Skip to main content

Nanoparticle-Mediated Heating: A Theoretical Study for Photothermal Treatment and Photo Immunotherapy

  • Chapter
  • First Online:
Nanoparticle-Mediated Immunotherapy

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 12))

  • 395 Accesses

Abstract

Plasmonic metal nanoparticles are efficient absorbers of optical energy and thus can serve as a heat source for photothermal therapy. In this study, time-dependent solutions to the heat-flow equation are derived for the temperature elevation of tissue arising from the absorption of light by a suspension of plasmonic nanoparticles. Analytical solutions for the temperature are obtained assuming the diffusion approximation for light transport. Two types of heat sources are considered: heat production arising from a point source of light and from planewave illumination. The results will provide a theoretical basis for the design and optimization of experimental systems for photothermal treatment and photo immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vines, J.B., Yoon, J.-H., Ryu, N.-E., et al.: Gold Nanoparticles for photothermal cancer therapy. Front. Chem. 7, 167 (2019)

    Article  Google Scholar 

  2. Falk, M.H., Issels, R.D.: Hyperthermia in oncology. Int. J. Hyperthermia. 17(1), 1–18 (2001)

    Article  Google Scholar 

  3. Owusu, R.A., Abern, M.R., Inman, B.A.: Hyperthermia as adjunct to intravesical chemotherapy for bladder cancer. Biomed Res. Int. 2013, 262313 (2013)

    Google Scholar 

  4. Hildebrandt, B., Wust, P., Ahlers, O., et al.: The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hematol. 43(1), 33–56 (2002)

    Article  Google Scholar 

  5. Frey, B., Weiss, E.M., Rubner, Y., et al.: Old and new facts about hyperthermia-induced modulations of the immune system. Int. J. Hyperthermia. 28(6), 528–542 (2012)

    Article  Google Scholar 

  6. Schildkopf, P., Ott, O.J., Frey, B., et al.: Biological rationales and clinical applications of temperature controlled hyperthermia–implications for multimodal cancer treatments. Curr. Med. Chem. 17(27), 3045–3057 (2010)

    Article  Google Scholar 

  7. Wust, P., Hildebrandt, B., Sreenivasa, G., et al.: Hyperthermia in combined treatment of cancer. Lancet. Oncol. 3(8), 487–497 (2002)

    Article  Google Scholar 

  8. Pandita, T.K., Pandita S., Bhaumik S.R.: Molecular parameters of hyperthermia for radiosensitization. Crit. Rev. Eukaryotic Gene Expr. 19(3), 235–251 (2009)

    Article  Google Scholar 

  9. Takada, T., Yamashita, T., Sato, M., et al.: Growth inhibition of re-challenge B16 melanoma transplant by conjugates of melanogenesis substrate and magnetite nanoparticles as the basis for developing melanoma-targeted chemo-thermo-immunotherapy. J Biomed. Biotechnol. 457936 (2009)

    Google Scholar 

  10. Koning, G.A., Eggermont, A.M.M., Lindner, L.H., et al.: Hyperthermia and thermosensitive liposomes for improved delivery of chemotherapeutic drugs to solid tumors. Pharm. Res. 27(8), 1750–1754 (2010)

    Article  Google Scholar 

  11. Loo, C., Lin, A., Hirsch, L., et al.: Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol. Cancer Res. Treat. 3(1), 33–40 (2004)

    Article  Google Scholar 

  12. Wang, C., Xu, L., Liang, C., et al.: Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasis. Adv. Mater. 26(48), 8154–8162 (2014)

    Article  Google Scholar 

  13. Hirsch, L.R., Stafford, R.J., Bankson, J.A., et al.: Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. PNAS 100, 13549–13554 (2003)

    Article  Google Scholar 

  14. Pitsillides, C.M., Joe, E.K., Wei, X., et al.: Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys. J. 84, 4023–4032 (2003)

    Article  Google Scholar 

  15. Huang, X., El-Sayed, I.H., Qian, W., et al.: Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115–2120 (2006)

    Article  Google Scholar 

  16. Govorov, A.O., Zhang, W., Skeini, T., et al.: Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res. Lett. 1, 84–90 (2006)

    Article  Google Scholar 

  17. Elliott, A.M., Stafford, R.J., Schwartz, J., et al.: Laser-induced thermal response and characterization of nanoparticles for cancer treatment using magnetic resonance thermal imaging. Am. Assoc. Phys. Med. 34(7), 3102–3108 (2007)

    Google Scholar 

  18. Reynoso, F.J., Lee, C.-D., Cheong, S.-K., et al.: Implementation of a multisource model for gold nanoparticle-mediated plasmonic heating with near-infrared laser by the finite element method. Am. Assoc. Phys. Med. 40(7), 073301 (2007)

    Google Scholar 

  19. Roper, D.K., Ahn, W., Hoepfner, M.: Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J. Phys. Chem. C 111, 3636–3641 (2007)

    Article  Google Scholar 

  20. Govorov, A.O., Richardson, H.H.: Generating heat with metal nanoparticles. NanoToday 2, 30–38 (2007)

    Article  Google Scholar 

  21. Jain, P.K., El-Sayed, I.H., Qian, W., et al.: Au nanoparticles target cancer. NanoToday 2, 18–29 (2007)

    Article  Google Scholar 

  22. Huang, X., Jain, P.K., El-Sayed, I.H., et al.: Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 23, 217–228 (2008)

    Article  Google Scholar 

  23. Sassaroli, E., Li, K.C.P., O’Neill, B.E.: Numerical investigation of heating of a gold nanoparticle and the surrounding microenvironment by nanosecond laser pulses for nanomedicine applications. Phys. Med. Biol. 54, 5541–5560 (2009)

    Article  Google Scholar 

  24. Cheong, S.-K., Krishnan, S., Cho, S.H.: Modeling of plasmonic heating from individual gold nanoshells for near-infrared laser-induced thermal therapy. Med. Phys. 36(10), 4664–4671 (2009)

    Article  Google Scholar 

  25. Richardson, H.H., Carlson, M.T., Tandler, P.J., et al.: Experimental and theoretical studies of light-to-heat conversion and collective heating in metal nanoparticle solutions. Nano Lett. 9(3), 1139–1146 (2009)

    Article  Google Scholar 

  26. Baffou, G., Quidant R., de Abajo, F.J.G.: Nanoscale control of optical heating in complex plasmonic systems. ACS Nano 4, 709–716 (2010)

    Article  Google Scholar 

  27. Huang, H.C., Rege, K., Heys, J.J.: Spatiotemporal temperature distribution and cancer cell death in response to extracellular hyperthermia induced by gold nanorods. ACS Nano 4, 2892–2900 (2010)

    Article  Google Scholar 

  28. Sanchot, A., Baffou, G., Marty, R., et al.: Plasmonic nanoparticle networks for light and heat concentration. ACSNano 6, 3434–3440 (2012)

    Google Scholar 

  29. Qina, Z., Bischof, J.C.: Thermophysical and biological responses of gold nanoparticle laser heating. Chem. Soc. Rev. 41, 1191–1217 (2012)

    Article  Google Scholar 

  30. Essone Mezeme, M., Brosseau, C.: Engineering nanostructures with enhanced thermoplasmonic properties for biosensing and selective targeting applications. Phys. Rev. E 87, 012722 (2013)

    Article  Google Scholar 

  31. Baffou, G., Quidant, R.: Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photonics Rev. 7, 171–187 (2013)

    Article  Google Scholar 

  32. Liu, Y., Ashton, J.R., Moding, E.-J., et al.: A plasmonic gold nanostar theranostic probe for in vivo tumor imaging and photothermal therapy. Theranostics 5, 946–960 (2015)

    Article  Google Scholar 

  33. Norton, S.J., Vo-Dinh, T.: Photothermal effects of plasmonic metal nanoparticles in a fluid. J. Appl. Phys. 116, 083105 (2016)

    Article  Google Scholar 

  34. Yuan, H., Fales, A.M., Vo-Dinh, T.: TAT peptide-functionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J. Am. Chem. Soc. 134(28), 11358–11361 (2012)

    Article  Google Scholar 

  35. Liu, Y., Ashton, J.R., Moding, E.J., et al.: A plasmonic gold nanostar theranostic probe for in vivo tumor imaging and photothermal therapy. Theranostics 5(9), 946–960 (2015)

    Article  Google Scholar 

  36. Khoury, C.G., Vo-Dinh, T.: Gold nanostars for surface-enhanced Raman scattering: synthesis, characterization and optimization. J. Phys. Chem. C Nanometer. Interfaces. 112(48), 18849–18859 (2008)

    Article  Google Scholar 

  37. Yuan, H., Khoury, C.G., Hwang, H., et al.: Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging. Nanotechnology 23(7), 075102 (2012)

    Article  Google Scholar 

  38. Yuan, H., Khoury, C.G., Wilson, C.M., et al.: In vivo particle tracking and photothermal ablation using plasmon-resonant gold nanostars. Nanomedicine 8(8), 1355–1363 (2012)

    Article  Google Scholar 

  39. Yuan, H., Wilson, C.M., Xia J., et al.: Plasmonics-enhanced and optically modulated delivery of gold nanostars into brain tumor. Nanoscale 6(8), 4078–4082 (2014)

    Article  Google Scholar 

  40. Liu, Y., Maccarini, P., Palmer, G.M., et al.: Synergistic immuno photothermal nanotherapy (SYMPHONY) for the treatment of unresectable and metastatic cancers. Sci. Rep. 7, 1–6 (2017)

    Google Scholar 

  41. Liu, Y., Chongsathidkiet, P., Crawford, B.M., et al.: Plasmonic gold nanostar-mediated photothermal immunotherapy for brain tumor ablation and immunologic memory. Immunotherapy 11, 1293–1302 (2019)

    Article  Google Scholar 

  42. Jain, P.K., Lee, K.S., El-Sayed, I.H., et al.: Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 110, 7238–7248 (2006)

    Article  Google Scholar 

  43. Keblinski, P., Cahill, D.G., Bodapati, A., et al.: Limits of localized heating by electromagnetically excited nanoparticles. J. Appl. Phys. 100, 054305 (2006)

    Article  Google Scholar 

  44. Norton, S.J.: A general nonlinear inverse transport algorithm using forward and adjoint flux computations. IEEE Trans. Nuclear Sci. 44(2), 153–162 (1997)

    Article  Google Scholar 

  45. Norton, S.J.: Iterative inverse scattering algorithms: methods of computing Fréchet derivatives. J. Acoust. Soc. Am. 106(5), 2653–2660 (1999)

    Article  Google Scholar 

  46. Hyborg, W.L.: Solutions of the bio-heat transfer equation. Phys. Med. Biol. 33, 785–792 (1988)

    Article  Google Scholar 

  47. Holmes, K.R.: A tabulation of blood perfusion rates from the literature for specific tissues and organs was compiled by Professor Kenneth R. Holmes. This list is available online at http://users.ece.utexas.edu/~valvano/research/right.html under the heading “Thermal Properties by Kenneth Holmes”

  48. Wang, L.V., Wu, H.-I.: Biomedical Optics, Chapter 5. Wiley, Hoboken (2007)

    Google Scholar 

  49. Vo-Dinh, T. (ed.): Biomedical Photonics Handbook, Chapter 2. CRC Press, New York (2003)

    Google Scholar 

  50. Wang, L.V., Wu, H.-I.: Biomedical Optics, Appendix A. Wiley, Hoboken (2007)

    Google Scholar 

  51. Morse, P.M., Feshbach, H.: Methods of Theoretical Physics, p. 860. McGraw-Hill, New York (1953)

    Google Scholar 

  52. Morse, P.M., Feshbach, H.: Methods of Theoretical Physics, p. 864. McGraw-Hill, New York (1953). This general approach is known as the eigenfunction expansion method for computing the Green’s function. Here the eigenfunctions are the spherical Bessel functions

    Google Scholar 

  53. Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids, 2nd edn., p. 358. Oxford University Press (1959)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (1R01EB028078-01A1)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Norton .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Derivation of the Green’s Functions

For a spherically-symmetric source, the Green’s function, g(r, t|r′, t′), for the diffusion equation is defined as the solution to

$$\displaystyle \begin{aligned} {1\over r^2} {\partial~\over \partial r} \left(r^2 {\partial g \over\partial r} \right) - {1\over\kappa}{\partial g\over \partial t} - {g\over\kappa\tau} \,=\, -{1\over r^2}\delta(r\!-\!r') \delta(t\!-\!t'). {} \end{aligned} $$
(37)

To find g(r, t|r′, t′), we employ the completeness relation for the spherical Bessel function j 0():

$$\displaystyle \begin{aligned} \int_0^\infty j_0(r\rho) j_0(r'\rho) \rho^2 \, d\rho \,=\, {\pi\over 2r^2} \delta(r \!-\! r'). {} \end{aligned} $$
(38)

We now let [52]

$$\displaystyle \begin{aligned} g(r,t|r',t') \,=\, \int_0^\infty C_\rho(t,t')\, j_0(r\rho) j_0(r'\rho)\, \rho^2\, d\rho, {} \end{aligned} $$
(39)

and substitute into (37). Noting the relation,

$$\displaystyle \begin{aligned} {1\over r^2} {\partial~\over \partial r} \left(r^2 {\partial j_0(\rho r) \over\partial r} \right) + \rho^2 j_0(\rho r) \,=\, 0, {} \end{aligned} $$
(40)

and using (38) for \(\delta (r\!-\!r')/r^2\) on the right of (37), we obtain the following differential equation for C ρ(t, t′):

$$\displaystyle \begin{aligned} {1\over \kappa} {dC_\rho\over dt} + (\rho^2 \!+\! 1/\kappa\tau)C_\rho \,=\, {2\over \pi}\delta(t \!-\! t'). \end{aligned}$$

The solution to this equation is

$$\displaystyle \begin{aligned} C_\rho(t,t') \,=\, {2\kappa\over\pi} u(t\!-\!t')\, e^{-\kappa(\rho^2 + 1/\kappa\tau)(t-t')}, {} \end{aligned}$$

where u(t) is the unit step function. Substituting into (39), we obtain (10).

For a planewave source, the Green’s function, g(z, t|z′, t′), for the diffusion equation is defined as the solution to

$$\displaystyle \begin{aligned} {\partial^2 g \over \partial z^2} - {1\over\kappa}{\partial g\over \partial t} - {g\over\kappa\tau} \,=\, -\delta(z\!-\!z') \delta(t\!-\!t'). \end{aligned}$$

Using the same method as above, the free-space green’s function is found to be

$$\displaystyle \begin{aligned} g(z,t|z',t') \,=\, {\kappa\over\pi}u(t\!-\!t')\int_0^\infty \cos[s(z\!-\!z')]\, e^{-\kappa(s^2 + 1/\kappa\tau)(t-t')}\, ds. \end{aligned}$$

To enforce boundary conditions 1 and 2 we employ linear combinations of the free-space Green’s functions as follows. The Green’s functions for boundary conditions 1 abd 2 are, respectively, \(g_1(z,t|z',t') = g(z,t|z',t') - g(z,t|-\!z',t')\) and \(g_2(z,t|z',t') = g(z,t|z',t') + g(z,t|-\!z',t')\), which result in (22) and (23).

Appendix 2: Temperature Elevation for Boundary Condition 3

We can derive the temperature elevation for boundary condition 3 using the same approach as above once we have the Green’s function g 3(z, t|z′, t′) that enforces this boundary condition. One can show that

$$\displaystyle \begin{aligned} g_3(z,t|z',t') \,=\, g_2(z,t|z',t') + g_h(z,t|z',t'), \end{aligned}$$

where g 2(z, t|z′, t′) is given by (23) and

$$\displaystyle \begin{aligned} \begin{array}{rcl} & &\displaystyle g_h(z,t|z',t')\\ & &\displaystyle \equiv {2h\kappa\over\pi}u(t\!-\!t')\int_0^\infty e^{-\kappa(t-t')(s^2 + 1/\kappa\tau)}\left\{{s\sin[(z\!+\!z')s] - h\cos[(z\!+\!z')s] \over h^2 \!+\! s^2} \right\} ds. \end{array} \end{aligned} $$

The most straightforward method of deriving this result is to use Laplace transforms; the general procedure is outlined in [53]. The Green’s function g 3 reduces to g 2 when h = 0. One can also show that g 3 → g 1 in the limit h →.

The temperature elevation T 3(z, t) is now obtained by substituting g 3(z, t|z′, t′) into (24) and integrating with respect to z′ and t′. This results in

$$\displaystyle \begin{aligned} T_3(z,t) \,=\, T_2(z,t) + T_h(z,t). \end{aligned}$$

Here T 2(z, t) is given by (28) and

$$\displaystyle \begin{aligned} T_h(z,t) \,\equiv\, {2Kh\over\pi k} \int_0^\infty {F_s(z) \over (s^2 \!+\! h^2) (s^2 \!+\! \mu_e^2) (s^2 \!+\! 1/\kappa\tau)} \left[1 - e^{-\kappa(s^2 + 1/\kappa\tau)t} \right] ds. \end{aligned}$$

where

$$\displaystyle \begin{aligned} F_s(z) \,\equiv\, (\mu_e \!+\! h)s\sin{}(zs) + (s^2 \!-\! h\mu_e)\cos{}(zs). \end{aligned}$$

When h = 0, we have T 3(z, t) = T 2(z, t) and when h →, T 3(z, t) → T 1(z, t).

The steady-state temperature (t →) may be written

$$\displaystyle \begin{aligned} T_3^{(ss)}(z) \,=\, T_2^{(ss)}(z) + T_h^{(ss)}(z), \end{aligned}$$

where \(T_2^{(ss)}(z)\) is given by (34) and

$$\displaystyle \begin{aligned} T_h^{(ss)}(z) \,\equiv\, {2Kh\over\pi k} \int_0^\infty {F_s(z)\, ds \over (s^2 \!+\! h^2) (s^2 \!+\! \mu_e^2) (s^2 \!+\! 1/\kappa\tau)}. \end{aligned}$$

This can be readily integrated after expanding the integrand in partial fractions. After some algebra, we obtain

$$\displaystyle \begin{aligned} T_3^{(ss)}(z) \,=\, {K\over k(1/\kappa\tau - \mu_e^2)} \left[ e^{-\mu_e z} - \left({\mu_e + h \over 1/\sqrt{\kappa\tau} + h} \right) e^{-z/\sqrt{\kappa\tau}} \right]. \end{aligned}$$

\(T_3^{(ss)}(z)\) will have a peak temperature at some distance z max > 0 that can be found by differentiating \(T_3^{(ss)}(z)\) with respect to z and setting the derivative to zero. This results in

$$\displaystyle \begin{aligned} z_{max} \,=\, {1 \over (\mu_e - 1/\sqrt{\kappa\tau})} \ln\left[{1 + h\sqrt{\kappa\tau} \over 1 + h/\mu_e} \right]. \end{aligned}$$

This reduces to (35) when h → and z max = 0 when h = 0. Note that no finite z max exists in the absence of perfusion.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Norton, S.J., Vo-Dinh, T. (2021). Nanoparticle-Mediated Heating: A Theoretical Study for Photothermal Treatment and Photo Immunotherapy. In: Vo-Dinh, T. (eds) Nanoparticle-Mediated Immunotherapy. Bioanalysis, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-030-78338-9_5

Download citation

Publish with us

Policies and ethics