Skip to main content

The Future of Artificial Intelligence Applied to Immunotherapy Trials

  • Chapter
  • First Online:
Neoadjuvant Immunotherapy Treatment of Localized Genitourinary Cancers

Abstract

Clinical trials serve as a barrier of entry for new interventions and treatments prior to implementation in routine clinical practice. At its essence, the primary role of a clinical trial is to monitor a patient longitudinally using the diagnostic disciplines (radiology, pathology and laboratory medicine) to assess clinical outcomes. As the diagnostic fields have begun to fully digitalise, large volumes of data are being generated per patient – creating a ripe environment for the implementation of artificial intelligence (AI). In recent years, AI has found multiple applications in the medical field, most notably in radiology. In this book chapter, we will explore how artificial intelligence has been applied in each of these diagnostic disciplines and discuss how this may influence clinical trials in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stanfill MH, Marc DT. Health information management: implications of artificial intelligence on healthcare data and information management. Yearb Med Inform. 2019;28:56–64.

    PubMed  PubMed Central  Google Scholar 

  2. Ahuja AS. The impact of artificial intelligence in medicine on the future role of the physician. PeerJ. 2019;7:e7702.

    PubMed  PubMed Central  Google Scholar 

  3. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RGH, Fillion-Robin J-C, Pieper S, Aerts HJWL. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 2017;77:e104–7.

    PubMed  PubMed Central  Google Scholar 

  4. Aerts HJWL, Velazquez ER, Leijenaar RTH, et al. Decoding tumour phenotype by non-invasive imaging using a quantitative radiomics approach. Nat Commun. 2014; https://doi.org/10.1038/ncomms5006.

  5. Rosenkrantz AB, Mendiratta-Lala M, Bartholmai BJ, et al. Clinical utility of quantitative imaging. Acad Radiol. 2015;22:33–49.

    PubMed  Google Scholar 

  6. Yip SSF, Liu Y, Parmar C, Li Q, Liu S, Qu F, Ye Z, Gillies RJ, Aerts HJWL. Associations between radiologist-defined semantic and automatically computed radiomic features in non-small cell lung cancer. 2017; https://doi.org/10.1038/s41598-017-02425-5.

  7. Bodalal Z, Trebeschi S, Nguyen-Kim TDL, Schats W, Beets-Tan R. Radiogenomics: bridging imaging and genomics. Abdom Radiol. 2019;44:1960–84.

    Google Scholar 

  8. Rahul P, Schabath M, Balagurunathan Y, Liu Y, Li Q, Gillies R, Hall LO, Goldgof DB. Explaining deep features using radiologist-defined semantic features and traditional quantitative features. Tomography. 2019;5:192–200.

    Google Scholar 

  9. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278:563–77.

    PubMed  Google Scholar 

  10. Kisilev P, Walach E, Hashoul S, Barkan E, Ophir B, Alpert S. Semantic description of medical image findings: structured learning approach. In Proceedings of the British Machine Vision Conference; 2016. pp. 171.1–171.11.

    Google Scholar 

  11. Rizzo S, Botta F, Raimondi S, Origgi D, Fanciullo C, Morganti AG, Bellomi M. Radiomics: the facts and the challenges of image analysis. Eur Radiol Exp. 2018; https://doi.org/10.1186/s41747-018-0068-z.

  12. Peeken JC, Hesse J, Haller B, Kessel KA, Nüsslin F, Combs SE. Semantic imaging features predict disease progression and survival in glioblastoma multiforme patients. Strahlenther Onkol. 2018;194:580–90.

    PubMed  Google Scholar 

  13. Pope WB, Sayre J, Perlina A, Villablanca JP, Mischel PS, Cloughesy TF. MR imaging correlates of survival in patients with high-grade gliomas. AJNR Am J Neuroradiol. 2005;26:2466–74.

    PubMed  PubMed Central  Google Scholar 

  14. Halpenny DF, Riely GJ, Hayes S, Yu H, Zheng J, Moskowitz CS, Ginsberg MS. Are there imaging characteristics associated with lung adenocarcinomas harboring ALK rearrangements? Lung Cancer. 2014;86:190–4.

    PubMed  Google Scholar 

  15. Rizzo S, Petrella F, Buscarino V, et al. CT radiogenomic characterization of EGFR, K-RAS, and ALK mutations in non-small cell lung cancer. Eur Radiol. 2016;26:32–42.

    PubMed  Google Scholar 

  16. Lv J, Zhang H, Ma J, Ma Y, Gao G, Song Z, Yang Y. Comparison of CT radiogenomic and clinical characteristics between EGFR and KRAS mutations in lung adenocarcinomas. Clin Radiol. 2018;73:590.e1–8.

    CAS  PubMed  Google Scholar 

  17. Popovic ZB, Thomas JD. Assessing observer variability: a user’s guide. Cardiovasc Diagn Ther. 2017;7:317–24.

    PubMed  PubMed Central  Google Scholar 

  18. Van Riel SJ, Sánchez CI, Bankier AA, et al. Observer variability for classification of pulmonary nodules on low-dose CT images and its effect on nodule management. Radiology. 2015;277:863–71.

    PubMed  Google Scholar 

  19. Wetzel SG, Cha S, Johnson G, Lee P, Law M, Kasow DL, Pierce SD, Xue X. Relative cerebral blood volume measurements in intracranial mass lesions: interobserver and intraobserver reproducibility study. Radiology. 2002;224:797–803.

    PubMed  Google Scholar 

  20. Ridge CA, Yildirim A, Boiselle PM, Franquet T, Schaefer-Prokop CM, Tack D, Gevenois PA, Bankier AA. Differentiating between subsolid and solid pulmonary nodules at CT: inter- and intraobserver agreement between experienced thoracic radiologists. Radiology. 2016;278:888–96.

    PubMed  Google Scholar 

  21. Li Q, Balagurunathan Y, Liu Y, Qi J, Schabath MB, Ye Z, Gillies RJ. Comparison between radiological semantic features and lung-RADS in predicting malignancy of screen-detected lung nodules in the national lung screening trial. Clin Lung Cancer. 2018;19:148–56.e3.

    PubMed  Google Scholar 

  22. Sun K-Y, Hu H-T, Chen S-L, et al. CT-based radiomics scores predict response to neoadjuvant chemotherapy and survival in patients with gastric cancer. BMC Cancer. 2020;20:468.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu W, Pierce LA, Zhang Y, et al. Comparison of prediction models with radiological semantic features and radiomics in lung cancer diagnosis of the pulmonary nodules: a case-control study. Eur Radiol. 2019;29:6100–8.

    PubMed  PubMed Central  Google Scholar 

  24. van Timmeren JE, Cester D, Tanadini-Lang S, Alkadhi H, Baessler B. Radiomics in medical imaging-“how-to” guide and critical reflection. Insights Imaging. 2020;11:91.

    PubMed  PubMed Central  Google Scholar 

  25. Wang Y-XJ, Ng CK. The impact of quantitative imaging in medicine and surgery: charting our course for the future. Quant Imaging Med Surg. 2011;1:1–3.

    PubMed  PubMed Central  Google Scholar 

  26. Papanikolaou N, Matos C, Koh DM. How to develop a meaningful radiomic signature for clinical use in oncologic patients. Cancer Imaging. 2020;20:1–10.

    Google Scholar 

  27. Thawani R, Mustafa SA. The future of radiomics in lung cancer. Lancet Digit Health. 2020;2:e103.

    PubMed  Google Scholar 

  28. Mayerhoefer ME, Materka A, Langs G, Häggström I, Szczypiński P, Gibbs P, Cook G. Introduction to radiomics. J Nucl Med. 2020;61:488–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rogers W, Thulasi Seetha S, Refaee TAG, et al. Radiomics: from qualitative to quantitative imaging. Br J Radiol. 2020;93:20190948.

    PubMed  PubMed Central  Google Scholar 

  30. Hectors SJ, Lewis S, Besa C, et al. MRI radiomics features predict immuno-oncological characteristics of hepatocellular carcinoma. Eur Radiol. 2020;30:3759–69.

    PubMed  PubMed Central  Google Scholar 

  31. Afshar P, Mohammadi A, Plataniotis KN, Oikonomou A, Benali H. From handcrafted to deep-learning-based cancer radiomics: challenges and opportunities. IEEE Signal Process Mag. 2019;36:132–60.

    Google Scholar 

  32. Haga A, Takahashi W, Aoki S, Nawa K, Yamashita H, Abe O, Nakagawa K. Standardisation of imaging features for radiomics analysis. J Med Investig. 2019;66:35–7.

    Google Scholar 

  33. Mazurowski MA, Buda M, Saha A, Bashir MR. Deep learning in radiology: an overview of the concepts and a survey of the state of the art with focus on MRI. J Magn Reson Imaging. 2019;49:939–54.

    PubMed  Google Scholar 

  34. Kimg KG. Deep learning. Healthc Inform Res. 2019;22:351–4.

    Google Scholar 

  35. Nie K, Al-Hallaq H, Li XA, et al. NCTN assessment on current applications of radiomics in oncology. Int J Radiat Oncol Biol Phys. 2019;104:302–15.

    PubMed  PubMed Central  Google Scholar 

  36. Chen B, Zhang R, Gan Y, Yang L, Li W. Development and clinical application of radiomics in lung cancer. Radiat Oncol. 2017;12:154.

    PubMed  PubMed Central  Google Scholar 

  37. Liu Z, Wang S, Dong D, et al. The applications of radiomics in precision diagnosis and treatment of oncology: opportunities and challenges. Theranostics. 2019;9:1303–22.

    PubMed  PubMed Central  Google Scholar 

  38. Mani S, Chen Y, Li X, Arlinghaus L, Chakravarthy AB, Abramson V, Bhave SR, Levy MA, Xu H, Yankeelov TE. Machine learning for predicting the response of breast cancer to neoadjuvant chemotherapy. J Am Med Inform Assoc. 2013;20:688–95.

    PubMed  PubMed Central  Google Scholar 

  39. Ghate SR, Li Z, Tang J, Nakasato AR. Economic burden of adverse events associated with immunotherapy and targeted therapy for metastatic melanoma in the elderly. Am Health Drug Benefits. 2018;11:334–43.

    PubMed  PubMed Central  Google Scholar 

  40. Trebeschi S, Drago SG, Birkbak NJ, et al. Predicting response to cancer immunotherapy using non-invasive radiomic biomarkers. Ann Oncol. 2019;30:998–1004.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. He B, Dong D, She Y, et al. Predicting response to immunotherapy in advanced non-small-cell lung cancer using tumor mutational burden radiomic biomarker. J Immunother Cancer. 2020;8:1–10.

    CAS  Google Scholar 

  42. Mu W, Tunali I, Gray JE, Qi J, Schabath MB, Gillies RJ. Radiomics of 18F-FDG PET/CT images predicts clinical benefit of advanced NSCLC patients to checkpoint blockade immunotherapy. Eur J Nucl Med Mol Imaging. 2020;47:1168–82.

    CAS  PubMed  Google Scholar 

  43. Polverari G, Ceci F, Bertaglia V, et al. 18F-FDG pet parameters and radiomics features analysis in advanced Nsclc treated with immunotherapy as predictors of therapy response and survival. Cancers. 2020; https://doi.org/10.3390/cancers12051163.

  44. Park C, Na KJ, Choi H, et al. Tumor immune profiles noninvasively estimated by FDG PET with deep learning correlate with immunotherapy response in lung adenocarcinoma. Theranostics. 2020;10:10838–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Tunali I, Gray JE, Qi J, Abdalah M, Jeong DK, Guvenis A, Gillies RJ, Schabath MB. Novel clinical and radiomic predictors of rapid disease progression phenotypes among lung cancer patients treated with immunotherapy: an early report. Lung Cancer. 2019;129:75–9.

    PubMed  Google Scholar 

  46. Khorrami M, Prasanna P, Gupta A, et al. Changes in CT radiomic features associated with lymphocyte distribution predict overall survival and response to immunotherapy in non–small cell lung cancer. Cancer Immunol Res. 2020;8:108–19.

    CAS  PubMed  Google Scholar 

  47. Sun R, Limkin EJ, Vakalopoulou M, et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol. 2018;19:1180–91.

    CAS  PubMed  Google Scholar 

  48. Park KJ, Lee JL, Yoon SK, Heo C, Park BW, Kim JK. Radiomics-based prediction model for outcomes of PD-1/PD-L1 immunotherapy in metastatic urothelial carcinoma. Eur Radiol. 2020;30:5392–403.

    CAS  PubMed  Google Scholar 

  49. Rundo F, Spampinato C, Banna GL, Conoci S. Advanced deep learning embedded motion radiomics pipeline for predicting anti-PD-1/PD-L1 immunotherapy response in the treatment of bladder cancer: preliminary results. Electronics. 2019; https://doi.org/10.3390/electronics8101134.

  50. Kuo MD, Jamshidi N. Behind the numbers: decoding molecular phenotypes with radiogenomics- guiding principles and technical considerations. Radiology. 2014;270:320–5.

    PubMed  Google Scholar 

  51. Rutman AM, Kuo MD. Radiogenomics: creating a link between molecular diagnostics and diagnostic imaging. Eur J Radiol. 2009;70:232–41.

    PubMed  Google Scholar 

  52. Saltz J, Gupta R, Hou L, et al. Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images. Cell Rep. 2018;23:181–93.e7.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang Z, Chen P, McGough M, et al. Pathologist-level interpretable whole-slide cancer diagnosis with deep learning. Nat Mach Intell. 2019;1:236–45.

    Google Scholar 

  54. Ehteshami Bejnordi B, Veta M, Johannes van Diest P, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast Cancer. JAMA. 2017;318:2199–210.

    PubMed  PubMed Central  Google Scholar 

  55. Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl M, Fenyö D, Moreira AL, Razavian N, Tsirigos A. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med. 2018;24:1559–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Al-Kofahi Y, Zaltsman A, Graves R, Marshall W, Rusu M. A deep learning-based algorithm for 2-D cell segmentation in microscopy images. BMC Bioinformatics. 2018;19:365.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Falk T, Mai D, Bensch R, et al. U-Net: deep learning for cell counting, detection, and morphometry. Nat Methods. 2019;16:67–70.

    CAS  PubMed  Google Scholar 

  58. Hatipoglu N, Bilgin G. Cell segmentation in histopathological images with deep learning algorithms by utilising spatial relationships. Med Biol Eng Comput. 2017;55:1829–48.

    PubMed  Google Scholar 

  59. Naylor P, Lae M, Reyal F, Walter T. Nuclei segmentation in histopathology images using deep neural networks. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017); 2017. https://doi.org/10.1109/isbi.2017.7950669.

  60. Mahmood F, Borders D, Chen R, McKay GN, Salimian KJ, Baras A, Durr NJ. Deep adversarial training for multi-organ nuclei segmentation in histopathology images. IEEE Trans Med Imaging. 2019; https://doi.org/10.1109/TMI.2019.2927182.

  61. Sirinukunwattana K, Ahmed Raza SE, Tsang Y-W, Snead DRJ, Cree IA, Rajpoot NM. Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans Med Imaging. 2016;35:1196–206.

    PubMed  Google Scholar 

  62. Turkki R, Linder N, Kovanen PE, Pellinen T, Lundin J. Antibody-supervised deep learning for quantification of tumor-infiltrating immune cells in hematoxylin and eosin stained breast cancer samples. J Pathol Inform. 2016;7:38.

    PubMed  PubMed Central  Google Scholar 

  63. Du Y, Zhang R, Zargari A, Thai TC, Gunderson CC, Moxley KM, Liu H, Zheng B, Qiu Y. Classification of tumor epithelium and stroma by exploiting image features learned by deep convolutional neural networks. Ann Biomed Eng. 2018;46:1988–99.

    PubMed  PubMed Central  Google Scholar 

  64. Al-Milaji Z, Ersoy I, Hafiane A, Palaniappan K, Bunyak F. Integrating segmentation with deep learning for enhanced classification of epithelial and stromal tissues in H&E images. Pattern Recogn Lett. 2019;119:214–21.

    Google Scholar 

  65. Bejnordi BE, Lin J, Glass B, Mullooly M, Gierach GL, Sherman ME, Karssemeijer N, van der Laak J, Beck AH. Deep learning-based assessment of tumor-associated stroma for diagnosing breast cancer in histopathology images. Proc IEEE Int Symp Biomed Imaging. 2017;2017:929–32.

    PubMed  PubMed Central  Google Scholar 

  66. Stein JE, Lipson EJ, Cottrell TR, et al. Pan-tumor pathologic scoring of response to PD-(L)1 blockade. Clin Cancer Res. 2020;26:545–51.

    CAS  PubMed  Google Scholar 

  67. Sha L, Osinski BL, Ho IY, Tan TL, Willis C, Weiss H, Beaubier N, Mahon BM, Taxter TJ, Yip SSF. Multi-field-of-view deep learning model predicts nonsmall cell lung Cancer programmed death-ligand 1 status from whole-slide hematoxylin and eosin images. J Pathol Inform. 2019;10:24.

    PubMed  PubMed Central  Google Scholar 

  68. Jain MS, Massoud TF. Predicting tumour mutational burden from histopathological images using multiscale deep learning. https://doi.org/10.1101/2020.06.15.153379.

  69. Wang L, Jiao Y, Qiao Y, Zeng N, Yu R. A novel approach combined transfer learning and deep learning to predict TMB from histology image. Pattern Recogn Lett. 2020;135:244–8.

    Google Scholar 

  70. Kather JN, Pearson AT, Halama N, et al. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat Med. 2019;25:1054–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Rana A, Yauney G, Lowe A, Shah P. Computational histological staining and destaining of prostate core biopsy RGB images with generative adversarial neural networks. In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA); 2018. https://doi.org/10.1109/icmla.2018.00133

  72. Shirts B, Jackson B, Baird G, Baron J, Clements B, Grisson R, Hauser R, Taylor J, Terrazas E, Brimhall B. Clinical laboratory analytics: challenges and promise for an emerging discipline. J Pathol Inform. 2015;6:9.

    PubMed  PubMed Central  Google Scholar 

  73. Gruson D, Helleputte T, Rousseau P, Gruson D. Data science, artificial intelligence, and machine learning: opportunities for laboratory medicine and the value of positive regulation. Clin Biochem. 2019;69:1–7.

    PubMed  Google Scholar 

  74. Cabitza F, Banfi G. Machine learning in laboratory medicine: waiting for the flood? Clin Chem Lab Med. 2018;56:516–24.

    CAS  PubMed  Google Scholar 

  75. Cuplov V, André N. Machine learning approach to forecast chemotherapy-induced haematological toxicities in patients with rhabdomyosarcoma. Cancers. 2020;12:1944.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Hendry S, Salgado R, Gevaert T, et al. Assessing tumor-infiltrating lymphocytes in solid tumors: a practical review for pathologists and proposal for a standardised method from the International Immunooncology Biomarkers Working Group. Adv Anat Pathol. 2017;24:235–51.

    PubMed  PubMed Central  Google Scholar 

  77. Hellmann MD, Ciuleanu T-E, Pluzanski A, et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med. 2018;378:2093–104.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Cottrell T, Taube JM. PD-L1 and Emerging Biomarkers in PD-1/PD-L1 Blockade Therapy. Cancer journal (Sudbury, Mass.). 2018;24(1):41.

    Google Scholar 

  79. Gandara DR, Paul SM, Kowanetz M, et al. Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab. Nat Med. 2018;24:1441–8.

    CAS  PubMed  Google Scholar 

  80. Pasini L, Ulivi P. Liquid biopsy for the detection of resistance mechanisms in NSCLC: comparison of different blood biomarkers. J Clin Med Res. 2019;8:998.

    CAS  Google Scholar 

  81. Petrova MP, Eneva MI, Arabadjiev JI, Conev NV, Dimitrova EG, Koynov KD, Karanikolova TS, Valev SS, Gencheva RB, Zhbantov GA, Ivanova AI. Neutrophil to lymphocyte ratio as a potential predictive marker for treatment with pembrolizumab as a second line treatment in patients with non-small cell lung cancer. Bioscience trends. 2020;14(1):48–55.

    Google Scholar 

  82. Rosner S, Kwong E, Shoushtari AN, et al. Peripheral blood clinical laboratory variables associated with outcomes following combination nivolumab and ipilimumab immunotherapy in melanoma. Cancer Med. 2018;7:690–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Soyano AE, Dholaria B, Marin-Acevedo JA, et al. Peripheral blood biomarkers correlate with outcomes in advanced non-small cell lung Cancer patients treated with anti-PD-1 antibodies. J Immunother Cancer. 2018;6:129.

    PubMed  PubMed Central  Google Scholar 

  84. Möller M, Turzer S, Schütte W, Seliger B, Riemann D. Blood immune cell biomarkers in patient with lung cancer undergoing treatment with checkpoint blockade. J Immunother. 2020;43:57–66.

    PubMed  Google Scholar 

  85. Peng L, Wang Y, Liu F, Qiu X, Zhang X, Fang C, Qian X, Li Y. Peripheral blood markers predictive of outcome and immune-related adverse events in advanced non-small cell lung cancer treated with PD-1 inhibitors. Cancer Immunology, Immunotherapy. 2020;69(9):1813–22.

    Google Scholar 

  86. Gambichler T, Brown V, Steuke AK, Schmitz L, Stockfleth E, Susok L. Baseline laboratory parameters predicting clinical outcome in melanoma patients treated with ipilimumab: a single-centre analysis. J Eur Acad Dermatol Venereol. 2018;32:972–7.

    CAS  PubMed  Google Scholar 

  87. Voutsadakis IA. Prediction of immune checkpoint inhibitors benefit from routinely measurable peripheral blood parameters. Chin Clin Oncol. 2020;9:19.

    PubMed  Google Scholar 

  88. Bilen MA, Martini DJ, Liu Y, et al. The prognostic and predictive impact of inflammatory biomarkers in patients who have advanced-stage cancer treated with immunotherapy: inflammatory biomarkers in immunotherapy. Cancer. 2019;125:127–34.

    PubMed  Google Scholar 

  89. Bodalal Z, Trebeschi S, Beets-Tan R. Radiomics: a critical step towards integrated healthcare. Insights Imaging. 2018;9:911–4.

    PubMed  PubMed Central  Google Scholar 

  90. Siu LL, Ivy SP, Dixon EL, Gravell AE, Reeves SA. Challenges and opportunities in adapting clinical trial design for immunotherapies. Clin Cancer Res. 2017;23(17):4950–8.

    PubMed  PubMed Central  Google Scholar 

  91. Anagnostou V, Yarchoan M, Hansen AR, Wang H. Immuno-oncology trial endpoints: capturing clinically meaningful activity. Clin Cancer Res. 2017;23(17):4959–69.

    PubMed  PubMed Central  Google Scholar 

  92. Heneghan C, Goldacre B, Mahtani KR. Why clinical trial outcomes fail to translate into benefits for patients. Trials. 2017;18:122.

    PubMed  PubMed Central  Google Scholar 

  93. Hwang TJ, Carpenter D, Lauffenburger JC, Wang B, Franklin JM, Kesselheim AS. Failure of investigational drugs in late-stage clinical development and publication of trial results. JAMA Intern Med. 2016;176:1826–33.

    PubMed  Google Scholar 

  94. Fogel DB. Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: a review. Contemp Clin Trials Commun. 2018;11:156–64.

    PubMed  PubMed Central  Google Scholar 

  95. Woo M. An AI boost for clinical trials. Nature. 2019;573:S100–2.

    CAS  PubMed  Google Scholar 

  96. Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019;17:195.

    PubMed  PubMed Central  Google Scholar 

  97. Wolchok JD, Hoos A, O’Day S, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15:7412–20.

    CAS  PubMed  Google Scholar 

  98. Nishino M, Giobbie-Hurder A, Gargano M, Suda M, Ramaiya NH, Hodi FS. Developing a common language for tumor response to immunotherapy: immune-related response criteria using unidimensional measurements. Clin Cancer Res. 2013;19:3936–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Seymour L, Bogaerts J, Perrone A, et al. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017;18:e143–52.

    PubMed  PubMed Central  Google Scholar 

  100. Hofman P. The challenges of evaluating predictive biomarkers using small biopsy tissue samples and liquid biopsies from non-small cell lung cancer patients. J Thorac Dis. 2019;11:S57–64.

    PubMed  PubMed Central  Google Scholar 

  101. Feller S. One in four cancer trials fails to enroll enough participants. UPI; 2015.

    Google Scholar 

  102. Fouad MN, Lee JY, Catalano PJ, et al. Enrollment of patients with lung and colorectal cancers onto clinical trials. J Oncol Pract. 2013;9:e40–7.

    PubMed  Google Scholar 

  103. Unger JM, Cook E, Tai E, Bleyer A. The role of clinical trial participation in cancer research: barriers, evidence, and strategies. Am Soc Clin Oncol Educ Book. 2016;35:185–98.

    PubMed  PubMed Central  Google Scholar 

  104. Brown TB, Mann B, Ryder N, et al. Language models are few-shot learners. arXiv [cs.CL]; 2020.

    Google Scholar 

  105. Harrer S, Shah P, Antony B, Hu J. Artificial intelligence for clinical trial design. Trends Pharmacol Sci. 2019;40:577–91.

    CAS  PubMed  Google Scholar 

  106. Rivera SC, The SPIRIT-AI and CONSORT-AI Working Group, Liu X, Chan A-W, Denniston AK, Calvert MJ, SPIRIT-AI and CONSORT-AI Steering Group, SPIRIT-AI and CONSORT-AI Consensus Group. Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension. Nat Med. 2020;26:1351–63.

    Google Scholar 

  107. Liu X, The SPIRIT-AI and CONSORT-AI Working Group, Rivera SC, Moher D, Calvert MJ, Denniston AK. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. Nat Med. 2020;26:1364–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Oren O, Gersh BJ, Bhatt DL. Artificial intelligence in medical imaging: switching from radiographic pathological data to clinically meaningful endpoints. Lancet Dig Health. 2020;2:e486–8.

    Google Scholar 

  109. Recht MP, Dewey M, Dreyer K, Langlotz C, Niessen W, Prainsack B, Smith JJ. Integrating artificial intelligence into the clinical practice of radiology: challenges and recommendations. Eur Radiol. 2020;30:3576–84.

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Sean Benson for editorial support and proofreading of this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick van Dijk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bodalal, Z. et al. (2022). The Future of Artificial Intelligence Applied to Immunotherapy Trials. In: Necchi, A., Spiess, P.E. (eds) Neoadjuvant Immunotherapy Treatment of Localized Genitourinary Cancers. Springer, Cham. https://doi.org/10.1007/978-3-030-80546-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80546-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80545-6

  • Online ISBN: 978-3-030-80546-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics