Skip to main content

Nanostructures to Potentiate Axon Navigation and Regrowth in the Damaged Central Nervous Tissue

  • Chapter
  • First Online:
  • 348 Accesses

Abstract

Neural interfaces as prosthetic devices are engineered in order to achieve neural recording and stimulation, to promote neural regeneration and to assist therapeutic delivery of bioactive molecules. By tailoring the interface architecture with nanoscale geometries, it is possible to mimic topographical cues able to adapt neuronal growth and redirect neurite navigation to a functional recovery. In this chapter, we present an overview of nano-dimensional strategies focusing on the new generation of artificial implantable scaffolds that can provide potential opportunities in brain and spinal cord healing. We strive to discuss how miniaturization of tools and prostheses at the nanoscale will help exploring the central nervous system (CNS) at subcellular scales to exploit artificial devices adaptation to neuronal biology and functions. Finally, some of the key advancements and hurdles currently emerging in the use of such artificial nanodevices in vitro and in vivo are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rose JC, Cámara-Torres M, Rahimi K et al. (2017) Nerve cells decide to orient inside an injectable hydrogel with minimal structural guidance. Nano Lett 17:3782–3791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kotov NA, Winter JO, Clements IP et al. (2009) Nanomaterials for neural interfaces. Adv Mater 21:3970–4004

    Article  CAS  Google Scholar 

  3. Alivisatos AP, Andrews AM, Boyden ES et al. (2013) Nanotools for neuroscience and brain activity mapping. ACS Nano 7:1850–1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shah S (2016) The nanomaterial toolkit for neuroengineering. Nano Convergence 3:25

    Article  PubMed  PubMed Central  Google Scholar 

  5. Binnig G, Rohrer H, Gerber C et al. (1982) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49:57

    Article  Google Scholar 

  6. Pampaloni NP, Giugliano M, Scaini D et al. (2019) Advances in nano neuroscience: from nanomaterials to nanotools. Front Neurosci 12:953

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shah S, Solanki A, Lee KB (2016) Nanotechnology-based approaches for guiding neural regeneration. Acc Chem Res 49:17–26

    Article  CAS  PubMed  Google Scholar 

  8. Lu C, Park S, Richner TJ et al. (2017) Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits. Sci Adv 3:e1600955

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cellot G, Cilia E, Cipollone S et al. (2009) Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts. Nat Nanotechnol 4:126–133

    Article  CAS  PubMed  Google Scholar 

  10. Cellot G, Toma FM, Varley ZK et al. (2011) Carbon nanotube scaffolds tune synaptic strength in cultured neural circuits: novel frontiers in nanomaterial-tissue interactions. J Neurosci 31:12945–12953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fabbro A, Villari A, Laishram J et al. (2012) Spinal cord explants use carbon nanotube interfaces to enhance neurite outgrowth and to fortify synaptic inputs. ACS Nano 6:2041–2055

    Article  CAS  PubMed  Google Scholar 

  12. Usmani S, Aurand ER, Medelin M et al. (2016) 3D meshes of carbon nanotubes guide functional reconnection of segregated spinal explants. Sci Adv 2:e1600087

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kim TH, Shah S, Yang L et al. (2015) Controlling differentiation of adipose-derived stem cells using combinatorial graphene hybrid-pattern arrays. ACS Nano 9:3780–3790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cheng TY, Chen MH, Chang WH et al. (2013) Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering. Biomaterials. 34:2005–2016

    Article  CAS  PubMed  Google Scholar 

  15. Minev IR, Musienko P, Hirsch A et al. (2015) Electronic dura mater for long-term multimodal neural interfaces. Science 347:159–163

    Article  CAS  PubMed  Google Scholar 

  16. Xie C, Liu J, Fu TM et al. (2015) Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nat Mater 14:1286–1892

    Article  CAS  PubMed  Google Scholar 

  17. Bosi S, Rauti R, Laishram J et al. (2015) From 2D to 3D: novel nanostructured scaffolds to investigate signalling in reconstructed neuronal networks. Sci Rep 5:9562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pennisi CP, Zachar V, Gurevich L et al. (2010) The influence of surface properties of plasma-etched polydimethylsiloxane (PDMS) on cell growth and morphology. Conf Proc IEEE Eng Med Biol Soc 2010:3804–3807

    Google Scholar 

  19. Choi HK, Im SH, Park OO (2009) Shape and feature size control of colloidal crystal-based patterns using stretched polydimethylsiloxane replica molds. Langmuir 25:12011–12014

    Article  CAS  PubMed  Google Scholar 

  20. Dvir T, Timko BP, Kohane DS et al. (2011) Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 6:13–22

    Article  CAS  PubMed  Google Scholar 

  21. Bellamkonda RV (2006) Peripheral nerve regeneration: an opinion on channels, scaffolds and anisotropy. Biomaterials 27:3515–3518

    CAS  PubMed  Google Scholar 

  22. Rodríguez-Vázquez M, Vega-Ruiz B, Ramos-Zúñiga R et al. (2015) Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. Biomed Res Int 2015:821279

    Article  PubMed  PubMed Central  Google Scholar 

  23. Straley KS, Foo CW, Heilshorn SC (2010) Biomaterial design strategies for the treatment of spinal cord injuries. J Neurotrauma 27:1–19

    Article  PubMed  PubMed Central  Google Scholar 

  24. Freier T, Koh HS, Kazazian K et al. (2005) Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials 26:5872–5878

    Article  CAS  PubMed  Google Scholar 

  25. Ucar B, Humpel C (2018) Collagen for brain repair: therapeutic perspectives. Neural Regen Res 13:595–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gerardo-Nava J, Hodde D, Katona I et al. (2014) Spinal cord organotypic slice cultures for the study of regenerating motor axon interactions with 3D scaffolds. Biomaterials 35:4288–4296

    Article  CAS  PubMed  Google Scholar 

  27. Belkas JS, Munro CA, Shoichet MS et al. (2005) Long-term in vivo biomechanical properties and biocompatibility of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) nerve conduits. Biomaterials 26:1741–1749

    Article  CAS  PubMed  Google Scholar 

  28. Dalton PD, Flynn L, Shoichet MS (2002) Manufacture of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) hydrogel tubes for use as nerve guidance channels. Biomaterials 23:3843–3851

    Article  CAS  PubMed  Google Scholar 

  29. O’Brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Materials today 14:88–95

    Article  Google Scholar 

  30. Domínguez-Bajo A, González-Mayorga A, Guerrero CR et al. (2019) Myelinated axons and functional blood vessels populate mechanically compliant rGO foams in chronic cervical hemisected rats. Biomaterials 192:461–474

    Article  PubMed  Google Scholar 

  31. Itoh S, Takakuda K, Kawabata S et al. (2002) Evaluation of cross-linking procedures of collagen tubes used in peripheral nerve repair. Biomaterials 23:4475–4481

    Article  CAS  PubMed  Google Scholar 

  32. Suzuki M, Itoh S, Yamaguchi I et al. (2003) Tendon chitosan tubes covalently coupled with synthesized laminin peptides facilitate nerve regeneration in vivo. J Neurosci Res 72:646–659

    Article  CAS  PubMed  Google Scholar 

  33. Verdú E, Labrador RO, Rodríguez FJ et al. (2002) Alignment of collagen and laminin-containing gels improve nerve regeneration within silicone tubes. Restor Neurol Neurosci 20:169–179

    PubMed  Google Scholar 

  34. Nomura H, Zahir T, Kim H et al. (2008) Extramedullary chitosan channels promote survival of transplanted neural stem and progenitor cells and create a tissue bridge after complete spinal cord transection. Tissue Eng Part A 14:649–665

    Article  CAS  PubMed  Google Scholar 

  35. Scaini D, Ballerini L (2018) Nanomaterials at the neural interface. Curr Opin Neurobiol 50:50–55

    Article  CAS  PubMed  Google Scholar 

  36. Madhusudanan P, Raju G, Shankarappa S (2020) Hydrogel systems and their role in neural tissue engineering. J R Soc Interface 17:20190505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shur M, Fallegger F, Pirondini E et al. (2020) Soft printable electrode coating for neural interfaces. ACS App Bio Mater 3:4388–4397

    Article  CAS  Google Scholar 

  38. Mohanta D, Patnaik S, Sood S et al. (2019) Carbon nanotubes: evaluation of toxicity at biointerfaces. J Pharm Anal 9:293–300

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tang QY, Tong WY, Shi J et al. (2014) Influence of engineered surface on cell directionality and motility. Biofabrication 6:015011

    Article  CAS  PubMed  Google Scholar 

  40. Cooper DR, Nadeau JL (2009) Nanotechnology for in vitro neuroscience. Nanoscale 1:183–200

    Article  CAS  PubMed  Google Scholar 

  41. Fawcett JW (2018) The paper that restarted modern central nervous system axon regeneration research. Trends Neurosci 41:239–242

    Article  CAS  PubMed  Google Scholar 

  42. David S, Aguayo AJ (1981) Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 214:931–933

    Article  CAS  PubMed  Google Scholar 

  43. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  CAS  PubMed  Google Scholar 

  44. George J, Hsu CC, Nguyen LTB et al. (2019) Neural tissue engineering with structured hydrogels in CNS models and therapies. Biotechnol Adv. 2020:107370

    Google Scholar 

  45. Guo J, Leung KK, Su H et al. (2009) Self-assembling peptide nanofiber scaffold promotes the reconstruction of acutely injured brain. Nanomedicine 5:345–351

    Article  CAS  PubMed  Google Scholar 

  46. Zhang S, Gelain F, Zhao X (2005) Designer self-assembling peptide nanofiber scaffolds for 3D tissue cell cultures. Semin Cancer Biol 15:413–420

    Article  PubMed  Google Scholar 

  47. Fine EG, Valentini RF, Bellamkonda R et al. (1991) Improved nerve regeneration through piezoelectric vinylidene fluoride-trifluoroethylene copolymer guidance channels. Biomaterials 12:775–780

    Article  CAS  PubMed  Google Scholar 

  48. Kotwal A, Schmidt CE (2001) Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials. Biomaterials 22:1055–1064

    Article  CAS  PubMed  Google Scholar 

  49. Patel N, Poo MM (1982) Orientation of neurite growth by extracellular electric fields. J Neurosci 2:483–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Borgens RB, Roederer E, Cohen MJ (1981) Enhanced spinal cord regeneration in lamprey by applied electric fields. Science 213:611–617

    Article  CAS  PubMed  Google Scholar 

  51. Nix WA, Hopf HC (1983) Electrical stimulation of regenerating nerve and its effect on motor recovery. Brain Res 272:21–25

    Article  CAS  PubMed  Google Scholar 

  52. Wan Y, Yu A, Wu H et al. (2005) Porous-conductive chitosan scaffolds for tissue engineering II. In vitro and in vivo degradation. J Mater Sci Mater Med 16:1017–1028

    Article  CAS  PubMed  Google Scholar 

  53. Rivers T, Hudson T, Schmidt C (2002) Synthesis of a novel, biodegradable electrically conducting polymer for biomedical applications. Adv Funct Mater 12:33–37

    Article  CAS  Google Scholar 

  54. Patil AC, Thakor NV (2016) Implantable neurotechnologies: a review of micro- and nanoelectrodes for neural recording. Med Biol Eng Comput 54:23–44

    Article  PubMed  Google Scholar 

  55. Schuhmann TG Jr, Zhou T, Hong G et al. (2018) Syringe-injectable mesh electronics for stable chronic rodent electrophysiology. J Vis Exp 137:58003

    Google Scholar 

  56. Pampaloni NP, Lottner M, Giugliano M et al. (2018) Single-layer graphene modulates neuronal communication and augments membrane ion currents. Nat Nanotechnol 13:755–764

    Article  CAS  PubMed  Google Scholar 

  57. Fang Y, Jiang Y, Ledesma HA et al. (2018) Texturing silicon nanowires for highly localized optical modulation of cellular dynamics. Nano Lett 18:4487–4492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fattahi P, Yang G, Kim G et al. (2014) A review of organic and inorganic biomaterials for neural interfaces. Adv Mater 26:1846–1885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Raphey VR, Henna TK, Nivitha KP et al. (2019) Advanced biomedical applications of carbon nanotube. Mater Sci Eng C Mater Biol Appl 100:616–630

    Article  CAS  PubMed  Google Scholar 

  60. Vitale F, Summerson SR, Aazhang B et al. (2015) Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes. ACS Nano 9:4465–4474

    Article  CAS  PubMed  Google Scholar 

  61. Vitale F, Vercosa DG, Rodriguez AV et al. (2018) Fluidic microactuation of flexible electrodes for neural recording. Nano Lett 18:326–335

    Article  CAS  PubMed  Google Scholar 

  62. Pantarotto D, Singh R, McCarthy D et al. (2004) Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem Int Ed Engl 43:5242–5246

    Article  CAS  PubMed  Google Scholar 

  63. Mazzatenta A, Giugliano M, Campidelli S et al. (2007) Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits. J Neurosci 27:6931–6936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nguyen-Vu TD, Chen H, Cassell AM et al. (2006) Vertically aligned carbon nanofiber arrays: an advance toward electrical-neural interfaces. Small 2:89–94

    Article  CAS  PubMed  Google Scholar 

  65. Fabbro A, Prato M, Ballerini L (2013) Carbon nanotubes in neuroregeneration and repair. Adv Drug Deliv Rev 65:2034–2044

    Article  CAS  PubMed  Google Scholar 

  66. Gui X, Wei J, Wang K et al. (2010) Carbon nanotube sponges. Adv Mater 22:617–621

    Article  CAS  PubMed  Google Scholar 

  67. Mattson MP, Haddon RC, Rao AM (2000) Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth. J Mol Neurosci 14:175–182

    Article  CAS  PubMed  Google Scholar 

  68. Shein M, Greenbaum A, Gabay T et al. (2009) Engineered neuronal circuits shaped and interfaced with carbon nanotube microelectrode arrays. Biomed Microdevices 11:495–501

    Article  CAS  PubMed  Google Scholar 

  69. Huang YJ, Wu HC, Tai NH et al. (2012) Carbon nanotube rope with electrical stimulation promotes the differentiation and maturity of neural stem cells. Small 8:2869–2877

    Article  CAS  PubMed  Google Scholar 

  70. Aurand E R, Usmani S, Medelin M et al. (2018) Nanostructures to engineer 3D neural-interfaces: Directing axonal navigation toward successful bridging of spinal segments. Adv Func Mater 28:1700550

    Article  Google Scholar 

  71. Mwenifumbo S, Shaffer MS, Stevens MM (2007) Exploring cellular behaviour with multi-walled carbon nanotube constructs. J Mater Chem 19:1894–1902

    Article  Google Scholar 

  72. Domínguez-Bajo A, González-Mayorga A, López-Dolado E et al. (2020) Graphene oxide microfibers promote regenerative responses after chronic implantation in the cervical injured spinal cord. ACS Biomat Sci Eng 6:2401–2414

    Article  Google Scholar 

  73. Akhavan O, Ghaderi E, Shirazian SA et al. (2016) Rolled graphene oxide foams as three-dimensional scaffolds for growth of neural fibers using electrical stimulation of stem cells. Carbon 97:71–77

    Article  CAS  Google Scholar 

  74. Li N, Zhang X, Song Q et al. (2011) The promotion of neurite sprouting and outgrowth of mouse hippocampal cells in culture by graphene substrates. Biomaterials 32:9374–9382

    Article  CAS  PubMed  Google Scholar 

  75. He Z, Zhang S, Song Q et al. (2016) The structural development of primary cultured hippocampal neurons on a graphene substrate. Colloids Surf B Biointerfaces 146:442–451

    Article  CAS  PubMed  Google Scholar 

  76. Martín C, Merino S, González-Domínguez JM et al. (2017) Graphene improves the biocompatibility of polyacrylamide hydrogels: 3d polymeric scaffolds for neuronal growth. Sci Rep 7:10942

    Article  PubMed  PubMed Central  Google Scholar 

  77. Liang Guo, Guvanasen GS, Xi Liu et al. (2013) A PDMS-based integrated stretchable microelectrode array (isMEA) for neural and muscular surface interfacing. IEEE Trans Biomed Circuits Syst 7:1–10

    Article  Google Scholar 

  78. Heo C, Park H, Kim YT et al. (2016) A soft, transparent, freely accessible cranial window for chronic imaging and electrophysiology. Sci Rep 6:27818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lu Y, Wang D, Li T et al. (2009) Poly(vinyl alcohol)/poly(acrylic acid) hydrogel coatings for improving electrode-neural tissue interface. Biomaterials 30:4143–4151

    Article  CAS  PubMed  Google Scholar 

  80. Brennan FH, Anderson AJ, Taylor SM et al. (2012) Complement activation in the injured central nervous system: another dual-edged sword? J Neuroinflammation 9:137

    Article  PubMed  PubMed Central  Google Scholar 

  81. Shoichet MS, Tate CC, Baumann MD et al. (2008) Strategies for regeneration and repair in the injured central nervous system. In: Reichert WM (ed) Indwelling neural implants: strategies for contending with the in vivo environment. CRC Press/Taylor & Francis, Boca Raton. Chapter 8. https://www.ncbi.nlm.nih.gov/books/NBK3941/

    Google Scholar 

  82. Gilmore JL, Yi X, Quan L et al. (2008) Novel nanomaterials for clinical neuroscience. J Neuroimmune Pharmacol 3:83–94

    Article  PubMed  PubMed Central  Google Scholar 

  83. Teleanu DM, Chircov C, Grumezescu AM et al. (2019) Neurotoxicity of nanomaterials: an up-to-date overview. Nanomaterials (Basel) 9:96

    Article  Google Scholar 

  84. Baldrighi M, Trusel M, Tonini R et al. (2016) Carbon nanomaterials interfacing with neurons: An in vivo perspective. Front Neurosci 10:250

    Article  PubMed  PubMed Central  Google Scholar 

  85. Yang Z, Liu ZW, Allaker RP et al. (2010) A review of nanoparticle functionality and toxicity on the central nervous system. J R Soc Interface 7:S411–S422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bianco A, Kostarelos K, Prato M (2011) Making carbon nanotubes biocompatible and biodegradable. Chem Commun (Camb) 47:10182–10188

    Article  CAS  Google Scholar 

  87. Usmani S, Franceschi Biagioni A et al. (2020) Functional rewiring across spinal injuries via biomimetic nanofiber scaffolds. PNAS 117:25212–25218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 737116 to L. B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Ballerini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Usmani, S., Ballerini, L. (2022). Nanostructures to Potentiate Axon Navigation and Regrowth in the Damaged Central Nervous Tissue. In: López-Dolado, E., Concepción Serrano, M. (eds) Engineering Biomaterials for Neural Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-81400-7_4

Download citation

Publish with us

Policies and ethics