Skip to main content

Analysis of Natural and Engineered Amyloid Aggregates by Spectroscopic and Scattering Techniques

  • Conference paper
  • First Online:
Soft Matter Systems for Biomedical Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 266))

  • 640 Accesses

Abstract

The increasing knowledge about natural functional fibrils has triggered the interest in synthetic or engineered fibrils. Naturally occurring amyloid fibrils (functional and pathogenic) have been analyzed for many years at different structural levels. Engineered fibrils are structurally similar to natural fibrils and the main sub-structural feature of amyloids is characterized by cross-beta structure stabilizing the fibril formation. However, a number of peculiarities exist comparing natural and engineered fibrils that may affect their analysis, especially in spectroscopic and scattering methods. For this reason, several methods that are commonly used for natural fibril analysis are presented and particularities for their application in the characterization of engineered fibrils are described. In addition, the understanding about structure–function relation of fibrils studied in the different research areas may mutually improve when using the same analytical approaches for natural and engineered fibrils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

Atomic force microscopy

ATR:

Attenuated total reflection

COSMiCS:

Complex objective structural analysis of multi component system

CW EPR:

Continuous wave EPR

DEER:

Double electron–electron resonance

DLS:

Dynamic light scattering

EPR:

Electron paramagnetic resonance

FTIR:

Fourier-transform infrared

SAXS:

Small angle X-ray scattering

SANS:

Small angle neutron scattering

SEM:

Scanning electron microscopy

SDSL:

Site directed spin labelling

ssNMR:

Solid state nuclear magnetic resonance

TEM:

Transmission electron microscopy

Thio-T:

Thioflavin-T

WAXS:

Wide angle X-ray scattering

Rg:

Radius of gyration

α-B-Cry:

α-B-crystallin

BLG:

Whey protein beta-lactoglobulin

BSA:

Bovine serum albumin

EGCG:

Epigallocatechin gallate

IPSL:

N-(1-oxyl-2,2,5,5-tetramethyl-3-pyrrolidinyl) iodoacetamide

MTSSL:

(1-Oxyl-2,2,5,5-tetramethylpyrroline-3-methyl) methanethiosulfonate

PGG:

Pentagalloyl glucose

References

  1. Nilsson MR (2004) Techniques to study amyloid fibril formation in vitro. Methods 34(1):151–160

    Article  Google Scholar 

  2. Araki K, Yagi N, Aoyama K et al (2019) Parkinson’s disease is a type of amyloidosis featuring accumulation of amyloid fibrils of α-synuclein. Proc Natl Acad Sci U S A 116(36):17963–17969

    Article  Google Scholar 

  3. Kollmer M, Close W, Funk L et al (2019) Cryo-EM structure and polymorphism of Aβ amyloid fibrils purified from Alzheimer’s brain tissue. Nat Commun 10(1):4760

    Article  ADS  Google Scholar 

  4. Iconomidou VA, Cordopatis P, Hoenger A et al (2011) The silkmoth eggshell as a natural amyloid shield for the safe development of insect oocyte and embryo: Insights from studies of silkmoth chorion protein peptide-analogues of the B family. Biopolymers 96(6):723–733

    Article  Google Scholar 

  5. Shanmugam N, Baker MODG, Ball SR et al (2019) Microbial functional amyloids serve diverse purposes for structure, adhesion and defence. Biophys Rev 11(3):287–302

    Article  Google Scholar 

  6. Zeng G, Vad BS, Dueholm MS et al (2015) Functional bacterial amyloid increases pseudomonas biofilm hydrophobicity and stiffness. Front Microbiol 6:1099

    Google Scholar 

  7. Sengupta U, Nilson AN, Kayed R (2016) The role of amyloid-β oligomers in toxicity, propagation, and immunotherapy. EBioMedicine 6:42–49

    Article  Google Scholar 

  8. Deshmukh M, Evans ML, Chapman MR (2018) Amyloid by design: intrinsic regulation of microbial amyloid assembly. J Mol Biol 430(20):3631–3641

    Article  Google Scholar 

  9. Knowles TPJ, Mezzenga R (2016) Amyloid fibrils as building blocks for natural and artificial functional materials. Adv Mater 28(31):6546–6561

    Article  Google Scholar 

  10. Biancalana M, Koide S (2010) Molecular mechanism of thioflavin-t binding to amyloid fibrils. Biochim Biophys Acta 1804(7):1405–1412

    Article  Google Scholar 

  11. Tayeb-Fligelman E, Salinas N, Tabachnikov O et al (2020) Staphylococcus aureus PSMα3 Cross-α fibril polymorphism and determinants of cytotoxicity. Structure 28(3):301-313.e6

    Article  Google Scholar 

  12. Sunde M, Serpell LC, Bartlam M et al (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol 273(3):729–739

    Article  Google Scholar 

  13. Kleinteich T, Gorb SN (2015) Frog tongue acts as muscle-powered adhesive tape. R Soc Open Sci 2(9):150333

    Google Scholar 

  14. Kayser JJ, Arnold P, Steffen-Heins A et al (2020) Functional ethanol-induced fibrils: Influence of solvents and temperature on amyloid-like aggregation of beta-lactoglobulin. J Food Eng 270:109764

    Article  Google Scholar 

  15. Yoshida K, Vogtt K, Izaola Z et al (2012) Alcohol induced structural and dynamic changes in β-lactoglobulin in aqueous solution: a neutron scattering study. Biochim Biophys Acta 1824(3):502–510

    Article  Google Scholar 

  16. Arosio P, Beeg M, Nicoud L et al (2012) Time evolution of amyloid fibril length distribution described by a population balance model. Chem Eng Sci 78:21–32

    Article  Google Scholar 

  17. Ye X, Hedenqvist MS, Langton M et al (2018) On the role of peptide hydrolysis for fibrillation kinetics and amyloid fibril morphology. RSC Adv 8(13):6915–6924

    Article  ADS  Google Scholar 

  18. Keppler JK, Heyn TR, Meissner PM et al (2019) Protein oxidation during temperature-induced amyloid aggregation of beta-lactoglobulin. Food Chem 289:223–231

    Article  Google Scholar 

  19. Heyn TR, Mayer J, Neumann HR et al (2020) The threshold of amyloid aggregation of beta-lactoglobulin: Relevant factor combinations. J Food Eng 283:110005

    Article  Google Scholar 

  20. Heyn TR, Garamus VM, Neumann HR, et al (2019) Influence of the polydispersity of pH 2 and pH 3.5 beta-lactoglobulin amyloid fibril solutions on analytical methods. Eur Polym J 120:109211

    Google Scholar 

  21. Akkermans C, Venema P, van der Goot AJ et al (2008) Peptides are building blocks of heat-induced fibrillar protein aggregates of beta-lactoglobulin formed at pH 2. Biomacromol 9(5):1474–1479

    Article  Google Scholar 

  22. Loveday SM, Anema SG, Singh H (2017) β-Lactoglobulin nanofibrils: the long and the short of it. Int Dairy J 67:35–45

    Article  Google Scholar 

  23. Eymsh B, Drobny A, Heyn TR et al (2020) Toxic metamorphosis-how changes from lysosomal to cytosolic pH modify the alpha-synuclein aggregation pattern. Biomacromol 21(12):4673–4684

    Article  Google Scholar 

  24. Yadav LDS (2005) Infrared (IR) Spectroscopy. In: Yadav LDS (ed) Organic Spectroscopy. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2575-4_3

  25. Barth A (2007) Infrared spectroscopy of proteins. Biochim Biophys Acta 1767(9):1073–1101

    Article  Google Scholar 

  26. Militello V, Casarino C, Emanuele A et al (2004) Aggregation kinetics of bovine serum albumin studied by FTIR spectroscopy and light scattering. Biophys Chem 107(2):175–187

    Article  Google Scholar 

  27. Kavanagh GM, Clark AH, Ross-Murphy SB (2000) Heat-induced gelation of globular proteins: part 3. molecular studies on low pH β-lactoglobulin gels. Int J Biol Macromol 28(1):41–50

    Google Scholar 

  28. Moran SD, Zanni MT (2014) How to Get Insight into amyloid structure and formation from infrared spectroscopy. J Phys Chem Lett 5(11):1984–1993

    Article  Google Scholar 

  29. Baldassarre M, Bennett M, Barth A (2016) Simultaneous acquisition of infrared, fluorescence and light scattering spectra of proteins: direct evidence for pre-fibrillar species in amyloid fibril formation. Analyst 141(3):963–973

    Article  ADS  Google Scholar 

  30. Hahn S, Kim S-S, Lee C et al (2005) Characteristic two-dimensional IR spectroscopic features of antiparallel and parallel beta-sheet polypeptides: simulation studies. J Chem Phys 123(8):84905

    Article  Google Scholar 

  31. Allain A-F, Paquin P, Subirade M (1999) Relationships between conformation of β-lactoglobulin in solution and gel states as revealed by attenuated total reflection Fourier transform infrared spectroscopy. Int J Biol Macromol 26(5):337–344

    Article  Google Scholar 

  32. Venyaminov S, Prendergast FG (1997) Water (H2O and D2O) molar absorptivity in the 1000–4000 cm-1 range and quantitative infrared spectroscopy of aqueous solutions. Anal Biochem 248(2):234–245

    Article  Google Scholar 

  33. Mossuto MF, Dhulesia A, Devlin G et al (2010) The non-core regions of human lysozyme amyloid fibrils influence cytotoxicity. J Mol Biol 402(5):783–796

    Article  Google Scholar 

  34. Bouchard M, Zurdo J, Nettleton EJ et al (2000) Formation of insulin amyloid fibrils followed by FTIR simultaneously with CD and electron microscopy. Protein Sci 9(10):1960–1967

    Article  Google Scholar 

  35. Petrenko VI, Avdeev MV, Garamus VM et al (2014) Structure of amyloid aggregates of lysozyme from small-angle X-ray scattering data. Phys Solid State 56(1):129–133

    Article  ADS  Google Scholar 

  36. Avdeev MV, Aksenov VL, Gazová Z et al (2013) On the determination of the helical structure parameters of amyloid protofilaments by small-angle neutron scattering and atomic force microscopy. J Appl Crystallogr 46(1):224–233

    Article  Google Scholar 

  37. Cerf E, Sarroukh R, Tamamizu-Kato S et al (2009) Antiparallel beta-sheet: a signature structure of the oligomeric amyloid beta-peptide. Biochem J 421(3):415–423

    Article  Google Scholar 

  38. Conway KA, Harper JD, Lansbury PT (2000) Fibrils formed in vitro from alpha-synuclein and two mutant forms linked to parkinson’s disease are typical amyloid. Biochemistry 39(10):2552–2563

    Article  Google Scholar 

  39. Bleem A, Christiansen G, Madsen DJ et al (2018) Protein engineering reveals mechanisms of functional amyloid formation in pseudomonas aeruginosa biofilms. J Mol Biol 430(20):3751–3763

    Article  Google Scholar 

  40. Dueholm MS, Nielsen SB, Hein KL et al (2011) Fibrillation of the major curli subunit CsgA under a wide range of conditions implies a robust design of aggregation. Biochemistry 50(39):8281–8290

    Article  Google Scholar 

  41. Ghosh D, Singh PK, Sahay S et al (2015) Structure based aggregation studies reveal the presence of helix-rich intermediate during α-Synuclein aggregation. Sci Rep 5:9228

    Article  Google Scholar 

  42. Krebs MRH, Devlin GL, Donald AM (2009) Amyloid fibril-like structure underlies the aggregate structure across the pH range for beta-lactoglobulin. Biophys J 96(12):5013–5019

    Article  Google Scholar 

  43. Oboroceanu D, Wang L, Brodkorb A et al (2010) Characterization of beta-lactoglobulin fibrillar assembly using atomic force microscopy, polyacrylamide gel electrophoresis, and in situ fourier transform infrared spectroscopy. J Agric Food Chem 58(6):3667–3673

    Article  Google Scholar 

  44. Lux J, Azarkh M, Fitzner L et al (2021) Amyloid aggregation of spin-labeled β-lactoglobulin. Part ii: identification of spin-labeled protein and peptide sequences after amyloid aggregation. Food Hydrocolloids 112:106174

    Google Scholar 

  45. Sarroukh R, Goormaghtigh E, Ruysschaert J-M et al (2013) ATR-FTIR: A “rejuvenated” tool to investigate amyloid proteins. Biochim Biophys Acta 1828(10):2328–2338

    Article  Google Scholar 

  46. Berthelot K, Ta HP, Géan J et al (2011) In vivo and in vitro analyses of toxic mutants of HET-s: FTIR antiparallel signature correlates with amyloid toxicity. J Mol Biol 412(1):137–152

    Article  Google Scholar 

  47. Fabian H, Gast K, Laue M et al (2008) Early stages of misfolding and association of beta2-microglobulin: Insights from infrared spectroscopy and dynamic light scattering. Biochemistry 47(26):6895–6906

    Article  Google Scholar 

  48. Cordeiro Y, Kraineva J, Suarez MC et al (2006) Fourier transform infrared spectroscopy provides a fingerprint for the tetramer and for the aggregates of transthyretin. Biophys J 91(3):957–967

    Article  Google Scholar 

  49. Dong A, Randolph TW, Carpenter JF (2000) Entrapping intermediates of thermal aggregation in alpha-helical proteins with low concentration of guanidine hydrochloride. J Biol Chem 275(36):27689–27693

    Article  Google Scholar 

  50. Drescher M, Jeschke G, Bordignon E (eds) (2012) EPR Spectroscopy: Applications in Chemistry and Biology. Topics in current chemistry, vol 321. Springer, Berlin

    Google Scholar 

  51. Jeschke G, Polyhach Y (2007) Distance measurements on spin-labelled biomacromolecules by pulsed electron paramagnetic resonance. Phys Chem Chem Phys 9(16):1895–1910

    Article  Google Scholar 

  52. Klare JP (2013) Site-directed spin labeling EPR spectroscopy in protein research. Biol Chem 394(10):1281–1300

    Article  MathSciNet  Google Scholar 

  53. Berliner LJ (1976) Spin Labeling: Theory and Applications. Elsevier Science, Burlington

    Google Scholar 

  54. Berliner LJ, Grunwald J, Hankovszky HO et al (1982) A novel reversible thiol-specific spin label: papain active site labeling and inhibition. Anal Biochem 119(2):450–455

    Article  Google Scholar 

  55. Mchaourab HS, Lietzow MA, Hideg K et al (1996) Motion of spin-labeled side chains in T4 lysozyme. Correlation with protein structure and dynamics. Biochemistry 35(24):7692–7704

    Google Scholar 

  56. Strancar J, Koklic T, Arsov Z et al (2005) Spin label EPR-based characterization of biosystem complexity. J Chem Inf Model 45(2):394–406

    Article  Google Scholar 

  57. Strancar J, Kavalenka A, Urbancic I et al (2010) SDSL-ESR-based protein structure characterization. Eur Biophys J EBJ 39(4):499–511

    Article  Google Scholar 

  58. Margittai M, Langen R (2008) Fibrils with parallel in-register structure constitute a major class of amyloid fibrils: Molecular insights from electron paramagnetic resonance spectroscopy. Q Rev Biophys 41(3–4):265–297

    Article  Google Scholar 

  59. Török M, Milton S, Kayed R et al (2002) Structural and dynamic features of Alzheimer’s Abeta peptide in amyloid fibrils studied by site-directed spin labeling. J Biol Chem 277(43):40810–40815

    Article  Google Scholar 

  60. Gu L, Tran J, Jiang L et al (2016) A new structural model of Alzheimer’s Aβ42 fibrils based on electron paramagnetic resonance data and Rosetta modeling. J Struct Biol 194(1):61–67

    Article  ADS  Google Scholar 

  61. Sepkhanova I, Drescher M, Meeuwenoord NJ et al (2009) Monitoring Alzheimer amyloid peptide aggregation by EPR. Appl Magn Reson 36(2–4):209–222

    Article  Google Scholar 

  62. Chen M, Margittai M, Chen J et al (2007) Investigation of alpha-synuclein fibril structure by site-directed spin labeling. J Biol Chem 282(34):24970–24979

    Article  Google Scholar 

  63. Trovato A, Chiti F, Maritan A et al (2006) Insight into the structure of amyloid fibrils from the analysis of globular proteins. PLoS Comput Biol 2(12):e170

    Google Scholar 

  64. Lux J, Heyn TR, Kampen I et al (2021) Amyloid aggregation of spin-labeled β-lactoglobulin. Part I: Influence of spin labeling on amyloid aggregation. Food Hydrocolloids 112:106178

    Google Scholar 

  65. Kikhney AG, Svergun DI (2015) A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins. FEBS Lett 589(19 Pt A): 2570–2577

    Google Scholar 

  66. Vestergaard B, Groenning M, Roessle M et al (2007) A helical structural nucleus is the primary elongating unit of insulin amyloid fibrils. PLoS Biol 5(5):e134

    Google Scholar 

  67. Bolisetty S, Vallooran JJ, Adamcik J et al (2013) Magnetic-responsive hybrids of Fe3O4 nanoparticles with β-lactoglobulin amyloid fibrils and nanoclusters. ACS Nano 7(7):6146–6155

    Article  Google Scholar 

  68. Majorosova J, Petrenko VI, Siposova K et al (2016) On the adsorption of magnetite nanoparticles on lysozyme amyloid fibrils. Colloids Surf B Biointerfaces 146:794–800

    Article  Google Scholar 

  69. Herranz-Trillo F, Groenning M, van Maarschalkerweerd A et al (2017) Structural analysis of multi-component amyloid systems by chemometric SAXS data decomposition. Structure 25(1):5–15

    Article  Google Scholar 

  70. Srivastava A, Singh J, Singh Yadav SP et al (2018) The gelsolin pathogenic D187N mutant exhibits altered conformational stability and forms amyloidogenic oligomers. Biochemistry 57(16): 2359–2372

    Google Scholar 

  71. Ghahramani M, Yousefi R, Krivandin A et al (2020) Structural and functional characterization of D109H and R69C mutant versions of human αB-crystallin: THE BIOCHemical pathomechanism underlying cataract and myopathy development. Int J Biol Macromol 146:1142–1160

    Article  Google Scholar 

  72. Najarzadeh Z, Mohammad-Beigi H, Nedergaard Pedersen J et al (2019) Plant polyphenols inhibit functional amyloid and biofilm formation in pseudomonas strains by directing monomers to off-pathway oligomers. Biomolecules 9(11):659 (2019)

    Google Scholar 

  73. Sánchez-Ferrer A, Adamcik J, Handschin S et al (2018) Controlling supramolecular chiral nanostructures by self-assembly of a biomimetic β-sheet-rich amyloidogenic peptide. ACS Nano 12(9):9152–9161

    Article  Google Scholar 

  74. Keppler JK, Martin D, Garamus VM et al (2015) Differences in binding behavior of (-)-epigallocatechin gallate to β-lactoglobulin heterodimers (AB) compared to homodimers (A) and (B). J Mol Recognit 28(11):656–666

    Article  Google Scholar 

  75. Adamcik J, Jung J-M, Flakowski J et al (2010) Understanding amyloid aggregation by statistical analysis of atomic force microscopy images. Nat Nanotechnol 5(6):423–428

    Article  ADS  Google Scholar 

  76. Svergun DI (1999) Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J 76(6):2879–2886

    Article  Google Scholar 

  77. Schmidt MJ, Fedoseev A, Summerer D, Drescher M (2015) Chapter eighteen – genetically encoded spin labels for in vitro and in-cell EPR studies of native proteins. Methods Enzymol 563:483–502

    Article  Google Scholar 

Download references

Acknowledgements

TRH, ASH, KS and JKK would like to thank the German Research Foundation (DFG), project number 315456892, within the priority program SPP1934.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Garamus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Heyn, T.R., Garamus, V.M., Steffen-Heins, A., Schwarz, K., Keppler, J.K. (2022). Analysis of Natural and Engineered Amyloid Aggregates by Spectroscopic and Scattering Techniques. In: Bulavin, L., Lebovka, N. (eds) Soft Matter Systems for Biomedical Applications. Springer Proceedings in Physics, vol 266. Springer, Cham. https://doi.org/10.1007/978-3-030-80924-9_11

Download citation

Publish with us

Policies and ethics