Skip to main content

The Effect of Modeling Assumptions on the ECG in Monodomain and Bidomain Simulations

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2021)

Abstract

Computing a physiologically accurate electrocardiogram (ECG) is one of the key outcomes of cardiac electrophysiology (EP) simulations. Indeed, the simulated ECG serves as a validation, may be the target for optimization in inverse EP problems, and in general allows to link simulation results to clinical ECG data. Several approaches are available to compute the ECG corresponding to an EP simulation. Lead field approaches are commonly used to compute ECGs from cardiac EP simulations using the Monodomain or Eikonal models. A coupled passive conductor model is instead common when the full Bidomain model is adopted. An approach based on solving an auxiliary Poisson problem propagating the activation field from the heart surface to the torso surface is also possible, although not commonly described in the literature. In this work, through a series of numerical experiments, we investigate the limits of validity of the different approaches to compute the ECG from simulations based on the Monodomain and Bidomain models. Significant discrepancies are observed between the common lead field and direct ECG approaches in most realistic cases – e.g., when conduction anisotropy is included – while the ECG computed via solution of an auxiliary Poisson problem is similar to the direct ECG approach. We conclude that either the direct ECG or Poisson approach should be adopted to improve the accuracy of the computed ECG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, R., et al.: MFEM: a modular finite element library. Comput. Math. Appl. 81, 42–74 (2020)

    Article  MathSciNet  Google Scholar 

  2. Bishop, M.J., Plank, G.: Bidomain ECG simulations using an augmented monodomain model for the cardiac source. IEEE Trans. Biomed. Eng. 58(8), 2297–2307 (2011)

    Article  Google Scholar 

  3. Boulakia, M., Cazeau, S., Fernández, M.A., Gerbeau, J.F., Zemzemi, N.: Mathematical modeling of electrocardiograms: a numerical study. Ann. Biomed. Eng. 38(3), 1071–1097 (2010)

    Article  Google Scholar 

  4. Dupraz, M., Filippi, S., Gizzi, A., Quarteroni, A., Ruiz-Baier, R.: Finite element and finite volume-element simulation of pseudo-ECGs and cardiac alternans. Math. Methods Appl. Sci. 38(6), 1046–1058 (2015)

    Article  MathSciNet  Google Scholar 

  5. Falgout, R.D., Yang, U.M.: hypre: a library of high performance preconditioners. In: Sloot, P.M.A., Hoekstra, A.G., Tan, C.J.K., Dongarra, J.J. (eds.) ICCS 2002. LNCS, vol. 2331, pp. 632–641. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47789-6_66

    Chapter  Google Scholar 

  6. Göktepe, S., Kuhl, E.: Computational modeling of cardiac electrophysiology: a novel finite element approach. Int. J. Numer. Methods Eng. 79(2), 156–178 (2009)

    Article  MathSciNet  Google Scholar 

  7. Hooks, D.A., Trew, M.L., Caldwell, B.J., Sands, G.B., LeGrice, I.J., Smaill, B.H.: Laminar arrangement of ventricular myocytes influences electrical behavior of the heart. Circ. Res. 101(10), e103–e112 (2007)

    Article  Google Scholar 

  8. Johnston, B.M., Johnston, P.R.: Approaches for determining cardiac bidomain conductivity values: progress and challenges. Med. Biol. Eng. Comput. 58(12), 2919–2935 (2020). https://doi.org/10.1007/s11517-020-02272-z

    Article  Google Scholar 

  9. Krishnamoorthi, S., et al.: Simulation methods and validation criteria for modeling cardiac ventricular electrophysiology. PloS one 9(12), e114494 (2014)

    Article  Google Scholar 

  10. Krishnamoorthi, S., Sarkar, M., Klug, W.S.: Numerical quadrature and operator splitting in finite element methods for cardiac electrophysiology. Int. J. Numer. Methods Biomed. Eng. 29(11), 1243–1266 (2013)

    Article  MathSciNet  Google Scholar 

  11. Mahajan, A., et al.: A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates. Biophys. J. 94(2), 392–410 (2008)

    Article  Google Scholar 

  12. Mincholé, A., Zacur, E., Ariga, R., Grau, V., Rodriguez, B.: MRI-based computational torso/biventricular multiscale models to investigate the impact of anatomical variability on the ECG QRS complex. Front. Physiol. 10, 1103 (2019)

    Article  Google Scholar 

  13. Niederer, S.A., et al.: Verification of cardiac tissue electrophysiology simulators using an N-version benchmark. Philos. Transa. R. Soc. A Math. Phys. Eng. Sci. 369(1954), 4331–4351 (2011)

    Article  MathSciNet  Google Scholar 

  14. Plonsey, R., Barr, R.C.: Bioelectricity: A Quantitative Approach. Springer, New York (2007). https://doi.org/10.1007/978-0-387-48865-3

    Book  MATH  Google Scholar 

  15. Sundnes, J., Lines, G.T., Cai, X., Nielsen, B.F., Mardal, K.A., Tveito, A.: Computing the Electrical Activity in the Heart, vol. 1. Springer, Heidelberg (2007). https://doi.org/10.1007/3-540-33437-8

    Book  MATH  Google Scholar 

  16. Tung, L.: A bi-domain model for describing ischemic myocardial D-C potentials. Ph.D. thesis, Massachusetts Institute of Technology (1978)

    Google Scholar 

  17. Wallman, M., Smith, N.P., Rodriguez, B.: A comparative study of graph-based, eikonal, and monodomain simulations for the estimation of cardiac activation times. IEEE Trans. Biomed. Eng. 59(6), 1739–1748 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Ogiermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ogiermann, D., Balzani, D., Perotti, L.E. (2021). The Effect of Modeling Assumptions on the ECG in Monodomain and Bidomain Simulations. In: Ennis, D.B., Perotti, L.E., Wang, V.Y. (eds) Functional Imaging and Modeling of the Heart. FIMH 2021. Lecture Notes in Computer Science(), vol 12738. Springer, Cham. https://doi.org/10.1007/978-3-030-78710-3_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78710-3_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78709-7

  • Online ISBN: 978-3-030-78710-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics