Skip to main content

Immunotherapy in Gastrointestinal Malignancies

  • Chapter
  • First Online:
Immunotherapy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1342))

Abstract

Gastrointestinal (GI) cancers represent a heterogeneous group of malignancies, each with a unique tumor biology that in turn affects response to treatment and subsequent prognosis. The interplay between tumor cells and the local immune microenvironment also varies within each GI malignancy and can portend prognosis and response to therapy. Treatment with immune checkpoint inhibitors has changed the treatment landscape of various solid tumors including (but not limited to) renal cell carcinoma, melanoma, and lung cancer. Advances in the understanding between the interplay between the immune system and tumors cells have led to the integration of immunotherapy as standard of care in various GI malignancies. For example, immunotherapy is now a mainstay of treatment for tumors harboring defects in DNA mismatch repair proteins and tumors harboring a high mutational load, regardless of primary site of origin. Data from recent clinical trials have led to the integration of immunotherapy as standard of care for a subset of gastroesophageal cancers and hepatocellular carcinoma. Here, we outline the current landscape of immunotherapy in GI malignancies and highlight ongoing clinical trials that will likely help to further our understanding of how and when to integrate immunotherapy into the treatment of various GI malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel, R. L., Miller, K. D., & Jemal, A. (2020). Cancer statistics, 2020. CA: a Cancer Journal for Clinicians, 70(1), 7–30.

    Google Scholar 

  2. Chan, T. A., Wolchok, J. D., & Snyder, A. (2015). Genetic basis for clinical response to CTLA-4 blockade in melanoma. The New England Journal of Medicine, 373(20), 1984.

    Article  CAS  PubMed  Google Scholar 

  3. Goodman, A. M., Kato, S., Bazhenova, L., et al. (2017). Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Molecular Cancer Therapeutics, 16(11), 2598–2608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tumeh, P. C., Harview, C. L., Yearley, J. H., et al. (2014). PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature, 515(7528), 568–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sun, J., Xu, K., Wu, C., et al. (2007). PD-L1 expression analysis in gastric carcinoma tissue and blocking of tumor-associated PD-L1 signaling by two functional monoclonal antibodies. Tissue Antigens, 69(1), 19–27.

    Article  CAS  PubMed  Google Scholar 

  6. Qing, Y., Li, Q., Ren, T., et al. (2015). Upregulation of PD-L1 and APE1 is associated with tumorigenesis and poor prognosis of gastric cancer. Drug Design, Development and Therapy, 9, 901–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Muro, K., Chung, H. C., Shankaran, V., et al. (2016). Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): A multicentre, open-label, phase 1b trial. The Lancet Oncology, 17(6), 717–726.

    Article  CAS  PubMed  Google Scholar 

  8. Fuchs, C. S., Doi, T., Jang, R. W., et al. (2018). Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: Phase 2 clinical KEYNOTE-059 trial. JAMA Oncology, 4(5), e180013.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shitara, K., Ozguroglu, M., Bang, Y. J., et al. (2018). Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): A randomised, open-label, controlled, phase 3 trial. Lancet, 392(10142), 123–133.

    Article  CAS  PubMed  Google Scholar 

  10. Janjigian, Y. Y., Bendell, J., Calvo, E., et al. (2018). CheckMate-032 study: Efficacy and safety of nivolumab and nivolumab plus ipilimumab in patients with metastatic esophagogastric cancer. Journal of Clinical Oncology, 36(28), 2836–2844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kang, Y. K., Boku, N., Satoh, T., et al. (2017). Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet, 390(10111), 2461–2471.

    Article  CAS  PubMed  Google Scholar 

  12. Kato, K., Cho, B. C., Takahashi, M., et al. (2019). Nivolumab versus chemotherapy in patients with advanced oesophageal squamous cell carcinoma refractory or intolerant to previous chemotherapy (ATTRACTION-3): A multicentre, randomised, open-label, phase 3 trial. The Lancet Oncology, 20(11), 1506–1517.

    Article  CAS  PubMed  Google Scholar 

  13. Kojima, T., Shah, M. A., Muro, K., et al. (2020). Randomized phase III KEYNOTE-181 study of pembrolizumab versus chemotherapy in advanced esophageal cancer. Journal of Clinical Oncology, 38(35), 4138–4148.

    Article  CAS  PubMed  Google Scholar 

  14. Chung, H. C., Arkenau, H. T., Lee, J., et al. (2019). Avelumab (anti-PD-L1) as first-line switch-maintenance or second-line therapy in patients with advanced gastric or gastroesophageal junction cancer: Phase 1b results from the JAVELIN solid tumor trial. Journal for Immunotherapy of Cancer, 7(1), 30.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Moehler, M., Dvorkin, M., Boku, N., et al. (2020). Phase III trial of avelumab maintenance after first-line induction chemotherapy versus continuation of chemotherapy in patients with gastric cancers: Results from JAVELIN gastric 100. Journal of Clinical Oncology, JCO2000892.

    Google Scholar 

  16. Bang, Y. J., Ruiz, E. Y., Van Cutsem, E., et al. (2018). Phase III, randomised trial of avelumab versus physician's choice of chemotherapy as third-line treatment of patients with advanced gastric or gastro-oesophageal junction cancer: Primary analysis of JAVELIN gastric 300. Annals of Oncology, 29(10), 2052–2060.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Marabelle, A., Fakih, M., Lopez, J., et al. (2020). Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: Prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. The Lancet Oncology, 21(10), 1353–1365.

    Article  CAS  PubMed  Google Scholar 

  18. Kelly, R. J., Ajani, J. A., Kuzdzal, J., et al. (2020). LBA9_PR adjuvant nivolumab in resected esophageal or gastroesophageal junction cancer (EC/GEJC) following neoadjuvant chemoradiation therapy (CRT): First results of the CheckMate 577 study. Annals of Oncology, 31, S1193–S11S4.

    Article  Google Scholar 

  19. Moehler, M., Shitara, K., Garrido, M., et al. (2020). LBA6_PR Nivolumab (nivo) plus chemotherapy (chemo) versus chemo as first-line (1L) treatment for advanced gastric cancer/gastroesophageal junction cancer (GC/GEJC)/esophageal adenocarcinoma (EAC): First results of the CheckMate 649 study. Annals of Oncology, 31, S1191.

    Article  Google Scholar 

  20. Boku, N., Ryu, M. H., Oh, D. Y., et al. (2020). LBA7_PR Nivolumab plus chemotherapy versus chemotherapy alone in patients with previously untreated advanced or recurrent gastric/gastroesophageal junction (G/GEJ) cancer: ATTRACTION-4 (ONO-4538-37) study. Annals of Oncology, 31, S1192.

    Article  Google Scholar 

  21. Kato, K., Sun, J. M., Shah, M. A., et al. (2020). LBA8_PR Pembrolizumab plus chemotherapy versus chemotherapy as first-line therapy in patients with advanced esophageal cancer: The phase 3 KEYNOTE-590 study. Annals of Oncology, 31, S1192–S11S3.

    Article  Google Scholar 

  22. Janjigian, Y. Y., Chou, J. F., Simmons, M., et al. (2019). First-line pembrolizumab (P), trastuzumab (T), capecitabine (C) and oxaliplatin (O) in HER2-positive metastatic esophagogastric adenocarcinoma (mEGA). Journal of Clinical Oncology, 37(4_suppl), 62.

    Article  Google Scholar 

  23. Janjigian, Y. Y., Bang, Y.-J., Fuchs, C. S., et al. (2019). KEYNOTE-811 pembrolizumab plus trastuzumab and chemotherapy for HER2+ metastatic gastric or gastroesophageal junction cancer (mG/GEJC): A double-blind, randomized, placebo-controlled phase 3 study. Journal of Clinical Oncology, 37(15_suppl), TPS4146-TPS.

    Article  Google Scholar 

  24. Takahari, D., Wakatsuki, T., Ishizuka, N., et al. (2019). A phase Ib study of nivolumab plus trastuzumab with S-1/capecitabine plus oxaliplatin for HER2 positive advanced gastric cancer (Ni-HIGH study). Journal of Clinical Oncology, 37(4_suppl), TPS177-TPS.

    Article  Google Scholar 

  25. Peltomaki, P. (2003). Role of DNA mismatch repair defects in the pathogenesis of human cancer. Journal of Clinical Oncology, 21(6), 1174–1179.

    Article  CAS  PubMed  Google Scholar 

  26. Popat, S., Hubner, R., & Houlston, R. S. (2005). Systematic review of microsatellite instability and colorectal cancer prognosis. Journal of Clinical Oncology, 23(3), 609–618.

    Article  CAS  PubMed  Google Scholar 

  27. Battaglin, F., Naseem, M., Lenz, H. J., & Salem, M. E. (2018). Microsatellite instability in colorectal cancer: Overview of its clinical significance and novel perspectives. Clinical Advances in Hematology & Oncology, 16(11), 735–745.

    Google Scholar 

  28. Lee, V., Murphy, A., Le, D. T., & Diaz, L. A., Jr. (2016). Mismatch repair deficiency and response to immune checkpoint blockade. The Oncologist, 21(10), 1200–1211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Llosa, N. J., Cruise, M., Tam, A., et al. (2015). The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discovery, 5(1), 43–51.

    Article  CAS  PubMed  Google Scholar 

  30. Alexander, J., Watanabe, T., Wu, T. T., Rashid, A., Li, S., & Hamilton, S. R. (2001). Histopathological identification of colon cancer with microsatellite instability. The American Journal of Pathology, 158(2), 527–535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Le, D. T., Uram, J. N., Wang, H., et al. (2015). PD-1 blockade in tumors with mismatch-repair deficiency. The New England Journal of Medicine, 372(26), 2509–2520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Le DT, Kavan P, Kim TW, et al. KEYNOTE-164: Pembrolizumab for patients with advanced microsatellite instability high (MSI-H) colorectal cancer. Journal of Clinical Oncology 2018; 36(15_suppl): 3514.

    Google Scholar 

  33. Diaz, A. M., Kim, T. W., Geva, R., Van Cutsem, E., André, T., Ascierto, P. A., Maio, M., Delord, J.-P., Gottfried, M., Guimbaud, R., Jaeger, D., Elez, E., Yoshino, T., Joe, A., Lam, B., Ding, J., Pruitt, S., Kang, S. P., & Le, D. T. (2017). 386P – Efficacy of pembrolizumab in phase 2 KEYNOTE-164 and KEYNOTE-158 studies of microsatellite instability high cancers. Annals of Oncology, 28(Supplement 5), v128-v9.

    Google Scholar 

  34. Overman, M. J., McDermott, R., Leach, J. L., et al. (2017). Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): An open-label, multicentre, phase 2 study. The Lancet Oncology, 18(9), 1182–1191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Overman, M. J., Lonardi, S., Wong, K. Y. M., et al. (2018). Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. Journal of Clinical Oncology, 36(8), 773–779.

    Article  CAS  PubMed  Google Scholar 

  36. Andre, T., Shiu, K. K., Kim, T. W., et al. (2020). Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. The New England Journal of Medicine, 383(23), 2207–2218.

    Article  CAS  PubMed  Google Scholar 

  37. Lee, J. J., Yothers, G., Jacobs, S. A., et al. (2018). Colorectal Cancer Metastatic dMMR Immuno-Therapy (COMMIT) study (NRG- GI004/SWOG-S1610): A randomized phase III study of mFOLFOX6/bevacizumab combination chemotherapy with or without atezolizumab or atezolizumab monotherapy in the first-line treatment of patients with deficient DNA mismatch repair (dMMR) metastatic colorectal cancer. Journal of Clinical Oncology, 36(15_suppl), TPS3615-TPS.

    Article  Google Scholar 

  38. Sinicrope, F. A., Ou, F.-S., Zemla, T., et al. (2019). Randomized trial of standard chemotherapy alone or combined with atezolizumab as adjuvant therapy for patients with stage III colon cancer and deficient mismatch repair (ATOMIC, Alliance A021502). Journal of Clinical Oncology, 37(15_suppl), e15169-e.

    Article  Google Scholar 

  39. Lau, D., Cunningham, D., Gillbanks, A., et al. (2019). POLEM: Avelumab plus fluoropyrimidine-based chemotherapy as adjuvant treatment for stage III dMMR or POLE exonuclease domain mutant colon cancer – A phase III randomized study. Journal of Clinical Oncology, 37(15_suppl), TPS3615-TPS.

    Article  Google Scholar 

  40. Chen, E. X., Jonker, D. J., Kennecke, H. F., et al. (2019). CCTG CO.26 trial: A phase II randomized study of durvalumab (D) plus tremelimumab (T) and best supportive care (BSC) versus BSC alone in patients (pts) with advanced refractory colorectal carcinoma (rCRC). Journal of Clinical Oncology, 37(4_suppl), 481.

    Article  Google Scholar 

  41. Eng, C., Kim, T. W., Bendell, J., et al. (2019). Atezolizumab with or without cobimetinib versus regorafenib in previously treated metastatic colorectal cancer (IMblaze370): A multicentre, open-label, phase 3, randomised, controlled trial. The Lancet Oncology, 20(6), 849–861.

    Article  CAS  PubMed  Google Scholar 

  42. Galluzzi, L., Buque, A., Kepp, O., Zitvogel, L., & Kroemer, G. (2015). Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell, 28(6), 690–714.

    Article  CAS  PubMed  Google Scholar 

  43. Tesniere, A., Schlemmer, F., Boige, V., et al. (2010). Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene, 29(4), 482–491.

    Article  CAS  PubMed  Google Scholar 

  44. Bendell, J. C., Kim, T. W., Goh, B. C., et al. (2016). Clinical activity and safety of cobimetinib (cobi) and atezolizumab in colorectal cancer (CRC). Journal of Clinical Oncology, 34(15_suppl), 3502.

    Article  Google Scholar 

  45. Bendell, J. C., Powderly, J. D., Lieu, C. H., et al. (2015). Safety and efficacy of MPDL3280A (anti-PDL1) in combination with bevacizumab (bev) and/or FOLFOX in patients (pts) with metastatic colorectal cancer (mCRC). Journal of Clinical Oncology, 33(3_suppl), 704.

    Article  Google Scholar 

  46. Frisch, M., Glimelius, B., van den Brule, A. J., et al. (1997). Sexually transmitted infection as a cause of anal cancer. The New England Journal of Medicine, 337(19), 1350–1358.

    Article  CAS  PubMed  Google Scholar 

  47. De Vuyst, H., Clifford, G. M., Nascimento, M. C., Madeleine, M. M., & Franceschi, S. (2009). Prevalence and type distribution of human papillomavirus in carcinoma and intraepithelial neoplasia of the vulva, vagina and anus: A meta-analysis. International Journal of Cancer, 124(7), 1626–1636.

    Article  PubMed  CAS  Google Scholar 

  48. Hoots, B. E., Palefsky, J. M., Pimenta, J. M., & Smith, J. S. (2009). Human papillomavirus type distribution in anal cancer and anal intraepithelial lesions. International Journal of Cancer, 124(10), 2375–2383.

    Article  CAS  PubMed  Google Scholar 

  49. Ott, P. A., Piha-Paul, S. A., Munster, P., et al. (2017). Safety and antitumor activity of the anti-PD-1 antibody pembrolizumab in patients with recurrent carcinoma of the anal canal. Annals of Oncology, 28(5), 1036–1041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Marabelle, A., Cassier, P. A., Fakih, M., et al. (2020). Pembrolizumab for advanced anal squamous cell carcinoma (ASCC): Results from the multicohort, phase II KEYNOTE-158 study. Journal of Clinical Oncology, 38(4_suppl), 1.

    Article  CAS  PubMed  Google Scholar 

  51. Morris, V. K., Salem, M. E., Nimeiri, H., et al. (2017). Nivolumab for previously treated unresectable metastatic anal cancer (NCI9673): A multicentre, single-arm, phase 2 study. The Lancet Oncology, 18(4), 446–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim, S., Buecher, B., Andre, T., et al. (2020). Atezolizumab plus modified docetaxel-cisplatin-5-fluorouracil (mDCF) regimen versus mDCF in patients with metastatic or unresectable locally advanced recurrent anal squamous cell carcinoma: A randomized, non-comparative phase II SCARCE GERCOR trial. BMC Cancer, 20(1), 352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stevanovic, S., Draper, L. M., Langhan, M. M., et al. (2015). Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted tumor-infiltrating T cells. Journal of Clinical Oncology, 33(14), 1543–1550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sangro, B., Gomez-Martin, C., de la Mata, M., et al. (2013). A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. Journal of Hepatology, 59(1), 81–88.

    Article  CAS  PubMed  Google Scholar 

  55. El-Khoueiry, A. B., Sangro, B., Yau, T., et al. (2017). Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet, 389(10088), 2492–2502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yau, T., Kang, Y. K., Kim, T. Y., et al. (2020). Efficacy and safety of nivolumab plus Ipilimumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib: The CheckMate 040 randomized clinical trial. JAMA Oncology.

    Google Scholar 

  57. Finn, R. S., Ryoo, B. Y., Merle, P., et al. (2020). Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: A randomized, double-blind, phase III trial. Journal of Clinical Oncology, 38(3), 193–202.

    Article  CAS  PubMed  Google Scholar 

  58. Zhu, A. X., Finn, R. S., Edeline, J., et al. (2018). Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): A non-randomised, open-label phase 2 trial. The Lancet Oncology, 19(7), 940–952.

    Article  PubMed  Google Scholar 

  59. Finn, R. S., Qin, S., Ikeda, M., et al. (2020). Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. The New England Journal of Medicine, 382(20), 1894–1905.

    Article  CAS  PubMed  Google Scholar 

  60. Sangro, B., Kudo, M., Qin, S., et al. (2020). P-347 A phase 3, randomized, double-blind, placebo-controlled study of transarterial chemoembolization combined with durvalumab or durvalumab plus bevacizumab therapy in patients with locoregional hepatocellular carcinoma: EMERALD-1. Annals of Oncology, 31, S202–S2S3.

    Article  Google Scholar 

  61. Finn, R. S., Ikeda, M., Zhu, A. X., et al. (2020). Phase Ib study of Lenvatinib plus pembrolizumab in patients with unresectable hepatocellular carcinoma. Journal of Clinical Oncology, 38(26), 2960–2970.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bonneville, R., Krook, M. A., Kautto, E. A., et al. (2017). Landscape of microsatellite instability across 39 cancer types. JCO Precision Oncology, 2017.

    Google Scholar 

  63. Piha-Paul, S. A., Oh, D. Y., Ueno, M., et al. (2020). Efficacy and safety of pembrolizumab for the treatment of advanced biliary cancer: Results from the KEYNOTE-158 and KEYNOTE-028 studies. International Journal of Cancer, 147(8), 2190–2198.

    Article  CAS  PubMed  Google Scholar 

  64. Blair, A. B., & Murphy, A. (2018). Immunotherapy as a treatment for biliary tract cancers: A review of approaches with an eye to the future. Current Problems in Cancer, 42(1), 49–58.

    Article  PubMed  Google Scholar 

  65. Kaida, M., Morita-Hoshi, Y., Soeda, A., et al. (2011). Phase 1 trial of Wilms tumor 1 (WT1) peptide vaccine and gemcitabine combination therapy in patients with advanced pancreatic or biliary tract cancer. Journal of Immunotherapy, 34(1), 92–99.

    Article  CAS  PubMed  Google Scholar 

  66. Yamamoto, K., Ueno, T., Kawaoka, T., et al. (2005). MUC1 peptide vaccination in patients with advanced pancreas or biliary tract cancer. Anticancer Research, 25(5), 3575–3579.

    CAS  PubMed  Google Scholar 

  67. Shimizu, K., Kotera, Y., Aruga, A., Takeshita, N., Takasaki, K., & Yamamoto, M. (2012). Clinical utilization of postoperative dendritic cell vaccine plus activated T-cell transfer in patients with intrahepatic cholangiocarcinoma. Journal of Hepato-Biliary-Pancreatic Sciences, 19(2), 171–178.

    Article  PubMed  Google Scholar 

  68. Bauer, C., Kuhnemuth, B., Duewell, P., Ormanns, S., Gress, T., & Schnurr, M. (2016). Prevailing over T cell exhaustion: New developments in the immunotherapy of pancreatic cancer. Cancer Letters, 381(1), 259–268.

    Article  CAS  PubMed  Google Scholar 

  69. Witkiewicz, A., Williams, T. K., Cozzitorto, J., et al. (2008). Expression of indoleamine 2,3-dioxygenase in metastatic pancreatic ductal adenocarcinoma recruits regulatory T cells to avoid immune detection. Journal of the American College of Surgeons, 206(5), 849–854. discussion 54–6.

    Article  PubMed  Google Scholar 

  70. Macherla, S., Laks, S., Naqash, A. R., Bulumulle, A., Zervos, E., & Muzaffar, M. (2018). Emerging role of immune checkpoint blockade in pancreatic cancer. International Journal of Molecular Sciences, 19(11).

    Google Scholar 

  71. Brahmer, J. R., Tykodi, S. S., Chow, L. Q., et al. (2012). Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. The New England Journal of Medicine, 366(26), 2455–2465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Royal, R. E., Levy, C., Turner, K., et al. (2010). Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. Journal of Immunotherapy, 33(8), 828–833.

    Article  CAS  PubMed  Google Scholar 

  73. Le, D. T., Lutz, E., Uram, J. N., et al. (2013). Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer. Journal of Immunotherapy, 36(7), 382–389.

    Article  CAS  PubMed  Google Scholar 

  74. Weiss, G. J., Blaydorn, L., Beck, J., et al. (2018). Phase Ib/II study of gemcitabine, nab-paclitaxel, and pembrolizumab in metastatic pancreatic adenocarcinoma. Investigational New Drugs, 36(1), 96–102.

    Article  CAS  PubMed  Google Scholar 

  75. Wainberg, Z. A., Hochster, H. S., Kim, E. J., et al. (2020). Open-label, phase I study of nivolumab combined with nab-paclitaxel plus gemcitabine in advanced pancreatic cancer. Clinical Cancer Research, 26(18), 4814–4822.

    Article  CAS  PubMed  Google Scholar 

  76. Hu, Z. I., Shia, J., Stadler, Z. K., et al. (2018). Evaluating mismatch repair deficiency in pancreatic adenocarcinoma: Challenges and recommendations. Clinical Cancer Research, 24(6), 1326–1336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kim, S. T., Klempner, S. J., Park, S. H., et al. (2017). Correlating programmed death ligand 1 (PD-L1) expression, mismatch repair deficiency, and outcomes across tumor types: Implications for immunotherapy. Oncotarget, 8(44), 77415–77423.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Tuli, R., Nissen, N., Lo, S., Tighiouart, M., Placencio, V., & Hendifar, A. (2019). Abstract B58: A phase I/II study of durvalumab and stereotactic radiotherapy in locally advanced pancreatic cancer. Cancer Research, 79(24 Supplement), B58-B.

    Article  Google Scholar 

  79. Beatty, G. L., Chiorean, E. G., Fishman, M. P., et al. (2011). CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science, 331(6024), 1612–1616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Posey, A. D., Jr., Schwab, R. D., Boesteanu, A. C., et al. (2016). Engineered CAR T cells targeting the cancer-associated Tn-glycoform of the membrane mucin MUC1 control adenocarcinoma. Immunity, 44(6), 1444–1454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chmielewski, M., Hahn, O., Rappl, G., et al. (2012). T cells that target carcinoembryonic antigen eradicate orthotopic pancreatic carcinomas without inducing autoimmune colitis in mice. Gastroenterology, 143(4), 1095–107e2.

    Article  CAS  PubMed  Google Scholar 

  82. Stromnes, I. M., Schmitt, T. M., Hulbert, A., et al. (2015). T cells engineered against a native antigen can surmount immunologic and physical barriers to treat pancreatic ductal adenocarcinoma. Cancer Cell, 28(5), 638–652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubham Pant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Surana, R., Pant, S. (2021). Immunotherapy in Gastrointestinal Malignancies. In: Naing, A., Hajjar, J. (eds) Immunotherapy. Advances in Experimental Medicine and Biology, vol 1342. Springer, Cham. https://doi.org/10.1007/978-3-030-79308-1_8

Download citation

Publish with us

Policies and ethics