Skip to main content

Immunotherapy for Breast Cancer

  • Living reference work entry
  • First Online:
Book cover Handbook of Cancer and Immunology

Abstract

Breast cancer is one of the leading causes of mortality among women worldwide. Approximately 95% of breast malignancies are adenocarcinomas. Conventional treatments for breast cancer include surgery, radiation, and chemotherapy. Nevertheless, chemotherapy is more effective in treating metastatic breast cancer; however, regardless of the chemotherapeutic class used, the molecules perform a low degree of specificity, resulting in numerous adverse effects. Currently, advances in molecular and technological knowledge have enabled the development and consolidation of immunotherapy, increasing the therapeutic arsenal as a promising treatment alternative directed at different subtypes of breast cancer. Therefore, this chapter proposed to assemble relevant information about the different types of treatments, including immunotherapy based on cytokines, monoclonal antibodies, checkpoint inhibitors, and vaccines in pre-clinical, clinical, and existing on the market as options for breast cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abril-Rodriguez G, Ribas A (2017) SnapShot: immune checkpoint inhibitors. Cancer Cell 31(6):848–848.e1. https://doi.org/10.1016/j.ccell.2017.05.010

    Article  CAS  Google Scholar 

  • Arab A, Nicastro J, Slavcev R, Razazan A, Barati N, Nikpoor AR et al (2018) Lambda phage nanoparticles displaying HER2-derived E75 peptide induce effective E75-CD8+ T response. Immunol Res 66(1):200–206

    Article  CAS  Google Scholar 

  • Bailly C, Thuru X, Quesnel B (2020) Combined cytotoxic chemotherapy and immunotherapy of cancer: modern times. NAR Cancer 2(1):1–20

    Article  Google Scholar 

  • Barati N, Razazan A, Nicastro J, Slavcev R, Arab A, Mosaffa F et al (2018) Immunogenicity and antitumor activity of the superlytic λF7 phage nanoparticles displaying a HER2/neu-derived peptide AE37 in a tumor model of BALB/c mice. Cancer Lett 424:109–116

    Article  CAS  Google Scholar 

  • Bauleth-Ramos T, Shahbazi MA, Liu D, Fontana F, Correia A, Figueiredo P et al (2017) Nutlin-3a and cytokine co-loaded spermine-modified acetalated dextran nanoparticles for cancer chemo-immunotherapy. Adv Funct Mater 27(42):1–14

    Article  Google Scholar 

  • Behravan J, Razazan A, Behravan G (2019) Towards breast cancer vaccines, progress and challenges. Curr Drug Discov Technol 16(3):251–258

    Article  CAS  Google Scholar 

  • Benevides VC, Batista RC, Vilela LF (2020) Terapia alvo para o câncer de mama HER2 positivo. Episteme Transversalis 11(3):319–339

    Google Scholar 

  • Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Pérez-Gracia JL et al (2019) Cytokines in clinical cancer immunotherapy. Br J Cancer 120(1):6–15. https://doi.org/10.1038/s41416-018-0328-y

    Article  CAS  Google Scholar 

  • Brossart P, Wirths S, Stuhler G, Reichardt VL, Kanz L, Brugger W (2000) Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells. Blood 96(9):3102–3108. https://doi.org/10.1182/blood.V96.9.3102

    Article  CAS  Google Scholar 

  • Cai J, Wang H, Wang D, Li Y (2019) Improving cancer vaccine efficiency by nanomedicine. Adv Biosyst 3(3):1–18

    Google Scholar 

  • Castelli MS, McGonigle P, Hornby PJ (2019) The pharmacology and therapeutic applications of monoclonal antibodies. Pharmacol Res Perspect 7(6):e00535

    Article  Google Scholar 

  • Cenciarini ME, Proietti CJ (2019) Molecular mechanisms underlying progesterone receptor action in breast cancer: insights into cell proliferation and stem cell regulation. Steroids 152(September)

    Google Scholar 

  • Cha YJ, Kim ES, Koo JS (2018) Amino acid transporters and glutamine metabolism in breast cancer. Int J Mol Sci 19(3)

    Google Scholar 

  • Chamani R, Ranji P, Hadji M, Nahvijou A, Esmati E, Alizadeh AM (2018) Application of E75 peptide vaccine in breast cancer patients: a systematic review and meta-analysis. Eur J Pharmacol 831(May):87–93. https://doi.org/10.1016/j.ejphar.2018.05.010

    Article  CAS  Google Scholar 

  • Chulpanova DS, Kitaeva KV, Green AR, Rizvanov AA, Solovyeva VV (2020) Molecular aspects and future perspectives of cytokine-based anti-cancer immunotherapy. Front Cell Dev Biol 8(June)

    Google Scholar 

  • Clifton GT, Peoples GE, Mittendorf EA (2016) The development and use of the E75 (HER2 369-377) peptide vaccine. Futur Oncol 12(11):1321–1329

    Article  CAS  Google Scholar 

  • Crane EK, Kwan SY, Izaguirre DI, Tsang YTM, Mullany LK, Zu Z et al (2015) Nutlin-3a: a potential therapeutic opportunity for TP53 wild-type ovarian carcinomas. PLoS One 10(8):1–13

    Article  Google Scholar 

  • Cross AM, Wilson AL, Guerrero MS, Thomas KS, Bachir AI, Kubow KE et al (2016) Breast cancer antiestrogen resistance 3 (BCAR3) – p130Cas interactions promote adhesion disassembly and invasion in breast cancer cells. Oncogene 35(45):5850–5859

    Article  CAS  Google Scholar 

  • Cruceriu D, Baldasici O, Balacescu O, Berindan-Neagoe I (2020) The dual role of tumor necrosis factor-alpha (TNF-α) in breast cancer: molecular insights and therapeutic approaches. Cell Oncol 43(1):1–18

    Article  CAS  Google Scholar 

  • Cui N, Zhu SH (2016) Monoclonal antibody-tagged polyethylenimine (PEI)/poly(lactide) (PLA) nanoparticles for the enhanced delivery of doxorubicin in HER-positive breast cancers. RSC Adv 6(83):79822–79829

    Article  CAS  Google Scholar 

  • Darvin P, Toor SM, Sasidharan Nair V, Elkord E (2018) Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med 50(12):1–11. https://doi.org/10.1038/s12276-018-0191-1

    Article  CAS  Google Scholar 

  • Daste A, Domblides C, Gross-goupil M, Chakiba C, Quivy A, Cochin V et al (2017) Immune checkpoint inhibitors and elderly people: a review. Eur J Cancer 82:155–166

    Article  CAS  Google Scholar 

  • Deng H, Zhang Z (2018) The application of nanotechnology in immune checkpoint blockade for cancer treatment. J Control Release 290:28–45. https://doi.org/10.1016/j.jconrel.2018.09.026

    Article  CAS  Google Scholar 

  • Du W, Chen C, Sun P, Zhang S, Zhang J, Jiang X (2020) Eliciting an immune hot tumor niche with biomimetic drug-based multi-functional nanohybrids augments immune checkpoint blockade-based breast cancer therapy. Nanoscale

    Google Scholar 

  • Duan X, Chan C, Guo N, Han W, Weichselbaum RR, Lin W (2016) Photodynamic therapy mediated by nontoxic core–shell nanoparticles synergizes with immune checkpoint blockade to elicit antitumor immunity and antimetastatic effect on breast cancer. J Am Chem Soc 138(51):16686–16695

    Article  CAS  Google Scholar 

  • Elgqvist J (2017) Nanoparticles as theranostic vehicles in experimental and clinical applications-focus on prostate and breast cancer. Int J Mol Sci 18(5):1–53

    Article  Google Scholar 

  • Emens LA, Middleton G (2015) The interplay of immunotherapy and chemotherapy: harnessing potential synergies. CancerImmunol Res 3(5):436–443

    CAS  Google Scholar 

  • Emens LA, Ascierto PA, Darcy PK, Demaria S, Eggermont AMM, Redmond WL et al (2017) Cancer immunotherapy: opportunities and challenges in the rapidly evolving clinical landscape. Eur J Cancer 81:116–129. https://doi.org/10.1016/j.ejca.2017.01.035

    Article  CAS  Google Scholar 

  • Esquivel-Velázquez M, Ostoa-Saloma P, Palacios-Arreola MI, Nava-Castro KE, Castro JI, Morales-Montor J (2015) The role of cytokines in breast cancer development and progression. J Interf Cytokine Res 35(1):1–16

    Article  Google Scholar 

  • FDA Approved Drug Products: Atezolizumab Intravenous Injection. TECENTRIQ (Atezolizumab)_FDA_20190506. (1979), 1–10

    Google Scholar 

  • Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4:330–336

    Article  CAS  Google Scholar 

  • Fujita R, Hamano H, Kameda Y, Arai R, Shimizu T, Ota M et al (2019) Breast cancer cells expressing cancer-associated sialyl-Tn antigen have less capacity to develop osteolytic lesions in a mouse model of skeletal colonization. Clin Exp Metastasis 36(6):539–549

    Article  CAS  Google Scholar 

  • García-Aranda M, Redondo M (2019) Immunotherapy: a challenge of breast cancer treatment. Cancers (Basel) 11(12):1–18

    Article  Google Scholar 

  • Gaynor N, Crown J, Collins DM (2020) Immune checkpoint inhibitors: key trials and an emerging role in breast cancer. Semin Cancer Biol (July). https://doi.org/10.1016/j.semcancer.2020.06.016

  • Goldberg MS (2019) Improving cancer immunotherapy through nanotechnology. Nat Rev Cancer 19(10):587–602. https://doi.org/10.1038/s41568-019-0186-9

    Article  CAS  Google Scholar 

  • Hainfeld JF, O’Connor MJ, Lin P, Qian L, Slatkin DN, Smilowitz HM (2014) Infrared-transparent gold nanoparticles converted by tumors to infrared absorbers cure tumors in mice by photothermal therapy. PLoS One 9(2)

    Google Scholar 

  • Hallaj-Nezhadi S, Lotfipour F, Dass CR (2010) Nanoparticle-mediated interleukin-12 cancer gene therapy. J Pharm Pharm Sci 13(3):472–485

    Article  Google Scholar 

  • Hammerl D, Smid M, Timmermans AM, Sleijfer S, Martens JWM, Debets R (2018) Breast cancer genomics and immuno-oncological markers to guide immune therapies. Semin Cancer Biol 52(October 2017):178–188. https://doi.org/10.1016/j.semcancer.2017.11.003

    Article  CAS  Google Scholar 

  • Hargadon KM, Johnson CE, Williams CJ (2018) Immune checkpoint blockade therapy for cancer: an overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol 62(June):29–39. https://doi.org/10.1016/j.intimp.2018.06.001

    Article  CAS  Google Scholar 

  • Hashemzadeh N, Dolatkhah M, Adibkia K, Aghanejad A (2021) Recent advances in breast cancer immunotherapy: the promising impact of nanomedicines. Life Sci 271(August 2020):119110. https://doi.org/10.1016/j.lfs.2021.119110

    Article  CAS  Google Scholar 

  • Herrera ACSA, Panis C, Victorino VJ, Campos FC, Colado-Simão AN, Cecchini AL et al (2012) Molecular subtype is determinant on inflammatory status and immunological profile from invasive breast cancer patients. Cancer Immunol Immunother 61(11):2193–2201

    Article  CAS  Google Scholar 

  • Holli-Helenius K, Salminen A, Rinta-Kiikka I, Koskivuo I, Brück N, Boström P et al (2017) MRI texture analysis in differentiating luminal A and luminal B breast cancer molecular subtypes – a feasibility study. BMC Med Imaging 17(1):1–9

    Article  Google Scholar 

  • Holmberg LA, Sandmaier BM (2004) Vaccination with Theratope® (STn-KLH) as treatment for breast cancer. Expert Rev Vaccines 3(6):655–663

    Article  CAS  Google Scholar 

  • Huehls AM, Coupet TA, Sentman CL (2015) Bispecific T-cell engagers for cancer immunotherapy. Immunol Cell Biol 93(3):290–296

    Article  CAS  Google Scholar 

  • Hurtado VH (2020) TratamientoNeoadyuvanteencáncer de mama HER2 positivo. La era de la terapiadirigida TT – Neoadjuvant treatment in HER2 positive breast cancer. The Age of Targeted Therapy. Oncol (Guayaquil) 30(3):237–249

    Google Scholar 

  • Ishii K, Morii N, Yamashiro H (2019) Pertuzumab in the treatment of HER2-positive breast cancer: an evidence-based review of its safety, efficacy, and place in therapy. Core Evid 14:51–70

    Article  Google Scholar 

  • Janssen LME, Ramsay EE, Logsdon CD, Overwijk WW (2017) The immune system in cancer metastasis: friend or foe? J Immunother Cancer 5(1):1–14

    Article  Google Scholar 

  • Jenkins RW, Barbie DA, Flaherty KT (2018) Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer 118(1):9–16. https://doi.org/10.1038/bjc.2017.434

    Article  CAS  Google Scholar 

  • Jing X, Liang H, Hao C, Yang X, Cui X (2019) Overexpression of MUC1 predicts poor prognosis in patients with breast cancer. Oncol Rep 41(2):801–810

    CAS  Google Scholar 

  • Joerger AC, Fersht AR (2016) The p53 pathway: origins, inactivation in cancer, and emerging therapeutic approaches. Annu Rev Biochem 85:375–404

    Article  CAS  Google Scholar 

  • Johnson DB, Sullivan RJ, Menzies AM (2017) Immune checkpoint inhibitors in challenging populations. Cancer 123(11):1904–1911

    Article  Google Scholar 

  • Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363(5):411–422

    Article  CAS  Google Scholar 

  • Kanyilmaz G, Benli Yavuz B, Aktan M, Karaagac M, Uyar M, Findik S (2019) Prognostic importance of Ki-67 in breast cancer and its relationship with other prognostic factors. Eur J Breast Heal 15(4):256–261

    Article  Google Scholar 

  • Kennedy LB, Salama AKS (2020) A review of cancer immunotherapy toxicity. CA Cancer J Clin 70(2):86–104

    Article  Google Scholar 

  • Kozani PS, Naseri A, Kozani PS, Khatami S, Sheikhi A (2021) Monoclonal antibodies (mAbs) approved for cancer treatment in the 2020s. Trends Med Sci 1(2):1–7

    Google Scholar 

  • Krieg AM (2008) Toll-like receptor 9 (TLR9) agonists in the treatment of cancer. Oncogene 27(2):161–167

    Article  CAS  Google Scholar 

  • Kufe DW (2013) MUC1-C oncoprotein as a target in breast cancer: activation of signaling pathways and therapeutic approaches. Oncogene 32(9):1073–1081

    Article  CAS  Google Scholar 

  • Kumar V, Abbas A, Fausto N (2012) In: Robbins C (ed) Patologia Bases Patológicas das Doenças, vol 148. Elsevier, pp 148–162

    Google Scholar 

  • Lamichhane P, Amin N, Agarwal M, Lamichhane N (2018) Checkpoint inhibition: will combination with radiotherapy and nanoparticle-mediated delivery improve efficacy? Medicines 5(4):114

    Article  CAS  Google Scholar 

  • Lan T, Chen L, Wei X (2021) Inflammatory cytokines in cancer: comprehensive understanding and clinical progress in gene therapy. Cells 10(1):1–16

    Article  Google Scholar 

  • Lander GC, Evilevitch A, Jeembaeva M, Potter CS, Carragher B, Johnson JE (2008) Bacteriophage lambda stabilization by auxiliary protein gpD: timing, location, and mechanism of attachment determined by cryoEM. Structure 16(9):1399–1406

    Article  CAS  Google Scholar 

  • Lebert JM, Lester R, Powell E, Seal M, McCarthy J (2018) Advances in the systemic treatment of triple-negative breast cancer. Curr Oncol 25(June):S142–S150

    Article  CAS  Google Scholar 

  • Lee JM, Cimino-Mathews A, Peer CJ, Zimmer A, Lipkowitz S, Annunziata CM et al (2017) Safety and clinical activity of the programmed death-ligand 1 inhibitor durvalumab in combination with Poly (ADP-Ribose) polymerase inhibitor olaparib or vascular endothelial growth factor Receptor 1-3 Inhibitor Cediranib in Women’s cancers: a dose-escalati. J Clin Oncol 35(19):2193–2202

    Article  CAS  Google Scholar 

  • Li G, Gao Y, Gong C, Han Z, Qiang L, Tai Z et al (2019) Dual-blockade immune checkpoint for breast cancer treatment based on a tumor-penetrating peptide assembling nanoparticle. ACS Appl Mater Interfaces 11(43):39513–39524

    Article  CAS  Google Scholar 

  • Liao W, Lin JX, Leonard WJ (2011) IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. CurrOpin Immunol 23(5):598–604. https://doi.org/10.1016/j.coi.2011.08.003

    Article  CAS  Google Scholar 

  • Liu Y, Ji X, Kang N, Zhou J, Liang X, Li J et al (2020a) Tumor necrosis factor α inhibition overcomes immunosuppressive M2b macrophage-induced bevacizumab resistance in triple-negative breast cancer. Cell Death Dis 11(11)

    Google Scholar 

  • Liu J, Miao L, Sui J, Hao Y, Huang G (2020b) Nanoparticle cancer vaccines: design considerations and recent advances. Asian J Pharm Sci 15(5):576–590. https://doi.org/10.1016/j.ajps.2019.10.006

    Article  Google Scholar 

  • Liu X, Feng Z, Wang C, Su Q, Song H, Zhang C et al (2020c) Co-localized delivery of nanomedicine and nanovaccine augments the postoperative cancer immunotherapy by amplifying T-cell responses. Biomaterials 230(July 2019)

    Google Scholar 

  • Lu L, Shi W, Deshmukh RR, Long J, Cheng X, Ji W et al (2014) Tumor necrosis factor-α sensitizes breast cancer cells to natural products with proteasome-inhibitory activity leading to apoptosis. PLoS One 9(11):1–21

    Article  Google Scholar 

  • Lu J, Liu X, Liao YP, Wang X, Ahmed A, Jiang W et al (2018) Breast cancer chemo-immunotherapy through liposomal delivery of an immunogenic cell death stimulus plus interference in the IDO-1 pathway. ACS Nano 12(11):11041–11061

    Article  CAS  Google Scholar 

  • Lyon AR, Yousaf N, Battisti NML, Moslehi J, Larkin J (2018) Immune checkpoint inhibitors and cardiovascular toxicity. Lancet Oncol 19(9):e447–e458

    Article  CAS  Google Scholar 

  • MacDonald DA, Martin J, Muthusamy KK, Luo JK, Pyles E, Rafique A et al (2016) Aflibercept exhibits VEGF binding stoichiometry distinct from bevacizumab and does not support formation of immune-like complexes. Angiogenesis 19(3):389–406

    Article  CAS  Google Scholar 

  • Maeng H, Terabe M, Berzofsky JA (2018) Cancer vaccines: translation from mice to human clinical trials. CurrOpin Immunol 51:111–122

    Article  CAS  Google Scholar 

  • Mahmood SS, Fradley MG, Cohen JV, Nohria A, Reynolds KL, Heinzerling LM et al (2018) Myocarditis in patients treated with immune checkpoint inhibitors. J Am Coll Cardiol 71(16):1755–1764

    Article  CAS  Google Scholar 

  • Mandinova A, Lee SW (2011) The p53 pathway as a target in cancer therapeutics: obstacles and promise. Sci Transl Med 3(64)

    Google Scholar 

  • Manson G, Norwood J, Marabelle A, Kohrt H, Houot R (2016) Biomarkers associated with checkpoint inhibitors. Ann Oncol 27(7):1199–1206

    Article  CAS  Google Scholar 

  • Marconi R, Serafini A, Giovanetti A, Bartoleschi C, Pardini MC, Bossi G et al (2019) Cytokine modulation in breast cancer patients undergoing radiotherapy: a revision of the most recent studies. Int J Mol Sci 20(2)

    Google Scholar 

  • Markham A (2016) Atezolizumab: first global approval. Drugs 76(12):1227–1232

    Article  CAS  Google Scholar 

  • Martins F, Sofiya L, Sykiotis GP, Lamine F, Maillard M, Fraga M et al (2019) Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat Rev Clin Oncol 16(9):563–580. https://doi.org/10.1038/s41571-019-0218-0

    Article  CAS  Google Scholar 

  • Migali C, Milano M, Trapani D, Criscitiello C, Esposito A, Locatelli M et al (2016) Strategies to modulate the immune system in breast cancer: checkpoint inhibitors and beyond. TherAdv Med Oncol 8(5):360–374

    Article  CAS  Google Scholar 

  • Miles D, Roché H, Martin M, Perren TJ, Cameron DA, Glaspy J et al (2011) Phase III multicenter clinical trial of the Sialyl-TN (STn)-keyhole limpet hemocyanin (KLH) vaccine for metastatic breast cancer. Oncologist 16(8):1092–1100

    Article  CAS  Google Scholar 

  • Mina LA, Lim S, Bahadur SW, Firoz AT (2019) Immunotherapy for the treatment of breast cancer: emerging new data. Breast Cancer Targets Ther 11:321–328

    Article  CAS  Google Scholar 

  • Mittendorf EA, Lu B, Melisko M, Hiller JP, Bondarenko I, Brunt AM et al (2019) Efficacy and safety analysis of nelipepimut-S vaccine to prevent breast cancer recurrence: a randomized, multicenter, Phase III Clinical Trial. Clin Cancer Res 25(14):4248–4254

    Article  CAS  Google Scholar 

  • Mohd-Zahid MH, Zulkifli SN, Che Abdullah CA, Lim J, Fakurazi S, Wong KK et al (2021) Gold nanoparticles conjugated with anti-CD133 monoclonal antibody and 5-fluorouracil chemotherapeutic agent as nanocarriers for cancer cell targeting. RSC Adv 11(26):16131–16141

    Article  CAS  Google Scholar 

  • Mohseni N, Sarvestani FS, Ardestani MS, Kazemi-Lomedasht F, Ghorbani M (2016) Inhibitory effect of gold nanoparticles conjugated with interferon gamma and methionine on breast cancer cell line. Asian Pac J Trop Biomed 6(2):173–178

    Article  CAS  Google Scholar 

  • Momenimovahed Z, Salehiniya H (2019) Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer Targets Ther 11:151–164

    Article  Google Scholar 

  • Morris SM, Mhyre AJ, Carmack SS, Myers CH, Burns C, Ye W et al (2018) A modified gene trap approach for improved high-throughput cancer drug discovery. Oncogene 37(31):4226–4238

    Article  CAS  Google Scholar 

  • Mu W, Chu Q, Liu Y, Zhang N (2020) A review on nano-based drug delivery system for cancer chemoimmunotherapy. Nano-Micro Lett 12(1)

    Google Scholar 

  • Munkley J (2016) The role of sialyl-Tn in cancer. Int J Mol Sci 17(3)

    Google Scholar 

  • Nam J, Son S, Park KS, Zou W, Shea LD, Moon JJ (2019) Cancer nanomedicine for combination cancer immunotherapy. Nat Rev Mater 4(6):398–414. https://doi.org/10.1038/s41578-019-0108-1

    Article  Google Scholar 

  • Nayak SK, Panesar PS, Kumar H (2011) Non-genotoxic p53-activators and their significance as antitumor therapy of future. Curr Med Chem 18(7):1038–1049

    Article  CAS  Google Scholar 

  • Ni L, Dong C (2017) New checkpoints in cancer immunotherapy. Immunol Rev 276(1):52–65

    Article  CAS  Google Scholar 

  • Niza E, Noblejas-lópez MDM, Bravo I, Nieto-jiménez C, Castro-osma JA, Canales-vázquez J et al (2019) Trastuzumab-targeted biodegradable nanoparticles for enhanced delivery of dasatinib in HER2+ metastasic breast cancer. Nanomaterials 9(12):1–14

    Article  Google Scholar 

  • Oshiro-Júnior JA, Rodero C, Hanck-Silva G, Sato MR, Alves RC, Eloy JO et al (2018) Stimuli-responsive drug delivery nanocarriers in the treatment of breast cancer. Curr Med Chem 27(15):2494–2513

    Article  Google Scholar 

  • Oshiro-Junior JA, Sato MR, Boni FI, Santos KLM, de Oliveira KT, de Freitas LM et al (2020) Phthalocyanine-loaded nanostructured lipid carriers functionalized with folic acid for photodynamic therapy. Mater Sci Eng C 108(July 2019):110462. https://doi.org/10.1016/j.msec.2019.110462

    Article  CAS  Google Scholar 

  • Ott PA, Hodi FS (2016) Talimogenelaherparepvec for the treatment of advanced melanoma. Clin Cancer Res 22(13):3127–3131

    Article  CAS  Google Scholar 

  • Paczesny J, Bielec K (2020) Application of bacteriophages in nanotechnology. Nanomaterials 10(10):1–25

    Article  Google Scholar 

  • Panis C, Pavanelli WR (2015) Cytokines as mediators of pain-related process in breast cancer. MediatorsInflamm 2015

    Google Scholar 

  • Pento JT (2017) Monoclonal antibodies for the treatment of cancer. Anticancer Res 37(11):5935–5939

    CAS  Google Scholar 

  • Perez SA, Peoples GE, Papamichail M, Baxevanis CN (2014) Invariant chain-peptide fusion vaccine using HER-2/neu. In: Cancer vaccines methods in molecular biology (Methods and protocols), pp 321–36

    Google Scholar 

  • Perez EA, Barrios C, Eiermann W, Toi M, Im YH, Conte P et al (2017) Trastuzumab emtansine with or without pertuzumab versus trastuzumab plus taxane for human epidermal growth factor receptor 2-positive, advanced breast cancer: primary results from the Phase III MARIANNE Study. J ClinOncol 35(2):141–148

    Article  CAS  Google Scholar 

  • Qi J, Jin F, Xu X, Du Y (2021) Combination cancer immunotherapy of nanoparticle-based immunogenic cell death inducers and immune checkpoint inhibitors. Int J Nanomed 16:1435–1456

    Article  Google Scholar 

  • Qiu Y, Su M, Liu L, Tang Y, Pan Y, Sun J (2021) Clinical application of cytokines in cancer immunotherapy. Drug Des DevelTher 15:2269–2287

    Google Scholar 

  • Radosa JC, Stotz L, Müller C, Kaya AC, Solomayer EF, Radosa MP (2020) Clinical data on immunotherapy in breast cancer. Breast Care 15(5):450–469

    Article  Google Scholar 

  • Raman SS, Hecht JR, Chan E (2019) Talimogenelaherparepvec: review of its mechanism of action and clinical efficacy and safety. Immunotherapy 11(8):705–723

    Article  CAS  Google Scholar 

  • Rang HP (2007) DMM. Rang and Dale Farmacologia

    Google Scholar 

  • Razazan A, Behravan J, Arab A, Barati N, Arabi L, Gholizadeh Z et al (2017) Conjugated nanoliposome with the HER2/neu-derived peptide GP2 as an effective vaccine against breast cancer in mice xenograft model. PLoS One 12(10):1–22

    Article  Google Scholar 

  • Riley RS, June CH, Langer R, Mitchell MJ (2019) Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov 18(3):175–196. https://doi.org/10.1038/s41573-018-0006-z

    Article  CAS  Google Scholar 

  • Rinnerthaler G, Gampenrieder SP, Greil R (2019) HER2 directed antibody-drug-conjugates beyond T-DM1 in breast cancer. Int J Mol Sci 20(5):1–17

    Article  Google Scholar 

  • Robert NJ, Goertz HP, Chopra P, Jiao X, Yoo B, Patt D et al (2017) HER2-positive metastatic breast cancer patients receiving pertuzumab in a community oncology practice setting: treatment patterns and outcomes. Drugs Real World Outcome 4(1):1–7

    Article  Google Scholar 

  • Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV (2019) Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single arm, Phase 2 Trial. PhysiolBehav 176(3):139–148

    Google Scholar 

  • Ruan H, Bu L, Hu Q, Cheng H, Lu W, Gu Z (2019) Strategies of combination drug delivery for immune checkpoint blockades. AdvHealthc Mater 8(4):1–11

    Google Scholar 

  • Saito R de F, Lana MVG, Medrano RFV, Chammas R (2010) Oncologia molecular, 700 p

    Google Scholar 

  • Salas-Benito D, Pérez-Gracia JL, Ponz-Sarvisé M, Rodriguez-Ruiz ME, Martínez-Forero I, Castañón E et al (2021) Paradigms on immunotherapy combinations with chemotherapy. Cancer Discov (June)

    Google Scholar 

  • Salemme V, Centonze G, Cavallo F, Defilippi P, Conti L (2021) The crosstalk between tumor cells and the immune microenvironment in breast cancer: implications for immunotherapy. Front Oncol 11(March):1–20

    Google Scholar 

  • Saraiva M, O’Garra A (2010) The regulation of IL-10 production by immune cells. Nat RevImmunol 10(3):170–181

    CAS  Google Scholar 

  • Saxena M, van der Burg SH, Melief CJM, Bhardwaj N (2021) Therapeutic cancer vaccines. Nat Rev Cancer 21(6):360–378

    Article  CAS  Google Scholar 

  • Schirrmacher V (2020) Cancer vaccines and oncolytic viruses exert profoundly lower side effects in cancer patients than other systemic therapies: a comparative analysis. Biomedicines 8(3)

    Google Scholar 

  • Schrörs B, Boegel S, Albrecht C, Bukur T, Bukur V, Holtsträter C et al (2020) Multi-omics characterization of the 4T1 murine mammary gland tumor model. Front Oncol 10(July):1–14

    Google Scholar 

  • Shen L, Li J, Liu Q, Song W, Zhang X, Tiruthani K et al (2018) Local blockade of interleukin 10 and C-X-C motif chemokine ligand 12 with nano-delivery promotes antitumor response in murine cancers. ACS Nano

    Google Scholar 

  • Shepard HM, Phillips GL, Thanos CD, Feldmann M (2017) Developments in therapy with monoclonal antibodies and related proteins. Clin Med J R Coll Phys Lond 17(3):220–232

    Google Scholar 

  • Shi Y, Riese DJ, Shen J (2020) The role of the CXCL12/CXCR4/CXCR7 chemokine axis in cancer. Front Pharmacol 11(December):1–14

    Google Scholar 

  • Showalter A, Limaye A, Oyer JL, Igarashi R, Kittipatarin C, Copik AJ et al (2017) Cytokines in immunogenic cell death: applications for cancer immunotherapy. Cytokine 97(June):123–132. https://doi.org/10.1016/j.cyto.2017.05.024

    Article  CAS  Google Scholar 

  • Sibaud V (2018) Dermatologic reactions to immune checkpoint inhibitors: skin toxicities and immunotherapy. Am J Clin Dermatol 19(3):345–361. https://doi.org/10.1007/s40257-017-0336-3

    Article  Google Scholar 

  • Silvestre ALP, Oshiro-Junior JA, Garcia C, Turco BO, Leite JMS, Damasceno BPGL et al (2021) Monoclonal antibodies carried in drug delivery nanosystems as a strategy for cancer treatment. Curr Med Chem 28(2):401–418

    Article  Google Scholar 

  • Solinas C, Aiello M, Migliori E, Willard-Gallo K, Emens LA (2020) Breast cancer vaccines: heeding the lessons of the past to guide a path forward. Cancer Treat Rev 84(October 2019)

    Google Scholar 

  • Song W, Musetti SN, Huang L (2017) Nanomaterials for cancer immunotherapy. Biomaterials 148:16–30

    Article  CAS  Google Scholar 

  • Spain L, Diem S, Larkin J (2016) Management of toxicities of immune checkpoint inhibitors. Cancer Treat Rev 44(February):51–60. https://doi.org/10.1016/j.ctrv.2016.02.001

    Article  CAS  Google Scholar 

  • Stroh M, Winter H, Marchand M, Claret L, Eppler S, Ruppel J et al (2017) Clinical pharmacokinetics and pharmacodynamics of atezolizumab in metastatic urothelial carcinoma. Clin PharmacolTher 102(2):305–312

    CAS  Google Scholar 

  • Sun Y, Liu L, Zhou L, Yu S, Lan Y, Liang Q et al (2020) Tumor microenvironment-triggered charge reversal polymetformin-based nanosystem co-delivered doxorubicin and IL-12 cytokine gene for chemo-gene combination therapy on metastatic breast cancer. ACS Appl Mater Interfaces 12(41):45873–45890

    Article  CAS  Google Scholar 

  • Szomolay B, Eubank TD, Roberts RD, Marsh CB, Friedman A (2012) Modeling the inhibition of breast cancer growth by GM-CSF. J Theor Biol 303:141–151

    Article  CAS  Google Scholar 

  • Tabrizi MA, Tseng CML, Roskos LK (2006) Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov Today 11(1–2):81–88

    Article  CAS  Google Scholar 

  • Tan S, Li D, Zhu X (2020) Cancer immunotherapy: pros, cons and beyond. Biomed Pharmacother 124(December 2019)

    Google Scholar 

  • Tarvirdipour S, Vasheghani-Farahani E, Soleimani M, Bardania H (2016) Functionalized magnetic dextran-spermine nanocarriers for targeted delivery of doxorubicin to breast cancer cells. Int J Pharm 501(1–2):331–341. https://doi.org/10.1016/j.ijpharm.2016.02.012

    Article  CAS  Google Scholar 

  • Thallinger C, Füreder T, Preusser M, Heller G, Müllauer L, Höller C et al (2018) Review of cancer treatment with immune checkpoint inhibitors: current concepts, expectations, limitations and pitfalls. Wien KlinWochenschr 130(3–4):85–91

    Article  CAS  Google Scholar 

  • Thomas S, Prendergast GC (2016) Cancer vaccines: a brief overview. Methods Mol Biol 1403:755–761

    Article  Google Scholar 

  • Tomeh MA, Hadianamrei R, Zhao X (2019) A review of curcumin and its derivatives as anticancer agents. Int J Mol Sci 20(5)

    Google Scholar 

  • Tong R, Langer R (2015) Nanomedicines targeting the tumor microenvironment. Cancer J (United States) 21(4):314–321

    CAS  Google Scholar 

  • Torino F, Corsello SM, Salvatori R (2016) Endocrinological side-effects of immune checkpoint inhibitors. CurrOpin Oncol 28(4):278–287

    CAS  Google Scholar 

  • Truong TH, Dwyer AR, Diep CH, Hu H, Hagen KM, Lange CA (2019) Phosphorylated progesterone receptor isoforms mediate opposing stem cell and proliferative breast cancer cell fates. Endocrinology 160(2):430–446

    Article  CAS  Google Scholar 

  • Twomey JD, Zhang B (2021) Cancer immunotherapy update: FDA-approved checkpoint inhibitors and companion diagnostics. AAPS J 23(2)

    Google Scholar 

  • Untch M, von Minckwitz G, Gerber B, Schem C, Rezai M, Fasching PA et al (2018) Survival analysis after neoadjuvant chemotherapy with trastuzumab or lapatinib in patients with human epidermal growth factor receptor 2–positive breast cancer in the GeparQuinto (G5) Study (GBG 44). J Clin Oncol 36(13):1308–1316

    Article  CAS  Google Scholar 

  • Wang J, Xu B (2019) Targeted therapeutic options and future perspectives for her2-positive breast cancer. Signal Transduct Target Ther 4(1)

    Google Scholar 

  • Wilcox DR, Longnecker R (2016) The Herpes Simplex Virus neurovirulence factor γ34.5: revealing virus–host interactions. PLoSPathog 12(3):1–7

    Google Scholar 

  • Wilky BA (2019) Immune checkpoint inhibitors: the linchpins of modern immunotherapy. Immunol Rev 290(1):6–23

    Article  CAS  Google Scholar 

  • Wilson AL, Schrecengost RS, Guerrero MS, Thomas KS, Bouton AH (2013) Breast cancer antiestrogen resistance 3 (BCAR3) promotes cell motility by regulating actin cytoskeletal and adhesion remodeling in invasive breast cancer cells. PLoS One 8(6)

    Google Scholar 

  • Wörmann SM, Diakopoulos KN, Lesina M, Algül H (2014) The immune network in pancreatic cancer development and progression. Oncogene 33(23):2956–2967

    Article  Google Scholar 

  • Xu F, Lee K, Xia W, Liao H, Lu Q, Zhang J et al (2020) Administration of lapatinib with food increases its plasma concentration in Chinese patients with metastatic breast cancer: a prospective Phase II Study. Oncologist 25(9):1286–1291

    Article  Google Scholar 

  • Yan Y, Kumar AB, Finnes H, Markovic SN, Park S, Dronca RS et al (2018) Combining immune checkpoint inhibitors with conventional cancer therapy. Front Immunol 9(July):1739

    Article  Google Scholar 

  • Yu W, He X, Yang Z, Yang X, Xiao W, Liu R et al (2019) Sequentially responsive biomimetic nanoparticles with optimal size in combination with checkpoint blockade for cascade synergetic treatment of breast cancer and lung metastasis. Biomaterials:119309. https://doi.org/10.1016/j.biomaterials.2019.119309

  • Zahavi D, Weiner L (2020) Monoclonal antibodies in cancer therapy. Antibodies 9(34):1–20

    Google Scholar 

  • Zamani P, Teymouri M, Nikpoor AR, Navashenaq JG, Gholizadeh Z, Darban SA et al (2020) Nanoliposomal vaccine containing long multi-epitope peptide E75-AE36 pulsed PADRE-induced effective immune response in mice TUBO model of breast cancer. Eur J Cancer 129:80–96. https://doi.org/10.1016/j.ejca.2020.01.010

    Article  CAS  Google Scholar 

  • Zhang H, Chen J (2018) Current status and future directions of cancer immunotherapy. J Cancer 9(10):1773–1781

    Article  Google Scholar 

  • Zhao W, Hu X, Li W, Li R, Chen J, Zhou L et al (2021) M2-like TAMs function reversal contributes to breast cancer eradication by combination dual immune checkpoint blockade and photothermal therapy. Small 17(13):1–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Augusto Oshiro-Júnior .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Costa, K.M.N., de Melo, D.F., da Silva Soares, I.L., de Lima Damasceno, B.P.G., Oshiro-Júnior, J.A. (2023). Immunotherapy for Breast Cancer. In: Rezaei, N. (eds) Handbook of Cancer and Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-80962-1_224-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80962-1_224-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80962-1

  • Online ISBN: 978-3-030-80962-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics