting Brownian Motions

  • Chapter
  • First Online:
A Lifetime of Excursions Through Random Walks and Lévy Processes

Part of the book series: Progress in Probability ((PRPR,volume 78))

  • 399 Accesses

Abstract

We are interested in path decompositions of a perturbed reflecting Brownian motion (PRBM) at the hitting times and at the minimum. Our study relies on the loop soups developed by Lawler and Werner (Probab Theory Relat Fields 4:197–217, 2004) and Le Jan (Ann Probab 38:1280–1319, 2010; Markov Paths, Loops and Fields. École d’été Saint-Flour XXXVIII 2008. Lecture Notes in Mathematics vol 2026. Springer, Berlin, 2011), in particular on a result discovered by Lupu (Mém Soc Math Fr (N.S.) 158, 2018) identifying the law of the excursions of the PRBM above its past minimum with the loop measure of Brownian bridges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Under \(\mathfrak { n}^+ ( \cdot \, |\, \ell ^{m}(\mathfrak {e}) > x- y)\), an excursion up to the inverse local time x − y at position m is a three-dimensional Bessel process, up to the hitting time of m, followed by a Brownian motion starting at m stopped at local time at level m given by x − y, this Brownian motion being conditioned on not touching 0 during that time. By excursion theory, the time-reversed process is distributed as a Brownian motion starting at level m stopped at the hitting time of 0 conditioned on the local time at m being equal to x − y. We conclude by William’s time reversal theorem (Corollary VII.4.6 of [21]).

  2. 2.

    For instance, we may show that for any T > 0, almost surely \(\sup _{0\le t \le T}| X^{-, m'}_t - X^{-, m}_t| \to 0\) as m′→ m. Let us give a proof by contradiction. Suppose there exists some ε 0 > 0, a sequence (t k) in [0, T] and m k → m such that \(| X^{-, m_k}_{t_k} - X^{-, m}_{t_k}|>\varepsilon _0\). Write for simplification \(s_k:=\alpha _{t_k}^{-, m}\) and \(s^{\prime }_k:=\alpha _{t_k}^{-, m_k}\). Consider the case m k > m (the other direction can be treated in a similar way). Then \(s_k\ge s^{\prime }_k\) and \(|X_{s^{\prime }_k}- X_{s_k}|> \varepsilon _0\) for all k. Since \(X_{s_k}\le m\) and \(X_{s^{\prime }_k}\le m_k\), either \(X_{s_k}\le m - \frac {\varepsilon _0}2\) or \(X_{s^{\prime }_k}\le m - \frac {\varepsilon _0}2\) for all large k. Consider for example the case \(X_{s^{\prime }_k}\le m - \frac {\varepsilon _0}2\). By the uniform continuity of X t on every compact, there exists some δ 0 > 0 such that X u ≤ m for all \(|u-s^{\prime }_k| \le \delta _0\) and k ≥ 1. Then for any \(s \ge s^{\prime }_k\), \(\int _{s^{\prime }_k}^s 1_{\{X_u \le m\}} \mathrm {d} u \ge \min (\delta _0, s-s^{\prime }_k)\). Note that by definition, \(\int _{s^{\prime }_k}^{s_k} 1_{\{X_u \le m\}} \mathrm {d} u =t_k- \int _{0}^{s^{\prime }_k} 1_{\{X_u \le m\}} \mathrm {d} u= \int _{m}^{m_k} L(s^{\prime }_k, x) \mathrm {d} x \le \zeta \, (m_k- m)\), with \(\zeta :=\sup _{x\in {\mathbb R}} L(\alpha _T^{-,m}, x)\). It follows that for all sufficiently large k, \(0\le s_k-s^{\prime }_k \le \zeta \, (m_k- m)\). Consequently \(X_{s_k}- X_{s^{\prime }_k} \to 0\) as m k → m, in contradiction with the assumption that \(|X_{s^{\prime }_k}- X_{s_k}|> \varepsilon _0\) for all k. This proves the continuity of m → X −, m.

  3. 3.

    More precisely for any process (γ t, t ≥ 0), Φ(γ) is the process defined by \(\theta (\gamma _t)= \Phi (\gamma )\big (\int _0^t (\theta '(\gamma _s))^2 \mathrm {d} s\big )\).

References

  1. Abraham, R., Mazliak, L.: Branching properties of Brownian paths and trees. Expo. Math. 16(1), 59–73 (1998)

    MathSciNet  MATH  Google Scholar 

  2. Bertoin, J., Le Gall, J.-F.: Stochastic flows associated to coalescent processes. II. Stochastic differential equations. Ann. Inst. H. Poincaré Probab. Stat. 41, 307–333 (2005)

    Article  Google Scholar 

  3. Carmona, P., Petit, F., Yor, M.: Sur les fonctionnelles exponentielles de certains processus de Lévy. Stoch. Stoch. Rep. 42, 71–101 (1994)

    Article  Google Scholar 

  4. Carmona, P., Petit, F., Yor, M.: Some extensions of the arc sine law as partial consequences of the scaling property of Brownian motion. Probab. Theory Relat. Fields 100, 1–29 (1994)

    Article  MathSciNet  Google Scholar 

  5. Chaumont, L., Doney, R.A.: Pathwise uniqueness for perturbed versions of Brownian motion and reflected Brownian motion. Probab. Theory Relat. Fields 113, 519–534 (1999)

    Article  MathSciNet  Google Scholar 

  6. Davis, B.: Brownian motion and random walk perturbed at extrema. Probab. Theory Relat. Fields 113, 501–518 (1999)

    Article  MathSciNet  Google Scholar 

  7. Doney, R.A., Warren, J., Yor, M.: Perturbed Bessel processes. Séminaire de probabilités 32, 237–249 (1998)

    MathSciNet  MATH  Google Scholar 

  8. Gôing-Jaeschke, A., Yor, M.: A survey and some generalizations of Bessel processes. Bernoulli 9, 313–349 (2003)

    Article  MathSciNet  Google Scholar 

  9. Kingman, J.F.C.: Random discrete distributions. J. R. Statist. Soc. 37, 1–22 (1975)

    MathSciNet  MATH  Google Scholar 

  10. Lawler, G.F., Werner, W.: The Brownian loop soup. Probab. Theory Relat. Fields 44, 197–217 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Le Gall, J.-F., Yor, M.: Excursions Browniennes et carrés de processus de Bessel. C. R. Acad. Sci. Paris 302, 641–643 (1986)

    MATH  Google Scholar 

  12. Le Gall, J.-F., Yor, M.: Étude asymptotique des enlacements du mouvement brownien autour des droites de l’espace. Probab. Theory Relat. Fields 74, 617–635 (1987)

    Article  Google Scholar 

  13. Le Jan, Y.: Markov loops and renormalization. Ann. Probab. 38, 1280–1319 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Le Jan, Y.: Markov Paths, Loops and Fields. École d’été Saint-Flour XXXVIII 2008. Lecture Notes in Mathematics, vol. 2026. Springer, Berlin (2011)

    Google Scholar 

  15. Lupu, T.: Poisson Ensembles of Loops of One-Dimensional Diffusions. Mém. Soc. Math. Fr. (N.S.), vol. 158. Sociéte Mathématique de France, Paris (2018)

    Google Scholar 

  16. McCloskey, J.W.: A model for the distribution of individuals by species in an environment. Unpublished Ph.D. thesis, Michigan State University (1965)

    Google Scholar 

  17. Perman, M., Pitman, J., Yor, M.: Size-biased sampling of Poisson point processes and excursions. Probab. Theory Relat. Fields 92, 21–39 (1992)

    Article  MathSciNet  Google Scholar 

  18. Perman, M.: An excursion approach to Ray–Knight theorems for perturbed Brownian motion. Stoch. Proc. Appl. 63, 67–74 (1996)

    Article  MathSciNet  Google Scholar 

  19. Perman, M., Werner, W.: Perturbed Brownian motions. Probab. Theory Relat. Fields 108, 357–383 (1997)

    Article  MathSciNet  Google Scholar 

  20. Petit, F.: Quelques extensions de la loi de l’arcsinus. C. R. Acad. Sci. Paris 315, 855–858 (1992)

    MathSciNet  MATH  Google Scholar 

  21. Revuz, D., Yor, M.: Continuous martingales and Brownian motion. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 3rd edn. Springer, Berlin (1999)

    Google Scholar 

  22. Warren, J.: A stochastic flow arising in the study of local times. Probab. Theory Relat. Fields 133, 559–572 (2005)

    Article  MathSciNet  Google Scholar 

  23. Warren, J., Yor, M.: The Brownian burglar: conditioning Brownian motion by its local time process. In: Séminaire de Probabilités XXXII. Lecture Notes in Mathematics, vol. 1686, pp. 328–342. Springer, Berlin (1998)

    Google Scholar 

  24. Werner, W.: Some remarks on perturbed reflecting brownian motion. Sém. Probab. 29, 37–43 (1995)

    MathSciNet  MATH  Google Scholar 

  25. Yor, M.: Some Aspects of Brownian Motion. Part I. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel (1992)

    Google Scholar 

Download references

Acknowledgements

We are grateful to Titus Lupu for stimulating discussions on the link between the PRBM and the Brownian loop soup. We also thank an anonymous referee for useful suggestions on the paper. The project was partly supported by ANR MALIN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueyun Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aïdékon, E., Hu, Y., Shi, Z. (2021). Path Decompositions of Perturbed Reflecting Brownian Motions. In: Chaumont, L., Kyprianou, A.E. (eds) A Lifetime of Excursions Through Random Walks and Lévy Processes. Progress in Probability, vol 78. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-83309-1_2

Download citation

Publish with us

Policies and ethics