Skip to main content

Evaluating Task-General Resilience Mechanisms in a Multi-robot Team Task

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations (AIAI 2021)

Abstract

Real-word intelligent agents must be able to detect sudden and unexpected changes to their task environment and effectively respond to those changes in order to function properly in the long term. We thus isolate a set of perturbations that agents ought to address and demonstrate how task-agnostic perturbation detection and mitigation mechanisms can be integrated into a cognitive robotic architecture. We present results from experimental evaluations of perturbation mitigation strategies in a multi-robot system that show how intelligent systems can achieve higher levels of autonomy by explicitly handling perturbations.

This work was in part supported by ONR grant #N00014-18-1-2831.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A detailed conceptual and empirical comparison of robotic infrastructures up to 2006 can be found in [16].

  2. 2.

    Agents avoid occupying the same area of the space station.

References

  1. Anderson, M.L., Perlis, D.R.: Logic, self-awareness and self-improvement: the metacognitive loop and the problem of brittleness. J. Logic Comput. 15(1), 21–40 (2005). http://cogprints.org/3950/

  2. Berzan, C., Scheutz, M.: What am i doing? automatic construction of an agent’s state-transition diagram through introspection. In: Proceedings of AAMAS 2012 (2012)

    Google Scholar 

  3. Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagnosis of I/O automata networks. Diagnosis and Fault-Tolerant Control, pp. 607–639. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-47943-8_12

    Chapter  MATH  Google Scholar 

  4. Christensen, A.L., OGrady, R., Dorigo, M.: From fireflies to fault-tolerant swarms of robots. IEEE Trans. Evol. Comput. 13(4), 754–766 (2009). https://doi.org/10.1109/TEVC.2009.2017516

  5. Edwards, G., et al.: Architecture-driven self-adaptation and self-management in robotics systems. In: Proceedings of the 2009 ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems, pp. 142–151. IEEE Computer Society (2009)

    Google Scholar 

  6. Ernits, J., Dearden, R., Pebody, M.: Automatic fault detection and execution monitoring for AUV missions. In: Autonomous Underwater Vehicles (AUV), 2010 IEEE/OES, pp. 1–10. IEEE (2010)

    Google Scholar 

  7. Georgas, J.C., Taylor, R.N.: Policy-based self-adaptive architectures: a feasibility study in the robotics domain. In: Proceedings of the 2008 International Workshop on Software Engineering for Adaptive and Self-Managing Systems, pp. 105–112. SEAMS 2008, ACM (2008)

    Google Scholar 

  8. Gervits, F., Thurston, D., Thielstrom, R., Fong, T., Pham, Q., Scheutz, M.: Toward genuine robot teammates: Improving human-robot team performance using robot shared mental models. In: Proceedings of AAMAS (2020)

    Google Scholar 

  9. Gizzi, E., Vie, L.L., Scheutz, M., Sarathy, V., Sinapov, J.: A generalized framework for detecting anomalies in real-time using contextual information. In: Proceedings of the 2018 IJCAI Workshop on Modeling and Reasoning in Context (MRC) (2018)

    Google Scholar 

  10. Golombek, R., Wrede, S., Marc, H., Martin, H.: On-line data-driven fault detection for robotic systems. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA (2011)

    Google Scholar 

  11. Golombek, R., Wrede, S., Hanheide, M., Heckmann, M.: Learning a probabilistic self-awareness model for robotic systems. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2010)

    Google Scholar 

  12. Guo, Z., Yang, W., Li, M., Yi, X., Cai, Z., Wang, Y.: ALLIANCE-ROS: a software framework on ROS for fault-tolerant and cooperative mobile robots. Chin. J. Electron. 27(3), 467–475 (2018). https://doi.org/10.1049/cje.2018.03.001

  13. Haidarian, H., et al.: The metacognitive loop: an architecture for building robust intelligent systems. In: PAAAI Fall Symposium on Commonsense Knowledge (AAAI/CSK2010), Arlington, VA, USA (Nov 2010)

    Google Scholar 

  14. Iverson, D.L.: Inductive system health monitoring. In: International Conference on Artificial Intelligence. CSREA Press (2004)

    Google Scholar 

  15. Kramer, J., Scheutz, M.: Reflection and reasoning mechanisms for failure detection and recovery in a distributed robotic architecture for complex robots. In: Proceedings of the 2007 IEEE International Conference on Robotics and Automation, pp. 3699–3704, Rome, Italy (Apr 2007)

    Google Scholar 

  16. Kramer, J., Scheutz, M.: Robotic development environments for autonomous mobile robots: a survey. Auton. Rob. 22(2), 101–132 (2007)

    Article  Google Scholar 

  17. Kramer, J., Scheutz, M., Schermerhorn, P.: ‘Talk to me!’: enabling communication between robotic architectures and their implementing infrastructures. In: Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3044–3049, San Diego, CA (Oct/Nov 2007)

    Google Scholar 

  18. Krause, E., Schermerhorn, P., Scheutz, M.: Crossing boundaries: multi-level introspection in a complex robotic architecture for automatic performance improvements. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence (2012)

    Google Scholar 

  19. Morris, A.C.: Robotic Introspection for Exploration and Mapping of Subterranean Environments. Ph.D. thesis, Robotics Institute, Carnegie Mellon University (Dec 2007)

    Google Scholar 

  20. Parker, L.E.: ALLIANCE: an architecture for fault tolerant multirobot cooperation. IEEE Trans. Robot. Autom. 14(2), 220–240 (1998). https://doi.org/10.1109/70.681242

    Article  Google Scholar 

  21. Scheutz, M.: ADE - steps towards a distributed development and runtime environment for complex robotic agent architectures. Appl. Artif. Intell. 20(4–5), 275–304 (2006)

    Article  Google Scholar 

  22. Scheutz, M., Williams, T., Krause, E., Oosterveld, B., Sarathy, V., Frasca, T.: An overview of the distributed integrated cognition affect and reflection DIARC architecture. In: Aldinhas Ferreira, M.I., Silva Sequeira, J., Ventura, R. (eds.) Cognitive Architectures. ISCASE, vol. 94, pp. 165–193. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-97550-4_11

    Chapter  Google Scholar 

  23. Sykes, D., Heaven, W., Magee, J., Kramer, J.: From goals to components: a combined approach to self-management. In: Proceedings of the 2008 International Workshop on Software Engineering for Adaptive and Self-Managing Systems, pp. 1–8. SEAMS 2008, ACM, New York, NY, USA (2008)

    Google Scholar 

  24. Williams, B., Nayak, P., et al.: A model-based approach to reactive self-configuring systems. In: Proceedings of the National Conference on Artificial Intelligence, pp. 971–978 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Scheutz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Staley, J., Scheutz, M. (2021). Evaluating Task-General Resilience Mechanisms in a Multi-robot Team Task. In: Maglogiannis, I., Macintyre, J., Iliadis, L. (eds) Artificial Intelligence Applications and Innovations. AIAI 2021. IFIP Advances in Information and Communication Technology, vol 627. Springer, Cham. https://doi.org/10.1007/978-3-030-79150-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79150-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79149-0

  • Online ISBN: 978-3-030-79150-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics