Skip to main content

COVID19 Pandemic and Children

  • Chapter
  • First Online:
Pediatric ENT Infections

Abstract

On December 31, 2019, “an unknown viral pneumonia” was initially noticed in Wuhan, China. Since December 2019, the epidemic that started in Wuhan, China has spread quickly over an extensive field [1]. On January 10, 2020, a recent type of coronavirus genome was isolated from a patient’s tracheal secretion. Then, the World Health Organization (WHO) temporarily named the virus “2019 novel Coronavirus” [2, 3]. The disease was included in “Class B infectious diseases” by “National Health Commission of the People’s Republic of China” on January 20, 2020 [4]. This new agent formally clept as “SARS-CoV-2 infection Coronavirus Disease 2019 (COVID-19)” and “Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2)” by WHO on February 11, 2020. WHO described this as a “Public Health Emergency of International Concern (PHEIC)” [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jiatong S, Wenjun L. Epidemiological characteristics and prevention and control measures of corona virus disease 2019 in children. J Trop Med. 2020;20:153–6.

    Google Scholar 

  2. World Health Organization. Coronavirus disease (COVID-19) outbreak; 2020. https://www.who.int/emergencies/diseases/novelcoronavirus-2019. Accessed 15 Feb 2020.

  3. World Health Organization Novel coronavirus – China; 2020. https://www.who.int/csr/don/12-january-2020-novelcoronaviruschina/en/. Accessed 15 Feb 2020.

  4. National Health Commission of the People's Republic of China. Notice of the National Health Council of the People’s Republic of China [EB/OL]; 2020. http://www.nhc.gov.cn/jkj/s7916/202001/44a3b8245e8049d2837a4f27529cd386.shtml. Accessed 20 Jan 2020.

  5. WHO. Coronavirus. https://www.who.int/emergencies/diseases/novel-coronavirus-2019. Accessed 11 Feb 2020.

  6. Donnelly CA, Ghani AC, Leung GM, et al. Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong. Lancet. 2003;361:1761–6.

    PubMed  PubMed Central  Google Scholar 

  7. Ksiazek TG, Erdman D, Goldsmith CS, et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med. 2003;348:1953–66.

    CAS  PubMed  Google Scholar 

  8. Chinese Center For Disease Control and Prevention. Coronavirus disease (COVID-19) situation reports. http://2019ncov.chinacdc.cn/2019-nCoV/index.html. Accessed 11 Feb 2020.

  9. Chinese Center For Disease Control and Prevention. Coronavirus disease (COVID-19) situation reports. http://2019ncov.chinacdc.cn/2019-nCoV/global.html. Accessed 19 Feb 2020.

  10. Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382:727–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hui DS, IAzhar E, Madani TA, et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health: the latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis. 2020;91:264–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. World Health Organization (WHO). WHO characterizes COVID-19 as a pandemic [EB/OL]. Geneva: World Health Organization; 2020.

    Google Scholar 

  13. Zheng M, Gao Y, Wang G, et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol. 2020;17:533–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang J, Litvinova M, Wang W, et al. Evolving epidemiology and transmission dynamics of coronavirus disease 2019 outside Hubei province, China: a descriptive and modelling study. Lancet Infect Dis. 2020;20:793–802.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Shi Z, Hu Z. A review of studies on animal reservoirs of the SARS coronavirus. Virus Res. 2008;133:74–87.

    CAS  PubMed  Google Scholar 

  16. de Wit E, van Doremalen N, Falzarano D, et al. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016;14:523–34.

    PubMed  PubMed Central  Google Scholar 

  17. Hamming I, Timens W, Bulthuis ML, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus: a first step in understanding SARS pathogenesis. J Pathol. 2004;203:631–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Malave A, Elamin EM. Severe acute respiratory syndrome (SARS)- lessons for future pandemics. Virtual Mentor. 2010;12:719–25.

    PubMed  Google Scholar 

  19. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lu X, Zhang L, Du H, et al. SARS-CoV-2 infection in children. N Engl J Med. 2020;382:1663–5.

    PubMed  Google Scholar 

  21. Qiu H, Wu J, Hong L, et al. Clinical and epidemiological features of 36 children with coronavirus disease 2019 (COVID-19) in Zhejiang, China: an observational cohort study. Lancet Infect Dis. 2020;20:689–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Dagan R, Bhutta ZA, de Quadros CA, et al. The remaining challenge of pneumonia: the leading killer of children. Pediatr Infect Dis J. 2011;30:1–2.

    PubMed  Google Scholar 

  23. Campbell H, Nair H. Child pneumonia at a time of epidemiological transition. Lancet Glob Health. 2012;3:e65–6.

    Google Scholar 

  24. Sidiq K, Sabir DK, Ali SM, et al. Does early childhood vaccination protect against COVID-19? Front Mol Biosci. 2020;7:120.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Al-Tawfiq JA, Kattan RF, Memish ZA. Middle East respiratory syndrome coronavirus disease is rare in children: an update from Saudi Arabia. World J Clin Pediatr. 2016;5:391–6.

    PubMed  PubMed Central  Google Scholar 

  26. Lu H, Stratton CW, Tang YW. Outbreak of pneumonia of unknown etiology in Wuhan China: the mystery and the miracle. J Med Virol. 2020;92:401–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Paules CI, Marston HD, Fauci AS. Coronavirus infections—more than just the common cold. JAMA. 2020;323:707. https://doi.org/10.1001/jama.2020.0757.

    Article  CAS  PubMed  Google Scholar 

  28. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395:507–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan. JAMA. 2020;323:1061–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382:1199–207.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chan JF-W, Yuan S, Kok K-H, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating personto-person transmission: a study of a family cluster. Lancet. 2020;395:514–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Feng F, Xiaoping L. Facing the pandemic of 2019 novel coronavirus infections: the pediatric perspectives. Chin J Pediatr. 2020;58:81–5.

    Google Scholar 

  33. National Health Commission of the People's Republic of China (2020) Diagnosis and treatment of novel coronavirus pneumonia (trial version 7 revised version). [EB/OL]. http://www.nhc.gov.cn/yzygj/s7653p/202003/46c9294a7dfe4cef80dc7f5912eb1989.shtml. Accessed 3 Mar 2020.

  34. Lifen Y, Zhenyuan D, Mengqi D, et al (2020) Suggestions for medical staff from department of pediatrics during the treatment of 2019-nCoV infection/pneumonia J N Med (PrePrint). 10.3969/j.issn.0253-9802.2020.02.001.

  35. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323:1239. https://doi.org/10.1001/jama.2020.2648.

    Article  CAS  PubMed  Google Scholar 

  36. Brodin P. Why is COVID-19 so mild in children? Acta Paediatr. 2020;109:1082–3.

    CAS  PubMed  Google Scholar 

  37. Livingston E, Bucher K. Coronavirus disease 2019 (COVID-19) in Italy. JAMA. 2020;323:1335. https://doi.org/10.1001/jama.2020.4344.

    Article  PubMed  Google Scholar 

  38. Yuki K, Fujiogi M, Koutsogiannaki S. COVID-19 pathophysiology: a review. Clin Immunol. 2020;215:108427.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang Y. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19)—China, 2020. Chin J Epidemiol. 2020;41:145.

    Google Scholar 

  40. Wei M, Yuan J, Liu YU, et al. Novel coronavirus infection in hospitalized infants under 1 year of age in China. JAMA. 2020;323:1313–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wenham C, Smith J, Morgan R. Gender and C-W group, COVID-19: the gendered impacts of the outbreak. Lancet. 2020;395:846–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Jin J, Bai P, He W, et al. Gender differences in patients with COVID-19: focus on severity and mortality. Front Public Health. 2020;8:152.

    PubMed  PubMed Central  Google Scholar 

  43. Yang Y, Lu Q, Liu M, et al. Epidemiological and clinical features of the 2019 novel coronavirus outbreak in China. Med Rxiv. 2020; https://doi.org/10.1101/2020.02.10.20021675.

  44. Dong Y, Mo XI, Hu Y, et al. Epidemiological characteristics of 2143 pediatric patients with 2019 coronavirus disease in China. Pediatrics. 2020;16:16.

    Google Scholar 

  45. Bialek S, Boundy E, Bowen V, et al. Severe outcomes among patients with coronavirus disease 2019 (COVID-19) — United States. MMWR Morb Mortal Wkly Rep. 2020;69:343–6.

    PubMed Central  Google Scholar 

  46. Caselli D, Arico M. 2019-nCoV: polite with children! Pediatric Rep. 2020;12:8495.

    CAS  Google Scholar 

  47. Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8:420–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Feng K, Yun YX, Wang XF, et al. First case of severe childhood novel coronavirus pneumonia in China. Chin J Pediatr. 2020;58:179–83.

    Google Scholar 

  49. Mei Z, Xiaowen Z, Jianshe W. 2019 novel coronavirus infection: pediatric professionals perspectives and action. Chin J Infect Dis. 2020;38:E003.

    Google Scholar 

  50. Ng PC, Leung CW, Chiu WK, et al. SARS in newborns and children. Biol Neonate. 2004;85:293–8.

    PubMed  Google Scholar 

  51. Chiu WK, Cheung PCH, Ng KL, et al. Severe acute respiratory syndrome in children: experience in a regional hospital in Hong Kong. Pediatr Crit Care Med. 2003;4:279–83.

    PubMed  Google Scholar 

  52. Hon KL, Leung CW, Cheng WT. Clinical presentations and outcome of severe acute respiratory syndrome in children. Lancet. 2003;361:1701–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Spicuzza L, Spicuzza A, La Rosa M, et al. New and emerging infectious diseases. Allergy Asthma Proc. 2007;28:28–34.

    CAS  PubMed  Google Scholar 

  54. The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Chin J Epidemiol. 2020;4:145–51.

    Google Scholar 

  55. Cui J, Li F, Shi Z-L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17:181–92.

    CAS  PubMed  Google Scholar 

  56. Woo PC, Lau SK, Chu CM, et al. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol. 2005;79:884–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Woo PC, Lau SK, Lam CS, et al. Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J Virol. 2012;86:3995–4008.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lau SK, Woo PC, Li KS, et al. Discovery of a novel coronavirus, China Rattus coronavirus HKU24, from Norway rats supports the murine origin of Betacoronavirus 1 and has implications for the ancestor of Betacoronavirus lineage A. J Virol. 2015;89:3076–92.

    CAS  PubMed  Google Scholar 

  59. Rabi FA, Al Zoubi MS, Kasasbeh GA, et al. SARS-CoV-2 and coronavirus disease 2019: what we know so far. Pathogens. 2020;9:23.

    Google Scholar 

  60. Gaunt ER, Hardie A, Claas EC, et al. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. J Clin Microbiol. 2010;48:2940–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Davis BM, Foxman B, Monto AS, et al. Human coronaviruses and other respiratory infections in young adults on a university campus: prevalence, symptoms, and shedding. Influenza Other Respi Viruses. 2018;12:582–90.

    Google Scholar 

  62. Huynh J, Li S, Yount B, et al. Evidence supporting a zoonotic origin of human coronavirus strain NL63. J Virol. 2012;86:12816–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Pfefferle S, Oppong S, Drexler JF, et al. Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats, Ghana. Emerg Infect Dis. 2009;15:1377–84.

    PubMed  PubMed Central  Google Scholar 

  64. Corman VM, Eckerle I, Memish ZA, et al. Link of a ubiquitous human coronavirus to dromedary camels. Proc Natl Acad Sci U S A. 2016;113:9864–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Vijgen L, Keyaerts E, Moës E, et al. Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event. J Virol. 2005;79:1595–604.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Drosten C, Günther S, Preiser W, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003;348:1967–76.

    CAS  PubMed  Google Scholar 

  67. Wang M, Yan M, Xu H, et al. SARS-CoV infection in a restaurant from palm civet. Emerg Infect Dis. 2005;11:1860–5.

    PubMed  PubMed Central  Google Scholar 

  68. Luk HKH, Li X, Fung J, et al. Molecular epidemiology, evolution and phylogeny of SARS coronavirus. Infect Genet Evol. 2019;71:21–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. de Groot RJ, Baker SC, Baric RS, et al. Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the coronavirus study group. J Virol. 2013;87:7790–2.

    PubMed  PubMed Central  Google Scholar 

  70. Ommeh S, Zhang W, Zohaib A, et al. Genetic evidence of Middle East respiratory syndrome coronavirus (MERS-Cov) and widespread seroprevalence among camels in Kenya. Virol Sin. 2018;33:484–92.

    PubMed  PubMed Central  Google Scholar 

  71. Ceraolo C, Giorgi FM. Genomic variance of the 2019-nCoV coronavirus. J Med Virol. 2020;92:522–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Chan JF, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to person transmission: a study of a family cluster. Lancet. 2020;395:514–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Bosch BJ, van der Zee R, de Haan CA, et al. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol. 2003;77:8801–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426:450–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen Y, Guo Y, Pan Y, Zhao ZJ. Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophys Res Commun. 2020;525:135–40.

    PubMed Central  Google Scholar 

  76. Walls AC, Park YJ, Tortorici MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181:281–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020;5:562–9.

    CAS  PubMed  Google Scholar 

  78. Zou X, Chen K, Zou J, et al. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020;14:185–92.

    PubMed  Google Scholar 

  79. Hamming I, Timens W, Bulthuis ML, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203:631–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Jia HP, Look DC, Shi L, et al. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol. 2005;79:14614–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lovren F, Pan Y, Quan A, et al. Angiotensin converting enzyme-2 confers endothelial protection and attenuates atherosclerosis. Am J Physiol Heart Circ Physiol. 2008;295:1377–84.

    Google Scholar 

  82. Sluimer JC, Gasc JM, Hamming I, et al. Angiotensin-converting enzyme 2 (ACE2) expression and activity in human carotid atherosclerotic lesions. J Pathol. 2008;215:273–9.

    CAS  PubMed  Google Scholar 

  83. Wang M, Hao H, Leeper NJ, et al. Thrombotic regulation from the endothelial cell perspectives. Arterioscler Thromb Vasc Biol. 2018;38:e90–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang H, Kang Z, Gong H, et al. The digestive system is a potential route of 2019-nCov infection: a bioinformatics analysis based on single-cell transcriptomes. 2020; https://doi.org/10.1101/2020.01.30.927806.

  85. Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med. 2020;382:929–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. https://www.livescience.com/whykids-missing-coronavirus-cases.html.

  87. Hoffmann M, Kleine-Weber H, Krüger N, et al. The novel coronavirus 2019 (2019-nCoV) uses the SARS coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. bioRxiv (PrePrint). 2020; https://doi.org/10.1101/2020.01.31.929042.

  88. Patel SK, Velkoska E, Burrell LM. Emerging markers in cardiovascular disease: where does angiotensin-converting enzyme 2 fit in? Clin Exp Pharmacol Physiol. 2013;40:551–9.

    CAS  PubMed  Google Scholar 

  89. Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirusinfected pneumonia. N Engl J Med. 2020;382:1199–207.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Munster VJ, Koopmans M, van Doremalen N, et al. A novel coronavirus emerging in China d key questions for impact assessment. N Engl J Med. 2020;382:692e4.

    Google Scholar 

  91. Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of 2019 novel coronavirus infection in China. MedRxiv. 2020; https://doi.org/10.1101/2020.02.06.20020974.

  92. Cai J, Xu J, Lin D, et al. A case series of children with 2019 novel coronavirus infection: clinical and epidemiological features. Clin Infect Dis. 2020;28:28.

    Google Scholar 

  93. Netea MG, Giamarellos-Bourboulis EJ, Domínguez-Andrés J, et al. Trained immunity: a tool for reducing susceptibility to and the severity of SARS-CoV-2 infection. Cell. 2020;181:969–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Covián C, Retamal-Díaz A, Bueno SM, et al. Could BCG vaccination induce protective trained immunity for SARS-CoV-2? Front Immunol. 2020;11:970.

    PubMed  PubMed Central  Google Scholar 

  95. Chan JF, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;395:514e23.

    Google Scholar 

  96. Wang XF, Yuan J, Zheng YJ, et al. Clinical and epidemiological characteristics of 34 children with 2019 novel coronavirus infection in Shenzhen. Zhonghua Er Ke Za Zhi. 2020;58:E008.

    CAS  PubMed  Google Scholar 

  97. Chen ZM, Fu JF, Shu Q, et al. Diagnosis and treatment recommendations for pediatric respiratory infection caused by the 2019 novel coronavirus. World J Pediatr. 2020;16:240–6.

    CAS  PubMed  Google Scholar 

  98. Hu T, Fang L, Junling W, et al. Clinical characteristics of 2019 novel coronavirus (2019-nCoV) infection in children and family prevention and control. Med J Wuhan Univ. 2020;81:11. https://doi.org/10.14188/j.1671-8852.2020.6020.

    Article  Google Scholar 

  99. Grimaud M, Starck J, Levy M, et al. Acute myocarditis and multisystem inflammatory emerging disease following SARS-CoV-2 infection in critically ill children. Ann Intensive Care. 2020;10:69.

    PubMed  PubMed Central  Google Scholar 

  100. Sanna G, Serrau G, Bassareo PP, et al. Children's heart and COVID-19: up-to-date evidence in the form of a systematic review. Eur J Pediatr. 2020;179:1079–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Alsaied T, Aboulhosn JA, Cotts TB, et al. Coronavirus disease 2019 (COVID-19) pandemic implications in pediatric and adult congenital heart disease. J Am Heart Assoc. 2020;9:e017224.

    PubMed  PubMed Central  Google Scholar 

  102. Hong H, Wang Y, Chung HT, et al. Clinical characteristics of novel coronavirus disease 2019 (COVID-19) in newborns, infants and children. Pediatr Neonatol. 2020;61:131–2.

    PubMed  PubMed Central  Google Scholar 

  103. Cui Y, Tian M, Huang D, et al. A 55-day-old female infant infected with COVID 19: presenting with pneumonia, liver injury, and heart damage. J Infect Dis. 2020;221:1775–81.

    CAS  PubMed  Google Scholar 

  104. Du W, Yu J, Wang H, et al. Clinical characteristics of COVID-19 in children compared with adults in Shandong Province, China. Infection. 2020;48:445–52.

    CAS  PubMed  Google Scholar 

  105. Rivas MN, Porritt RA, Cheng MH, et al. COVID-19 Associated Multisystem Inflammatory Syndrome in Children (MIS-C): a novel disease that mimics Toxic Shock Syndrome. The superantigen hypothesis. J Allergy Clin Immunol. 2020;16:31414–7.

    Google Scholar 

  106. Whittaker E, Bamford A, Kenny J, et al. Clinical characteristics of 58 children with a pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2. JAMA. 2020;324:259–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Feldstein LR, Rose EB, Horwitz SM, et al. Multisystem inflammatory syndrome in U.S. children and adolescents. N Engl J Med. 2020;383:334–46.

    CAS  PubMed  Google Scholar 

  108. Dong Y, Mo X, Hu Y, et al. Epidemiology of COVID-19 among children in China. Pediatrics. 2020;145:e20200702.

    PubMed  Google Scholar 

  109. Bialek S, Gierke R, Hughes M, et al. Coronavirus disease 2019 in children—United States, February 12–April 2, 2020. Morb Mortal Wkly Rep. 2020;69:422–6.

    Google Scholar 

  110. Kaushik A, Gupta S, Sood M, et al. A systematic review of multisystem inflammatory syndrome in children associated with SARS-CoV-2 infection. Pediatr Infect Dis J. 2020;39:e340–6.

    PubMed  Google Scholar 

  111. Jackson RJ, Chavarria HD, Hacking SM. A case of multisystem inflammatory syndrome in children mimicking acute appendicitis in a COVID-19 pandemic area. Cureus. 2020;12(9):e10722.

    PubMed  PubMed Central  Google Scholar 

  112. Vabret A, Mourez T, Gouarin S, et al. An outbreak of coronavirus OC43 respiratory infection in Normandy, France. Clin Infect Dis. 2003;36:985–9.

    PubMed  Google Scholar 

  113. Vabret A, Mouthon F, Mourez T, et al. Direct diagnosis of human respiratory coronaviruses 229E and OC43 by the polymerase chain reaction. J Virol Methods. 2001;97:59–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Cheng PK, Wong DA, Tong LK, et al. Viral shedding patterns of coronavirus in patients with probable severe acute respiratory syndrome. Lancet. 2004;363:1699–700.

    PubMed  PubMed Central  Google Scholar 

  115. Chim SS, Chiu RW, Lo YM. Genomic sequencing of the severe acute respiratory syndrome-coronavirus. Methods Mol Biol. 2006;336:177–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Chim SS, Tong YK, Hung EC, et al. Genomic sequencing of a SARS coronavirus isolate that predated the metropole hotel case cluster in Hong Kong. Clin Chem. 2004;50:231–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Lee JS, Ahn JS, Yu BS, et al. Evaluation of a real-time reverse transcription-PCR (RT-PCR) assay for detection of Middle East respiratory syndrome coronavirus (MERS-CoV) in clinical samples from an outbreak in South Korea in 2015. J Clin Microbiol. 2017;55:2554–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Kim MN, Ko YJ, Seong MW, et al. Analytical and clinical validation of six commercial Middle East respiratory syndrome coronavirus RNA detection kits based on real-time reverse-transcription PCR. Ann Lab Med. 2016;36:450–6.

    PubMed  PubMed Central  Google Scholar 

  119. Al Johani S, Hajeer AH. MERS-CoV diagnosis: an update. J Infect Public Health. 2016;9:216–9.

    PubMed  PubMed Central  Google Scholar 

  120. Xia W, Shao J, Guo Y, et al. Clinical and CT features in pediatric patients with COVID-19 infection: different points from adults. Pediatr Pulmonol. 2020;55:1169–74.

    PubMed  PubMed Central  Google Scholar 

  121. Xie X, Zhong Z, Zhao W, et al. Chest CT for typical 2019-nCoV pneumonia: relationship to negative RT-PCR testing. Radiology. 2020;2020:200343. https://doi.org/10.1148/radiol.2020200343.

    Article  Google Scholar 

  122. Memish ZA, Al-Tawfiq JA, Makhdoom HQ, et al. Respiratory tract samples, viral load, and genome fraction yield in patients with Middle East respiratory syndrome. J Infect Dis. 2014;210:1590–4.

    CAS  PubMed  Google Scholar 

  123. Jevšnik M, Steyer A, Zrim T, et al. Detection of human coronaviruses in simultaneously collected stool samples and nasopharyngeal swabs from hospitalized children with acute gastroenteritis. Virol J. 2013;10:46.

    PubMed  PubMed Central  Google Scholar 

  124. Zhou J, Li C, Zhao G, et al. Human intestinal tract serves as an alternative infection route for Middle East respiratory syndrome coronavirus. Sci Adv. 2017;3:4966.

    Google Scholar 

  125. Hung IF, Cheng VC, Wu AK, et al. Viral loads in clinical specimens and SARS manifestations. Emerg Infect Dis. 2004;10:1550–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Che XY, Qiu LW, Liao ZY, et al. Antigenic cross-reactivity between severe acute respiratory syndrome-associated coronavirus and human coronaviruses 229E and OC43. J Infect Dis. 2005;191:2033–7.

    CAS  PubMed  Google Scholar 

  127. Bitnun A, Allen U, Heurter H, et al. Other members of the Hospital for Sick Children SARS investigation team. Children hospitalized with severe acute respiratory syndrome-related illness in Toronto. Pediatrics. 2003;112:e261.

    PubMed  Google Scholar 

  128. Cheng FW, Ng PC, Chiu WK, et al. A case-control study of SARS versus community acquired pneumonia. Arch Dis Child. 2005;90:747–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Leung CW, Kwan YW, Ko PW, et al. Severe acute respiratory syndrome among children. Pediatrics. 2004;113:e535–43.

    PubMed  Google Scholar 

  130. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Alfaraj SH, Al-Tawfiq JA, Altuwaijri TA, et al. Middle East respiratory syndrome coronavirus in pediatrics: a report of seven cases from Saudi Arabia. Front Med. 2019;13:126–30.

    PubMed  Google Scholar 

  132. Wang Y, Zhu F, Wang C, et al. Children hospitalized with severe COVID-19 in Wuhan. Pediatr Infect Dis J. 2020;39:e91–4.

    PubMed  Google Scholar 

  133. Zhou Y, Fu B, Zheng X, et al. Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients. Natl Sci Rev. 2020;7:998–1002.

    PubMed  PubMed Central  Google Scholar 

  134. Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020;2020:248.

    Google Scholar 

  135. Babyn PS, Chu WC, Tsou IY, et al. Severe acute respiratory syndrome (SARS): chest radiographic features in children. Pediatr Radiol. 2004;34:47–58.

    PubMed  Google Scholar 

  136. Chung M, Bernheim A, Mei XY, et al. CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology. 2020;295:202–7.

    PubMed  Google Scholar 

  137. Li AM, Ng PC. Severe acute respiratory syndrome (SARS) in neonates and children. Arch Dis Child Fetal Neonatal Ed. 2005;90:F461–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Feng K, Yun YX, Wang XF, et al. Analysis of CT features of 15 children with 2019 novel coronavirus infection. Zhonghua Er Ke Za Zhi. 2020;58:E007.

    CAS  PubMed  Google Scholar 

  139. Kanne JP. Chest CT findings in 2019 novel coronavirus (2019-nCoV) infections from Wuhan, China: key points for the radiologist. Radiology. 2020;295:16–7.

    PubMed  Google Scholar 

  140. Song F, Shi N, Shan F, et al. Emerging coronavirus 2019-nCoV pneumonia. Radiology. 2020;295:210–7.

    PubMed  Google Scholar 

  141. World Health Organization. WHO interim guidance on clinical management of severe acute respiratory infection when novel coronavirus (nCoV) infection is suspected. 2020. https://apps.who.int/iris/handle/10665/330893. Accessed 5 Mar 2020.

  142. Centers for Disease Control and Prevention CfDCaP. Interim clinical guidance for management of patients with confirmed 2019 novel coronavirus (2019-nCoV) infection; 2020. https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-patients.html. Accessed 21 Feb 2010.

  143. Zumla A, Chan JF, Azhar EI, et al. Coronaviruses - drug discovery and therapeutic options. Nat Rev Drug Discov. 2016;15:327–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Cheng Y, Wong R, Soo YO, et al. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect Dis. 2005;24:44–6.

    CAS  PubMed  Google Scholar 

  145. Jiang L, Wang N, Zuo T, et al. Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein. Sci Transl Med. 2014;6:234ra59.

    PubMed  Google Scholar 

  146. Ying T, Du L, Ju TW, et al. Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies. J Virol. 2014;88:7796–805.

    PubMed  PubMed Central  Google Scholar 

  147. Tang XC, Agnihothram SS, Jiao Y, et al. Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution. Proc Natl Acad Sci U S A. 2014;111:E2018–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Channappanavar R, Lu L, Xia S, et al. Protective effect of intranasal regimens containing peptidic Middle East respiratory syndrome coronavirus fusion inhibitor against MERS-CoV infection. J Infect Dis. 2015;212:1894–903.

    CAS  PubMed  Google Scholar 

  149. Soo YO, Cheng Y, Wong R, et al. Retrospective comparison of convalescent plasma with continuing high-dose methylprednisolone treatment in SARS patients. Clin Microbiol Infect. 2004;10:676–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Pang H, Liu Y, Han X, et al. Protective humoral responses to severe acute respiratory syndrome-associated coronavirus: implications for the design of an effective protein-based vaccine. J Gen Virol. 2004;85:3109–13.

    CAS  PubMed  Google Scholar 

  151. Barton C, Kouokam JC, Lasnik AB, et al. Activity of and effect of subcutaneous treatment with the broad-spectrum antiviral lectin griffithsin in two laboratory rodent models. Antimicrob Agents Chemother. 2014;58:120–7.

    PubMed  PubMed Central  Google Scholar 

  152. Raj VS, Mou H, Smits SL, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 2013;495:251–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Huang X, Dong W, Milewska A, et al. Human coronavirus HKU1 spike protein uses O-acetylated sialic acid as an attachment receptor determinant and employs hemagglutinin-esterase protein as a receptor-destroying enzyme. J Virol. 2015;89:7202–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Vijgen L, Keyaerts E, Zlateva K, et al. Identification of six new polymorphisms in the human coronavirus 229E receptor gene (aminopeptidase N/CD13). Int J Infect Dis. 2004;8:217–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Shirato K, Kawase M, Matsuyama S. Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J Virol. 2013;87:12552–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhou Y, Vedantham P, Lu K, et al. Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Res. 2015;116:76–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Kawase M, Shirato K, van der Hoek L, et al. Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. J Virol. 2012;86:6537–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Báez-Santos YM, St John SE, Mesecar AD. The SARS-coronavirus papainlike protease: structure, function and inhibition by designed antiviral compounds. Antiviral Res. 2015;115:21–38.

    PubMed  Google Scholar 

  159. Ratia K, Pegan S, Takayama J, et al. A noncovalent class of papain like protease/deubiquitinase inhibitors blocks SARS virus replication. Proc Natl Acad Sci U S A. 2008;105:16119–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Lee H, Lei H, Santarsiero BD, et al. Inhibitor recognition specificity of MERS-CoV papain-like protease may differ from that of SARS-CoV. ACS Chem Biol. 2015;10:1456–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Chan KS, Lai ST, Chu CM, et al. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicentre retrospective matched cohort study. Hong Kong Med J. 2003;9:399–406.

    CAS  PubMed  Google Scholar 

  162. Chan JF, Yao Y, Yeung ML, et al. Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset. J Infect Dis. 2015;212:1904–13.

    CAS  PubMed  Google Scholar 

  163. Savarino A, Di Trani L, Donatelli I, et al. New insights into the antiviral effects of chloroquine. Lancet Infect Dis. 2006;6:67–9.

    PubMed  PubMed Central  Google Scholar 

  164. Vincent MJ, Bergeron E, Benjannet S, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2005;2:69.

    PubMed  PubMed Central  Google Scholar 

  165. Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30:269–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Warren TK, Wells J, Panchal RG, et al. Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430. Nature. 2014;508:402–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Adedeji AO, Singh K, Kassim A, et al. Evaluation of SSYA10-001 as a replication inhibitor of severe acute respiratory syndrome, mouse hepatitis, and Middle East respiratory syndrome coronaviruses. Antimicrob Agents Chemother. 2014;58:4894–8.

    PubMed  PubMed Central  Google Scholar 

  168. Lundin A, Dijkman R, Bergström T, et al. Targeting membrane-bound viral RNA synthesis reveals potent inhibition of diverse coronaviruses including the Middle East respiratory syndrome virus. PLoS Pathog. 2014;10:e1004166.

    PubMed  PubMed Central  Google Scholar 

  169. Rappe JCF, de Wilde A, Di H, et al. Antiviral activity of K22 against members of the order Nidovirales. Virus Res. 2018;246:28–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Rider TH, Zook CE, Boettcher TL, et al. Broad-spectrum antiviral therapeutics. PLoS One. 2011;6:e22572.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Zhang L, Liu Y. Potential interventions for novel coronavirus in China: a systematic review. J Med Virol. 2020;92:479–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. He Y, Li J, Du L, et al. Identification and characterization of novel neutralizing epitopes in the receptor-binding domain of SARS-CoV spike protein: revealing the critical antigenic determinants in inactivated SARS-CoV vaccine. Vaccine. 2006;24:5498–508.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Su S, Wong G, Shi W, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 2016;24:490–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Kim DW, Kim YJ, Park SH, et al. Variations in spike glycoprotein gene of MERS-CoV, South Korea, 2015. Emerg Infect Dis. 2016;22:100–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Sohrab SS, Azhar EI. Genetic diversity of MERS-CoV spike protein gene in Saudi Arabia. J Infect Public Health. 2020;13:709–17.

    PubMed  Google Scholar 

  176. He Y, Zhou Y, Siddiqui P, et al. Inactivated SARS-CoV vaccine elicits high titers of spike protein-specific antibodies that block receptor binding and virus entry. Biochem Biophys Res Commun. 2004;325:445–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Hashem AM, Algaissi A, Agrawal AS, et al. A highly immunogenic, protective, and safe adenovirus-based vaccine expressing Middle East respiratory syndrome coronavirus S1-CD40L fusion protein in a transgenic human dipeptidyl peptidase 4 mouse model. J Infect Dis. 2019;220:1558–67.

    CAS  PubMed  Google Scholar 

  178. Czub M, Weingartl H, Czub S, et al. Evaluation of modified vaccinia virus Ankara based recombinant SARS vaccine in ferrets. Vaccine. 2005;23:2273–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Wang J, Qi H, Bao L, et al. A contingency plan for the management of the 2019 novel coronavirus outbreak in neonatal intensive care units. Lancet Child Adolesc Health. 2020;4:258–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Special Expert Group for Control of the Epidemic of Novel Coronavirus Pneumonia of the Chinese Preventive Medicine Association. An update on the epidemiological characteristics of novel coronavirus pneumonia (COVID-19). Chin J Epidemiol. 2020;41:139–44.

    Google Scholar 

  181. Cao Q, Chen Y-C, Chen C-L, et al. SARS-CoV-2 infection in children: transmission dynamics and clinical characteristics. J Formos Med Assoc. 2020;119:670–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Wang L, Shi Y, Xiao T, et al. Chinese expert consensus on the perinatal and neonatal management for the prevention and control of the 2019 novel coronavirus infection (first edition). Ann Trans Med. 2020;8:47.

    CAS  Google Scholar 

  183. Bi Q, Wu Y, Mei S, et al. Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study. Lancet Infect Dis. 2020;3099(20):30287–5. https://doi.org/10.1016/S1473-3099(20)30287-5.

    Article  Google Scholar 

  184. Li R, Pei S, Chen B, et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV2). Science. 2020;368:489–93.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yıldız, S., Toros, S.Z., Rombaux, P. (2022). COVID19 Pandemic and Children. In: Cingi, C., Arısoy, E.S., Bayar Muluk, N. (eds) Pediatric ENT Infections. Springer, Cham. https://doi.org/10.1007/978-3-030-80691-0_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80691-0_68

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80690-3

  • Online ISBN: 978-3-030-80691-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics