Skip to main content

Classification Using a Two-Qubit Quantum Chip

  • Conference paper
  • First Online:
  • 1338 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12747))

Abstract

Quantum computing has great potential for advancing machine learning algorithms beyond classical reach. Even though full-fledged universal quantum computers do not exist yet, its expected benefits for machine learning can already be shown using simulators and already available quantum hardware. In this work, we consider a distance-based classification algorithm and modify it to be run on actual early stage quantum hardware. We extend upon earlier work and present a non-trivial reduction using only two qubits. The algorithm is consequently run on a two-qubit silicon spin quantum computer. We show that the results obtained using the two-qubit silicon spin quantum computer are similar to the theoretically expected results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hogervorst, A.C.R., van Dijk, M.K., Verbakel, P.C.M., Krijgsman, C.: Handwritten character recognition using neural networks. In: Kappen, B., Gielen, S. (eds.) Neural Networks: Artificial Intelligence and Industrial Applications, pp. 337–343. Springer, London (1995). https://doi.org/10.1007/978-1-4471-3087-1_62

    Chapter  Google Scholar 

  2. Kim, K.I., Jung, K., Park, S.H., Kim, H.J.: Support vector machines for texture classification. IEEE Trans. Patt. Anal. Mach. Intell. 24(11), 1542–1550 (2002)

    Article  Google Scholar 

  3. Graves, A., Mohamed, A., Hinton, G.: Speech recognition with deep recurrent neural networks. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6645–6649 (2013)

    Google Scholar 

  4. Abdel-Hamid, O., Mohamed, A., Jiang, H., Deng, L., Penn, G., Yu, D.: Convolutional neural networks for speech recognition. IEEE/ACM Trans. Audio Speech Lang. Process. 22(10), 1533–1545 (2014)

    Article  Google Scholar 

  5. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  6. Lawrence, S., Giles, C. L., Tsoi, A.C., Back, A.D.: Face recognition: a convolutional neural-network approach. In: IEEE Transactions on Neural Networks, vol. 8, no. 1, pp. 98–113 (1997)

    Google Scholar 

  7. Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529, 484–489 (2016)

    Article  Google Scholar 

  8. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th, Anniversary edn. Cambridge University Press (2010)

    Google Scholar 

  9. Schuld, M., Sinayskiy, I., Petruccione, F.: An introduction to quantum machine learning. Contemp. Phys. 56(2), 172–185 (2015)

    Article  Google Scholar 

  10. Neumann, N.M.P., Phillipson, F., Versluis, R.: Machine learning in the quantum era. Digitale Welt 3(2), 24–29 (2019)

    Article  Google Scholar 

  11. Perdomo-Ortiz, A., Benedetti, M., Realpe-Gómez, J., Biswas, R.: Opportunities and challenges for quantum-assisted machine learning in near-term quantum computers. Quantum Sci. Technol. 3(3), 030502 (2018)

    Article  Google Scholar 

  12. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502 (2009)

    Article  MathSciNet  Google Scholar 

  13. Havlíček, V., et al.: Supervised learning with quantum-enhanced feature spaces. Nature 567, 209–212 (2019)

    Article  Google Scholar 

  14. Mitarai, K., Negoro, K., Kitagawa, M., Fujii, K.: Quantum circuit learning. Phys. Rev. A 98(3), 032309 (2018)

    Article  Google Scholar 

  15. Park, D.K., Blank, C., Petruccione, F.: The theory of the quantum kernel-based binary classifier. Phys. Lett. A 384(21), 126422 (2020)

    Article  MathSciNet  Google Scholar 

  16. Schuld, M., Fingerhuth, M., Petruccione, F.: Implementing a distance-based classifier with a quantum interference circuit. EPL (Europhysics Letters), vol. 119, p. 60002, Sep 2017. arXiv: 1703.10793

  17. Aaronson, S.: Read the fine print. Nature Phys. 11, 291–293 (2015)

    Article  Google Scholar 

  18. Barenco, A., et al.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)

    Article  Google Scholar 

  19. Möttönen, M., Vartiainen, J.J., Bergholm, V., Salomaa, M.M.: Transformation of quantum states using uniformly controlled rotations. Quantum Inf. Comput. 5(6), 467–473 (2005)

    MathSciNet  MATH  Google Scholar 

  20. Shende, V.V., Bullock, S.S., Markov, I.L.: Synthesis of quantum-logic circuits. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 25(6), 1000–1010 (2006)

    Article  Google Scholar 

  21. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum random access memory. Phys. Rev. Lett. 100 (2008)

    Google Scholar 

  22. Araujo, I.F., Park, D.K., Petruccione, F., da Silva, A.J.: A divide-and-conquer algorithm for quantum state preparation. Sci. Rep. 11(1), 1–12 (2021)

    Article  Google Scholar 

  23. Sadowski, P.: Quantum distance-based classifier with distributed knowledge and state recycling. Int. J. Quantum Inf. 16, 1840013 (2018)

    Article  Google Scholar 

  24. Wezeman, R., Neumann, N., Phillipson, F.: Distance-based classifier on the quantum inspire. Digitale Welt 4, 85–91 (2020)

    Article  Google Scholar 

  25. QuTech. Quantum inspire. https://www.quantum-inspire.com (2020)

  26. Last, T., et al.: Quantum inspire: quTech’s platform for co-development and collaboration in quantum computing. In: Sanchez, M.I., Panning, E.M. (eds.) Novel Patterning Technologies for Semiconductors, MEMS/NEMS and MOEMS 2020, vol. 11324, pp. 49–59. International Society for Optics and Photonics, SPIE (2020)

    Google Scholar 

  27. Khammassi, N., Ashraf, I., Fu, X., Almudever, C.G., Bertels, K.: QX: A high-performance quantum computer simulation platform. In: Design Automation Test in Europe Conference Exhibition (DATE), vol. 2017, pp. 464–469 (2017)

    Google Scholar 

  28. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Annu. Eugenics 7, 179–188 (1936)

    Article  Google Scholar 

Download references

Acknowledgements

This work is the result of the quantum technology project of TNO. There are no conflict of interests for the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels M. P. Neumann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Neumann, N.M.P. (2021). Classification Using a Two-Qubit Quantum Chip. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12747. Springer, Cham. https://doi.org/10.1007/978-3-030-77980-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77980-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77979-5

  • Online ISBN: 978-3-030-77980-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics