Skip to main content

An IFIP WG5.8 State-of-the-Art View on Methods and Approaches for Interoperable Enterprise Systems

  • Chapter
  • First Online:

Part of the book series: IFIP Advances in Information and Communication Technology ((Festschrifts,volume 600))

Abstract

IFIP’s workgroup 5.8 on Enterprise Interoperability was founded in 2008. In this paper we provide a workgroup point of view on the state of the art in Enterprise Modelling, Enterprise Engineering, Enterprise Architectures, Enterprise Integration, Enterprise Interoperability. We present an overview of the state-of-the-art from the WG5.8’s research point of view. A brief history of these topics, with special attention to the work developed by IFIP WG5.8 former and current members is given. With respect to application, references to production systems and the manufacturing enterprise will be made. This article closes with a brief look into very recent developments in the domain of Enterprise Interoperability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.ict.griffith.edu.au/~bernus/taskforce/geram/versions/geram1-6-3/v1.6.3.html.

References

  1. Weichhart, G., Feiner, T., Stary, C.: Implementing organisational interoperability – the SUddEN approach. Comput. Ind. 61, 152–160 (2010). https://doi.org/10.1016/j.compind.2009.10.011

    Article  Google Scholar 

  2. Napoleone, A., Pozzetti, A., Macchi, M.: A framework to manage reconfigurability in manufacturing. Int. J. Prod. Res. 56, 3815–3837 (2018). https://doi.org/10.1080/00207543.2018.1437286

    Article  Google Scholar 

  3. Kusiak, A.: Fundamentals of smart manufacturing: a multi-thread perspective. Annu. Rev. Control 47, 214–220 (2019). https://doi.org/10.1016/j.arcontrol.2019.02.001

    Article  Google Scholar 

  4. Mehandjiev, N., Grefen, P. (eds.): Dynamic Business Process Formation for Instant Virtual Enterprises. Springer, London (2010). https://doi.org/10.1007/978-1-84882-691-5

    Book  Google Scholar 

  5. Napoleone, A., Macchi, M., Pozzetti, A.: A review on the characteristics of cyber-physical systems for the future smart factories. J. Manuf. Syst. 54, 305–335 (2020). https://doi.org/10.1016/j.jmsy.2020.01.007

    Article  Google Scholar 

  6. Norman, G.: Chaos, complexity and complicatedness: lessons from rocket science. Med. Educ. 45, 549–559 (2011). https://doi.org/10.1111/j.1365-2923.2011.03945.x

    Article  Google Scholar 

  7. Holland, J.H.: Hidden Order: How Adaptation Builds Complexity. Basic Books, New York (1996)

    Google Scholar 

  8. von Bertalanffy, L.: An outline of general system theory. Br. J. Philos. Sci. 1, 134–165 (1950)

    Article  MathSciNet  Google Scholar 

  9. von Bertalanffy, L.: General System Theory - Foundations, Development Applications. George Braziller, New York (1969)

    Google Scholar 

  10. Boardman, J., Sauser, B.: System of systems - the meaning of of. In: Proceedings of the 2006 IEEE/SMC International Conference on System of Systems Engineering, pp. 1–6 (2006). https://doi.org/10.1109/SYSOSE.2006.1652284.

  11. Leitão, P., Vrba, P.: Recent developments and future trends of industrial agents. In: Mařík, V., Vrba, P., Leitão, P. (eds.) HoloMAS 2011. LNCS (LNAI), vol. 6867, pp. 15–28. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23181-0_2

    Chapter  Google Scholar 

  12. Wooldridge, M.J., Jennings, N.R.: Intelligent agents: theory and practice. Knowl. Eng. Rev. 10, 115–152 (1995)

    Article  Google Scholar 

  13. Mitchell, M.: Complexity: A Guided Tour. Oxford University Press, Oxford (2009)

    MATH  Google Scholar 

  14. Waldrop, M.M.: Complexity: The Emerging Science at the Edge of Order and Chaos. Simon & Schuster, New York (1992)

    Google Scholar 

  15. European Commission: New European Interoperability Framework (2017)

    Google Scholar 

  16. Stamper, R., Liu, K., Hafkamp, M., Ades, Y.: Understanding the roles of signs and norms in organizations - a semiotic approach to information systems design. Behav. Inf. Technol. 19, 15–27 (2000). https://doi.org/10.1080/014492900118768

    Article  Google Scholar 

  17. Anderson, P.: Complexity theory and organization science. Organ. Sci. 10, 216–232 (1999)

    Article  Google Scholar 

  18. Weichhart, G.: Requirements for supporting enterprise interoperability in dynamic environments. In: Mertins, K., Bénaben, F., Poler, R., Bourrières, J.-P. (eds.) Enterprise Interoperability VI. PIC, vol. 7, pp. 479–488. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04948-9_40

    Chapter  Google Scholar 

  19. Weichhart, G.: Supporting interoperability for chaotic and complex adaptive enterprise systems. In: Demey, Y.T., Panetto, H. (eds.) OTM 2013. LNCS, vol. 8186, pp. 86–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41033-8_14

    Chapter  Google Scholar 

  20. Bandura, A.: Social cognitive theory of self-regulation. Organ. Behav. Hum. Decis. Process. 50, 248–287 (1991)

    Article  Google Scholar 

  21. Weichhart, G., Stary, C., Vernadat, F.: Enterprise modelling for interoperable and knowledge-based enterprises. Int. J. Prod. Res. 56, 2818–2840 (2018). https://doi.org/10.1080/00207543.2017.1406673

    Article  Google Scholar 

  22. Oppl, S., Stary, C.: Facilitating shared understanding of work situations using a tangible tabletop interface. Behav. Inf. Technol. 33, 619–635 (2014). https://doi.org/10.1080/0144929X.2013.833293

    Article  Google Scholar 

  23. Oppl, S.: Supporting the collaborative construction of a shared understanding about work with a guided conceptual modeling technique. Group Decis. Negot. 26(2), 247–283 (2016). https://doi.org/10.1007/s10726-016-9485-7

    Article  Google Scholar 

  24. Weichhart, G.: Supporting the evolution and interoperability of organisational models with e-learning technologies. Annu. Rev. Control 39, 118–127 (2015). https://doi.org/10.1016/j.arcontrol.2015.03.011

    Article  Google Scholar 

  25. Vernadat, F.: Enterprise modelling: research review and outlook. Comput. Ind. 122, 103265 (2020). https://doi.org/10.1016/j.compind.2020.103265

    Article  Google Scholar 

  26. Zacharewicz, G., Daclin, N., Doumeingts, G., Haidar, H.: Model driven interoperability for system engineering. Modelling 1, 94–121 (2020). https://doi.org/10.3390/modelling1020007

    Article  Google Scholar 

  27. Kosanke, K., Vernadat, F., Zelm, M.: CIMOSA: enterprise engineering and integration. Comput. Ind. 40, 83–97 (1999). https://doi.org/10.1016/S0166-3615(99)00016-0

    Article  Google Scholar 

  28. IDS Scheer AG: Handbuch zur ARIS-Methode - Version 5. Saarbrücken (2000)

    Google Scholar 

  29. Bernus, P., Noran, O., Molina, A.: Enterprise architecture: twenty years of the GERAM framework. Annu. Rev. Control 39, 83–93 (2015). https://doi.org/10.1016/j.arcontrol.2015.03.008

    Article  Google Scholar 

  30. Jonkers, H., Lankhorst, M.M., Quartel, D.A.C., Proper, E., Iacob, M.-E.: ArchiMate(R) for integrated modelling throughout the architecture development and implementation cycle. In: Proceedings of the 2011 IEEE 13th Conference on Commerce and Enterprise Computing (CEC), pp. 294–301 (2011). https://doi.org/10.1109/CEC.2011.52

  31. Vallespir, B., Merle, C., Doumeingts, G.: The GRAI integrated method: a technico- economical methodology to design manufacturing systems. IFAC Proc. 25, 73–78 (1992). https://doi.org/10.1016/S1474-6670(17)52231-4

    Article  Google Scholar 

  32. Kosanke, K.: CIMOSA — overview and status. Comput. Ind. 27, 101–109 (1995). https://doi.org/10.1016/0166-3615(95)00016-9

    Article  Google Scholar 

  33. Ducq, Y., Chen, D., Doumeingts, G.: A contribution of system theory to sustainable enterprise interoperability science base. Comput. Ind. 63, 844–857 (2012). https://doi.org/10.1016/j.compind.2012.08.005

    Article  Google Scholar 

  34. Dietz, J.L.G., et al.: The discipline of enterprise engineering. Int. J. Organ. Des. Eng. 3, 86–114 (2013). https://doi.org/10.1504/IJODE.2013.053669

    Article  Google Scholar 

  35. Simon, H.A.: The Sciences of the Artificial. MIT Press, Cambridge (1981)

    Google Scholar 

  36. Shaw, M.: The coming-of-age of software architecture research. In: Proceedings of the 23rd International Conference on Software Engineering, ICSE 2001, pp. 656–664 (2001)

    Google Scholar 

  37. Iacob, M.E., Jonkers, H., Lankhorst, M., Proper, H., Quartel, D.: ArchiMate 2.0 Specification. The Open Group (2012)

    Google Scholar 

  38. The Open Group: ArchiMate Specification (2019)

    Google Scholar 

  39. The Open Group: TOGAF Standard (2018)

    Google Scholar 

  40. Chen, D., Vallespir, B., Doumeingts, G.: GRAI integrated methodology and its mapping onto generic enterprise reference architecture and methodology. Comput. Ind. 33, 387–394 (1997)

    Article  Google Scholar 

  41. Chen, D., Doumeingts, G., Vallespir, B.: GIM (GRAI Integrated Methodology) and its mapping onto GERAM. IFAC Proc. 29, 648–653 (1996). https://doi.org/10.1016/S1474-6670(17)57734-4

    Article  Google Scholar 

  42. ISO/TC 184/SC 5: ISO 15704:2019 Enterprise modelling and architecture - requirements for enterprise-referencing architectures and methodologies. International Organization for Standardization (ISO) TC 184/SC 5 Interoperability, Integration, and Architectures for Enterprise Systems and Automation Applications (2019)

    Google Scholar 

  43. IFIP-IFAC Task Force: GERAM: Generalised Enterprise Reference Architecture and Methodology (GERAM EA Framework v.1.6.3) (2019). http://www.ict.griffith.edu.au/~bernus/taskforce/index.html. Accessed 5 Nov 2019

  44. Object Management Group (OMG): Model Driven Architecture (MDA) Guide rev. 2.0. Object Management Group (2014)

    Google Scholar 

  45. Bazoun, H., Zacharewicz, G., Ducq, Y., Boyé, H.: SLMToolBox: an implementation of MDSEA for servitisation and enterprise interoperability. In: Mertins, K., Bénaben, F., Poler, R., Bourrières, J.-P. (eds.) Enterprise Interoperability VI. PIC, vol. 7, pp. 101–111. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04948-9_9

    Chapter  Google Scholar 

  46. Weichhart, G., Molina, A., Chen, D., Whitman, L., Vernadat, F.: Challenges and current developments for sensing, smart and sustainable enterprise systems. Comput. Ind. 79, 34–46 (2016). https://doi.org/10.1016/j.compind.2015.07.002

    Article  Google Scholar 

  47. Morel, G., Panetto, H., Mayer, F., Auzelle, J.-P.: System of enterprise-systems integration issues: an engineering perspective. In: IFAC (ed.) IFAC Conference on Cost Effective Automation in Networked Product Development and Manufacturing, IFAC-CEA 2007. Elsevier, Monterrey (2007)

    Google Scholar 

  48. Panetto, H., Jardim-Goncalves, R., Molina, A.: Enterprise integration and networking: theory and practice. Annu. Rev. Control 36, 284–290 (2012). https://doi.org/10.1016/j.arcontrol.2012.09.009

    Article  Google Scholar 

  49. Naudet, Y., Latour, T., Guédria, W., Chen, D.: Towards a systemic formalisation of interoperability. Comput. Ind. 61, 176–185 (2010). https://doi.org/10.1016/j.compind.2009.10.014

    Article  Google Scholar 

  50. Chen, D.: Framework for enterprise interoperability. In: Congrès International de Génie Industriel (CIGI 2009) (2009)

    Google Scholar 

  51. Berre, A.-J., et al.: The ATHENA interoperability framework. In: Enterprise Interoperability II, pp. 569–580. Springer, London (2007). https://doi.org/10.1007/978-1-84628-858-6_62

    Chapter  Google Scholar 

  52. Chen, D., Doumeingts, G., Vernadat, F.B.: Architectures for enterprise integration and interoperability: past, present and future. Comput. Ind. 59, 647–659 (2008). https://doi.org/10.1016/j.compind.2007.12.016

    Article  Google Scholar 

  53. Kouroubali, A., Katehakis, D.G.: The new European interoperability framework as a facilitator of digital transformation for citizen empowerment. J. Biomed. Inform. 94, 103166 (2019). https://doi.org/10.1016/j.jbi.2019.103166

    Article  Google Scholar 

  54. Panetto, H., Iung, B., Ivanov, D., Weichhart, G., Wang, X.: Challenges for the cyber-physical manufacturing enterprises of the future. Annu. Rev. Control 47, 200–213 (2019). https://doi.org/10.1016/j.arcontrol.2019.02.002

    Article  Google Scholar 

  55. Mahnke, W., Leitner, S.-H., Damm, M.: OPC Unified Architecture. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-68899-0_1

    Book  Google Scholar 

  56. Pauker, F., Frühwirth, T., Kittl, B., Kastner, W.: A systematic approach to OPC UA information model design. Proc. CIRP 57, 321–326 (2016). https://doi.org/10.1016/j.procir.2016.11.056

    Article  Google Scholar 

  57. Lüder, A., Hundt, L., Keibel, A.: Description of manufacturing processes using AutomationML. In: 2010 IEEE 15th Conference on Emerging Technologies and Factory Automation (ETFA 2010), pp. 1–8 (2010)

    Google Scholar 

  58. Schleipen, M., Gilani, S.-S., Bischoff, T., Pfrommer, J.: OPC UA & Industrie 4.0 - enabling technology with high diversity and variability. Proc. CIRP 57, 315–320 (2016). https://doi.org/10.1016/j.procir.2016.11.055

    Article  Google Scholar 

  59. Henssen, R., Schleipen, M.: Interoperability between OPC UA and AutomationML. Proc. CIRP 25, 297–304 (2014)

    Article  Google Scholar 

  60. Weichhart, G., Guédria, W., Naudet, Y.: Supporting interoperability in complex adaptive enterprise systems: a domain specific language approach. Data Knowl. Eng. 105, 90–106 (2016). https://doi.org/10.1016/j.datak.2016.04.001

    Article  Google Scholar 

  61. Hewitt, C.: Viewing control structures as patterns of passing messages. Artif. Intell. 8, 323–364 (1977). https://doi.org/10.1016/0004-3702(77)90033-9

    Article  Google Scholar 

  62. Agha, G.A.: Actors: A Model of Concurrent Computation in Distributed Systems (June). http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA157917

  63. Bonér, J., Klang, V., Kuhn, R., Nordwal, P., Antonsson, B., Varga, E.: Akka Scala Documentation. Typesafe Inc., San Francisco (2014)

    Google Scholar 

  64. Bénaben, F., Mu, W., Boissel-Dallier, N., Barthe-Delanoe, A.-M., Zribi, S., Pingaud, H.: Supporting interoperability of collaborative networks through engineering of a service-based Mediation Information System (MISE 2.0). Enterp. Inf. Syst. 9, 556–582 (2015). https://doi.org/10.1080/17517575.2014.928949

    Article  Google Scholar 

  65. Bénaben, F., Boissel-Dallier, N., Pingaud, H., Lorre, J.-P.: Semantic issues in model-driven management of information system interoperability. Int. J. Comput. Integr. Manuf. 26, 1042–1053 (2012). https://doi.org/10.1080/0951192X.2012.684712

    Article  Google Scholar 

  66. Agostinho, C., Jardim-Goncalves, R.: Sustaining interoperability of networked liquid-sensing enterprises: a complex systems perspective. Annu. Rev. Control 39, 128–143 (2015). https://doi.org/10.1016/j.arcontrol.2015.03.012

    Article  Google Scholar 

  67. Youssef, J., Zacharewicz, G.: Enterprise Operating System (EOS) in action: distributed simulation of enterprise activities and operations. In: Proceedings of the 2019 Winter Simulation Conference (WSC), pp. 90–104 (2019). https://doi.org/10.1109/WSC40007.2019.9004958

  68. Youssef, J.R., Zacharewicz, G., Chen, D., Vernadat, F.: EOS: enterprise operating systems. Int. J. Prod. Res. 56, 2714–2732 (2017). https://doi.org/10.1080/00207543.2017.1378957

    Article  Google Scholar 

  69. Ferreira, J., et al.: Empowering SMEs with cyber-physical production systems: from modelling a polishing process of cutlery production to CPPS experimentation. In: Jardim-Goncalves, R., Sgurev, V., Jotsov, V., Kacprzyk, J. (eds.) Intelligent Systems: Theory, Research and Innovation in Applications. SCI, vol. 864, pp. 139–177. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38704-4_7

    Chapter  Google Scholar 

  70. Monostori, L.: Cyber-physical production systems: roots, expectations and R&D challenges. Proc. CIRP 17, 9–13 (2014). https://doi.org/10.1016/j.procir.2014.03.115

    Article  Google Scholar 

  71. Monostori, L., et al.: Cyber-physical systems in manufacturing. CIRP Ann. 65, 621–641 (2016). https://doi.org/10.1016/j.cirp.2016.06.005

    Article  Google Scholar 

  72. Weichhart, G., Panetto, H., Molina, A.: Interoperability in the cyber-physical manufacturing enterprise. Annu. Rev. Control (2021). https://doi.org/10.1016/j.arcontrol.2021.03.006

    Article  Google Scholar 

  73. VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik: Cyber-Physical Systems: Chancen und Nutzen aus Sicht der Automation. VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik (2013)

    Google Scholar 

  74. Weichhart, G., Fast-Berglund, Å., Romero, D., Pichler, A.: An agent- and role-based planning approach for flexible automation of advanced production systems. In: 2018 International Conference on Intelligent Systems (IS), pp. 391–399 (2018). https://doi.org/10.1109/IS.2018.8710546

  75. Weichhart, G., Reiser, M., Stary, C.: Task-based design of cyber-physical systems – meeting representational requirements with S-BPM. In: Freitag, M., Kinra, A., Kotzab, H., Kreowski, H.-J., Thoben, K.-D. (eds.) S-BPM ONE 2020. CCIS, vol. 1278, pp. 63–73. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64351-5_5

    Chapter  Google Scholar 

  76. Weichhart, G., Panetto, H., Guédria, W., Bhullard, G., Moalla, N.: Pathways to CP (P) S modelling & architecting. In: Proceedings of the 10th International Conference on Interoperability for Enterprise Systems and Applications (I-ESA 2020) (2020)

    Google Scholar 

Download references

Acknowledgement

This work has been supported by Pro2Future (FFG under contract No. 854184). Pro2Future is funded within the Austrian COMET Program (under the auspices of the Federal Ministry for Climate Action, Environment, Energy, Mobility, Innovation and Technology (BMK), the Federal Ministry for Digital and Economic Affairs (BMDW)) and of the Provinces of Upper Austria and Styria. COMET is managed by the Austrian Research Promotion Agency FFG. It has also received support by the European Union and the State of Upper Austria within the strategic program Innovative Upper Austria 2020, projects: “Smart Factory Lab” and “DigiManu”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Weichhart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weichhart, G., Ducq, Y., Doumeingts, G. (2021). An IFIP WG5.8 State-of-the-Art View on Methods and Approaches for Interoperable Enterprise Systems. In: Goedicke, M., Neuhold, E., Rannenberg, K. (eds) Advancing Research in Information and Communication Technology. IFIP Advances in Information and Communication Technology(), vol 600. Springer, Cham. https://doi.org/10.1007/978-3-030-81701-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81701-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81700-8

  • Online ISBN: 978-3-030-81701-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics