Skip to main content

The Seminiferous Epithelial Cycle of Spermatogenesis: Role of Non-receptor Tyrosine Kinases

  • Chapter
  • First Online:
Molecular Mechanisms in Spermatogenesis

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1381))

Abstract

Non-receptor tyrosine kinases (NRTKs) are implicated in various biological processes including cell proliferation, differentiation, survival, and apoptosis, as well as cell adhesion and movement. NRTKs are expressed in all mammals and in different cell types, with extraordinarily high expression in the testis. Their association with the plasma membrane and dynamic subcellular localization are crucial parameters in their activation and function. Many NRTKs are found in endosomal protein trafficking pathways, which suggests a novel mechanism to regulate the timely junction restructuring in the mammalian testis to facilitate spermiation and germ cell transport across the seminiferous epithelium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Glazer, C. H., et al. (2017). Risk of diabetes according to male factor infertility: A register-based cohort study. Human Reproduction, 32(7), 1474–1481.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nagirnaja, L., Aston, K. I., & Conrad, D. F. (2018). Genetic intersection of male infertility and cancer. Fertility and Sterility, 109(1), 20–26.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Eisenberg, M. L., et al. (2016). Increased risk of incident chronic medical conditions in infertile men: Analysis of United States claims data. Fertility and Sterility, 105(3), 629–636.

    Article  PubMed  Google Scholar 

  4. Sengupta, P., et al. (2018). Decline in sperm count in European men during the past 50 years. Human & Experimental Toxicology, 37(3), 247–255.

    Article  CAS  Google Scholar 

  5. Levine, H., et al. (2017). Temporal trends in sperm count: A systematic review and meta-regression analysis. Human Reproduction Update, 23(6), 646–659.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gocek, E., Moulas, A. N., & Studzinski, G. P. (2014). Non-receptor protein tyrosine kinases signaling pathways in normal and cancer cells. Critical Reviews in Clinical Laboratory Sciences, 51(3), 125–137.

    Article  CAS  PubMed  Google Scholar 

  7. Lemmon, M. A., & Schlessinger, J. (2010). Cell signaling by receptor tyrosine kinases. Cell, 141(7), 1117–1134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Espada, J., & Martin-Perez, J. (2017). An Update on Src Family of Nonreceptor Tyrosine Kinases Biology. International Review of Cell and Molecular Biology, 331, 83–122.

    Article  CAS  PubMed  Google Scholar 

  9. Angelucci, A. (2019). Targeting tyrosine kinases in cancer: Lessons for an effective targeted therapy in the clinic. Cancers (Basel), 11(4), 490.

    Article  CAS  Google Scholar 

  10. Szilveszter, K. P., Németh, T., & Mócsai, A. (2019). Tyrosine kinases in autoimmune and inflammatory skin diseases. Frontiers in Immunology, 10, 1862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Paul, M. K., & Mukhopadhyay, A. K. (2004). Tyrosine kinase - Role and significance in cancer. International Journal of Medical Sciences, 1(2), 101–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Deng, T., Chen, Q., & Han, D. (2016). The roles of TAM receptor tyrosine kinases in the mammalian testis and immunoprivileged sites. Frontiers in Bioscience (Landmark Edition), 21, 316–327.

    Article  CAS  Google Scholar 

  13. Zhang, Y., et al. (2013). Breakdown of immune homeostasis in the testis of mice lacking Tyro3, Axl and Mer receptor tyrosine kinases. Immunology and Cell Biology, 91(6), 416–426.

    Article  CAS  PubMed  Google Scholar 

  14. Kierszenbaum, A. L., Rivkin, E., & Tres, L. L. (2011). Cytoskeletal track selection during cargo transport in spermatids is relevant to male fertility. Spermatogenesis, 1(3), 221–230.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tang, E. I., Lee, W. M., & Cheng, C. Y. (2016). Coordination of actin- and microtubule-based cytoskeletons supports transport of spermatids and residual bodies/phagosomes during spermatogenesis in the rat testis. Endocrinology, 157(4), 1644–1659.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen, Y. M., et al. (2003). Fer kinase/FerT and adherens junction dynamics in the testis: An in vitro and in vivo study. Biology of Reproduction, 69(2), 656–672.

    Article  CAS  PubMed  Google Scholar 

  17. Xiao, X., et al. (2019). Emerging role for SRC family kinases in junction dynamics during spermatogenesis. Reproduction, 157(3), R85–R94.

    Article  CAS  PubMed  Google Scholar 

  18. Kierszenbaum, A. L., Rivkin, E., & Tres, L. L. (2008). Expression of Fer testis (FerT) tyrosine kinase transcript variants and distribution sites of FerT during the development of the acrosome-acroplaxome-manchette complex in rat spermatids. Developmental Dynamics, 237(12), 3882–3891.

    Article  CAS  PubMed  Google Scholar 

  19. Gungor-Ordueri, N. E., et al. (2014). New insights into FAK function and regulation during spermatogenesis. Histology and Histopathology, 29(8), 977–989.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wan, H. T., et al. (2014). Role of non-receptor protein tyrosine kinases in spermatid transport during spermatogenesis. Seminars in Cell & Developmental Biology, 30, 65–74.

    Article  CAS  Google Scholar 

  21. Cheng, C. Y., & Mruk, D. D. (2012). The blood-testis barrier and its implications for male contraception. Pharmacological Reviews, 64(1), 16–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nishimura, H., & L’Hernault, S. W. (2017). Spermatogenesis. Current Biology, 27(18), R988–R994.

    Article  CAS  PubMed  Google Scholar 

  23. Hess, R. A., & de Franca, L. R. (2008). Spermatogenesis and cycle of the seminiferous epithelium. Advances in Experimental Medicine and Biology, 636, 1–15.

    PubMed  Google Scholar 

  24. O’Donnell, L. (2014). Mechanisms of spermiogenesis and spermiation and how they are disturbed. Spermatogenesis, 4(2), e979623.

    Article  PubMed  Google Scholar 

  25. Cheng, C. Y., & Mruk, D. D. (2002). Cell junction dynamics in the testis: Sertoli-germ cell interactions and male contraceptive development. Physiological Reviews, 82(4), 825–874.

    Article  CAS  PubMed  Google Scholar 

  26. O’Donnell, L., et al. (2011). Spermiation: The process of sperm release. Spermatogenesis, 1(1), 14–35.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Vogl, A. W., et al. (2000). Unique and multifunctional adhesion junctions in the testis: Ectoplasmic specializations. Archives of Histology and Cytology, 63(1), 1–15.

    Article  CAS  PubMed  Google Scholar 

  28. Russell, L. (1977). Desmosome-like junctions between Sertoli and germ cells in the rat testis. The American Journal of Anatomy, 148(3), 301–312.

    Article  CAS  PubMed  Google Scholar 

  29. Dym, M., & Fawcett, D. W. (1970). The blood-testis barrier in the rat and the physiological compartmentation of the seminiferous epithelium. Biology of Reproduction, 3(3), 308–326.

    Article  CAS  PubMed  Google Scholar 

  30. Wen, Q., et al. (2016). Transport of germ cells across the seminiferous epithelium during spermatogenesis-the involvement of both actin- and microtubule-based cytoskeletons. Tissue Barriers, 4(4), e1265042.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dunleavy, J. E. M., et al. (2019). The cytoskeleton in spermatogenesis. Reproduction, 157(2), R53–R72.

    Article  CAS  PubMed  Google Scholar 

  32. Tang, E. I., Mruk, D. D., & Cheng, C. Y. (2016). Regulation of microtubule (MT)-based cytoskeleton in the seminiferous epithelium during spermatogenesis. Seminars in Cell & Developmental Biology, 59, 35–45.

    Article  CAS  Google Scholar 

  33. Mao, B., et al. (2018). Mechanistic insights into PFOS-mediated sertoli cell injury. Trends in Molecular Medicine, 24(9), 781–793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Neet, K., & Hunter, T. (1996). Vertebrate non-receptor protein-tyrosine kinase families. Genes to Cells, 1(2), 147–169.

    Article  CAS  PubMed  Google Scholar 

  35. Tsygankov, A. Y. (2003). Non-receptor protein tyrosine kinases. Frontiers in Bioscience, 8, s595–s635.

    Article  CAS  PubMed  Google Scholar 

  36. Schwartzberg, P. L., et al. (1991). Mice homozygous for the ablm1 mutation show poor viability and depletion of selected B and T cell populations. Cell, 65(7), 1165–1175.

    Article  CAS  PubMed  Google Scholar 

  37. Tybulewicz, V. L., et al. (1991). Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell, 65(7), 1153–1163.

    Article  CAS  PubMed  Google Scholar 

  38. Li, B., et al. (2000). Mice deficient in Abl are osteoporotic and have defects in osteoblast maturation. Nature Genetics, 24(3), 304–308.

    Article  CAS  PubMed  Google Scholar 

  39. Koleske, A. J., et al. (1998). Essential roles for the Abl and Arg tyrosine kinases in neurulation. Neuron, 21(6), 1259–1272.

    Article  CAS  PubMed  Google Scholar 

  40. Haegebarth, A., et al. (2006). Protein tyrosine kinase 6 negatively regulates growth and promotes enterocyte differentiation in the small intestine. Molecular and Cellular Biology, 26(13), 4949–4957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chandrasekharan, S., et al. (2002). Characterization of mice deficient in the Src family nonreceptor tyrosine kinase Frk/rak. Molecular and Cellular Biology, 22(14), 5235–5247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kohmura, N., et al. (1994). A novel nonreceptor tyrosine kinase, Srm: Cloning and targeted disruption. Molecular and Cellular Biology, 14(10), 6915–6925.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Nada, S., et al. (1993). Constitutive activation of Src family kinases in mouse embryos that lack Csk. Cell, 73(6), 1125–1135.

    Article  CAS  PubMed  Google Scholar 

  44. Imamoto, A., & Soriano, P. (1993). Disruption of the csk gene, encoding a negative regulator of Src family tyrosine kinases, leads to neural tube defects and embryonic lethality in mice. Cell, 73(6), 1117–1124.

    Article  CAS  PubMed  Google Scholar 

  45. Hamaguchi, I., et al. (1996). Analysis of CSK homologous kinase (CHK/HYL) in hematopoiesis by utilizing gene knockout mice. Biochemical and Biophysical Research Communications, 224(1), 172–179.

    Article  CAS  PubMed  Google Scholar 

  46. Ellmeier, W., et al. (2000). Severe B cell deficiency in mice lacking the tec kinase family members Tec and Btk. The Journal of Experimental Medicine, 192(11), 1611–1624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Khan, W. N., et al. (1995). Defective B cell development and function in Btk-deficient mice. Immunity, 3(3), 283–299.

    Article  CAS  PubMed  Google Scholar 

  48. Kerner, J. D., et al. (1995). Impaired expansion of mouse B cell progenitors lacking Btk. Immunity, 3(3), 301–312.

    Article  CAS  PubMed  Google Scholar 

  49. Bachmann, M. F., Littman, D. R., & Liao, X. C. (1997). Antiviral immune responses in Itk-deficient mice. Journal of Virology, 71(10), 7253–7257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rajantie, I., et al. (2001). Bmx tyrosine kinase has a redundant function downstream of angiopoietin and vascular endothelial growth factor receptors in arterial endothelium. Molecular and Cellular Biology, 21(14), 4647–4655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ilić, D., et al. (1995). Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature, 377(6549), 539–544.

    Article  PubMed  Google Scholar 

  52. Vadali, K., Cai, X., & Schaller, M. D. (2007). Focal adhesion kinase: An essential kinase in the regulation of cardiovascular functions. IUBMB Life, 59(11), 709–716.

    Article  CAS  PubMed  Google Scholar 

  53. Okigaki, M., et al. (2003). Pyk2 regulates multiple signaling events crucial for macrophage morphology and migration. Proceedings of the National Academy of Sciences of the United States of America, 100(19), 10740–10745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Igaz, P., Tóth, S., & Falus, A. (2001). Biological and clinical significance of the JAK-STAT pathway; Lessons from knockout mice. Inflammation Research, 50(9), 435–441.

    Article  CAS  PubMed  Google Scholar 

  55. Rodig, S. J., et al. (1998). Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell, 93(3), 373–383.

    Article  CAS  PubMed  Google Scholar 

  56. Neubauer, H., et al. (1998). Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell, 93(3), 397–409.

    Article  CAS  PubMed  Google Scholar 

  57. Parganas, E., et al. (1998). Jak2 is essential for signaling through a variety of cytokine receptors. Cell, 93(3), 385–395.

    Article  CAS  PubMed  Google Scholar 

  58. Nosaka, T., et al. (1995). Defective lymphoid development in mice lacking Jak3. Science, 270(5237), 800–802.

    Article  CAS  PubMed  Google Scholar 

  59. Strobl, B., et al. (2011). Tyrosine kinase 2 (TYK2) in cytokine signalling and host immunity. Frontiers in Bioscience (Landmark Edition), 16, 3214–3232.

    Google Scholar 

  60. Craig, A. W., et al. (2001). Mice devoid of fer protein-tyrosine kinase activity are viable and fertile but display reduced cortactin phosphorylation. Molecular and Cellular Biology, 21(2), 603–613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zirngibl, R. A., Senis, Y., & Greer, P. A. (2002). Enhanced endotoxin sensitivity in fps/fes-null mice with minimal defects in hematopoietic homeostasis. Molecular and Cellular Biology, 22(8), 2472–2486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Senis, Y. A., Craig, A. W., & Greer, P. A. (2003). Fps/Fes and Fer protein-tyrosinekinases play redundant roles in regulating hematopoiesis. Experimental Hematology, 31(8), 673–681.

    Article  CAS  PubMed  Google Scholar 

  63. Turner, M., et al. (1995). Perinatal lethality and blocked B-cell development in mice lacking the tyrosine kinase Syk. Nature, 378(6554), 298–302.

    Article  CAS  PubMed  Google Scholar 

  64. Cheng, A. M., et al. (1995). Syk tyrosine kinase required for mouse viability and B-cell development. Nature, 378(6554), 303–306.

    Article  CAS  PubMed  Google Scholar 

  65. Kadlecek, T. A., et al. (1998). Differential requirements for ZAP-70 in TCR signaling and T cell development. Journal of Immunology, 161(9), 4688–4694.

    Article  CAS  Google Scholar 

  66. Hoare, S., et al. (2008). Tnk1/Kos1 knockout mice develop spontaneous tumors. Cancer Research, 68(21), 8723–8732.

    Article  CAS  PubMed  Google Scholar 

  67. Xiao, X., et al. (2012). C-Src and c-Yes are two unlikely partners of spermatogenesis and their roles in blood-testis barrier dynamics. Advances in Experimental Medicine and Biology, 763, 295–317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mohamed, A. J., et al. (2009). Bruton’s tyrosine kinase (Btk): Function, regulation, and transformation with special emphasis on the PH domain. Immunological Reviews, 228(1), 58–73.

    Article  CAS  PubMed  Google Scholar 

  69. Murray, M. J., et al. (2006). The Fes/Fer non-receptor tyrosine kinase cooperates with Src42A to regulate dorsal closure in Drosophila. Development, 133(16), 3063–3073.

    Article  CAS  PubMed  Google Scholar 

  70. Barbaric, I., Miller, G., & Dear, T. N. (2007). Appearances can be deceiving: Phenotypes of knockout mice. Briefings in Functional Genomics & Proteomics, 6(2), 91–103.

    Article  CAS  Google Scholar 

  71. Brunton, V. G., MacPherson, I. R. J., & Frame, M. C. (2004). Cell adhesion receptors, tyrosine kinases and actin modulators: A complex three-way circuitry. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1692(2), 121–144.

    Article  CAS  Google Scholar 

  72. Mocsai, A., Ruland, J., & Tybulewicz, V. L. (2010). The SYK tyrosine kinase: A crucial player in diverse biological functions. Nature Reviews. Immunology, 10(6), 387–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hantschel, O., & Superti-Furga, G. (2004). Regulation of the c-Abl and Bcr-Abl tyrosine kinases. Nature Reviews. Molecular Cell Biology, 5(1), 33–44.

    Article  CAS  PubMed  Google Scholar 

  74. Fox, M., Crafter, C., & Owen, D. (2019). The non-receptor tyrosine kinase ACK: Regulatory mechanisms, signalling pathways and opportunities for attACKing cancer. Biochemical Society Transactions, 47(6), 1715–1731.

    Article  CAS  PubMed  Google Scholar 

  75. Hall, J. E., Fu, W., & Schaller, M. D. (2011). Focal adhesion kinase: Exploring Fak structure to gain insight into function. International Review of Cell and Molecular Biology, 288, 185–225.

    Article  CAS  PubMed  Google Scholar 

  76. Levinson, N. M., et al. (2008). Structural basis for the recognition of c-Src by its inactivator Csk. Cell, 134(1), 124–134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Filippakopoulos, P., et al. (2008). Structural coupling of SH2-kinase domains links Fes and Abl substrate recognition and kinase activation. Cell, 134(5), 793–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Qiu, H., & Miller, W. T. (2002). Regulation of the nonreceptor tyrosine kinase Brk by autophosphorylation and by autoinhibition. The Journal of Biological Chemistry, 277(37), 34634–34641.

    Article  CAS  PubMed  Google Scholar 

  79. Schoenherr, C., Frame, M. C., & Byron, A. (2018). Trafficking of adhesion and growth factor receptors and their effector kinases. Annual Review of Cell and Developmental Biology, 34, 29–58.

    Article  CAS  PubMed  Google Scholar 

  80. Yang, W. C., et al. (2000). Tec kinases: A family with multiple roles in immunity. Immunity, 12(4), 373–382.

    Article  CAS  PubMed  Google Scholar 

  81. Safari, F., & Suetsugu, S. (2012). The BAR domain superfamily proteins from subcellular structures to human diseases. Membranes (Basel), 2(1), 91–117.

    Article  CAS  Google Scholar 

  82. Mahajan, K., & Mahajan, N. P. (2015). ACK1/TNK2 tyrosine kinase: Molecular signaling and evolving role in cancers. Oncogene, 34(32), 4162–4167.

    Article  CAS  PubMed  Google Scholar 

  83. Bagnato, G., et al. (2020). Nuclear functions of the tyrosine kinase Src. International Journal of Molecular Sciences, 21(8), 2675.

    Article  CAS  PubMed Central  Google Scholar 

  84. Reinecke, J., & Caplan, S. (2014). Endocytosis and the Src family of non-receptor tyrosine kinases. Biomolecular Concepts, 5(2), 143–155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sato, I., et al. (2009). Differential trafficking of Src, Lyn, Yes and Fyn is specified by the state of palmitoylation in the SH4 domain. Journal of Cell Science, 122(Pt 7), 965–975.

    Article  CAS  PubMed  Google Scholar 

  86. Aicart-Ramos, C., Valero, R. A., & Rodriguez-Crespo, I. (2011). Protein palmitoylation and subcellular trafficking. Biochimica et Biophysica Acta, 1808(12), 2981–2994.

    Article  CAS  PubMed  Google Scholar 

  87. Ahmed, I., et al. (2004). Cdc42-dependent nuclear translocation of non-receptor tyrosine kinase, ACK. Biochemical and Biophysical Research Communications, 314(2), 571–579.

    Article  CAS  PubMed  Google Scholar 

  88. Ben-Dor, I., et al. (1999). Cell cycle-dependent nuclear accumulation of the p94fer tyrosine kinase is regulated by its NH2 terminus and is affected by kinase domain integrity and ATP binding. Cell Growth & Differentiation, 10(2), 113–129.

    CAS  Google Scholar 

  89. Taagepera, S., et al. (1998). Nuclear-cytoplasmic shuttling of C-ABL tyrosine kinase. Proceedings of the National Academy of Sciences of the United States of America, 95(13), 7457–7462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. di Bari, M. G., et al. (2006). c-Abl acetylation by histone acetyltransferases regulates its nuclear-cytoplasmic localization. EMBO Reports, 7(7), 727–733.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Sandilands, E., et al. (2004). RhoB and actin polymerization coordinate Src activation with endosome-mediated delivery to the membrane. Developmental Cell, 7(6), 855–869.

    Article  CAS  PubMed  Google Scholar 

  92. Reinecke, J. B., et al. (2014). Regulation of Src trafficking and activation by the endocytic regulatory proteins MICAL-L1 and EHD1. Journal of Cell Science, 127(Pt 8), 1684–1698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sandilands, E., & Frame, M. C. (2008). Endosomal trafficking of Src tyrosine kinase. Trends in Cell Biology, 18(7), 322–329.

    Article  CAS  PubMed  Google Scholar 

  94. Takesono, A., Finkelstein, L. D., & Schwartzberg, P. L. (2002). Beyond calcium: New signaling pathways for Tec family kinases. Journal of Cell Science, 115(15), 3039.

    Article  CAS  PubMed  Google Scholar 

  95. Leonard, T. A., & Hurley, J. H. (2011). Regulation of protein kinases by lipids. Current Opinion in Structural Biology, 21(6), 785–791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Behrmann, I., et al. (2004). Janus kinase (Jak) subcellular localization revisited: The exclusive membrane localization of endogenous Janus kinase 1 by cytokine receptor interaction uncovers the Jaki·receptor complex to be equivalent to a receptor tyrosine kinase. The Journal of Biological Chemistry, 279(34), 35486–35493.

    Article  CAS  PubMed  Google Scholar 

  97. Prieto-Echagüe, V., et al. (2010). Regulation of Ack1 localization and activity by the amino-terminal SAM domain. BMC Biochemistry, 11, 42.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Brauer, P. M., & Tyner, A. L. (2009). RAKing in AKT: A tumor suppressor function for the intracellular tyrosine kinase FRK. Cell Cycle, 8(17), 2728–2732.

    Article  CAS  PubMed  Google Scholar 

  99. Gilic, M. B., & Tyner, A. L. (2020). Targeting protein tyrosine kinase 6 in cancer. Biochimica Et Biophysica Acta. Reviews on Cancer, 1874(2), 188432.

    Article  Google Scholar 

  100. Zheng, Y., et al. (2013). Protein tyrosine kinase 6 protects cells from anoikis by directly phosphorylating focal adhesion kinase and activating AKT. Oncogene, 32(36), 4304–4312.

    Article  CAS  PubMed  Google Scholar 

  101. Wang, H., et al. (2010). ZAP-70: An essential kinase in T-cell signaling. Cold Spring Harbor Perspectives in Biology, 2(5), a002279.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Frame, M. C., et al. (2010). The FERM domain: Organizing the structure and function of FAK. Nature Reviews. Molecular Cell Biology, 11(11), 802–814.

    Article  CAS  PubMed  Google Scholar 

  103. Zhu, F., et al. (2017). Nuclear import of JAK1 is mediated by a classical NLS and is required for survival of diffuse large B-cell lymphoma. Molecular Cancer Research, 15(3), 348–357.

    Article  CAS  PubMed  Google Scholar 

  104. Zhou, F., et al. (2006). Nucleocytoplasmic trafficking of the Syk protein tyrosine kinase. Molecular and Cellular Biology, 26(9), 3478–3491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Johnson, L., Petty, C. S., & Neaves, W. B. (1980). A comparative study of daily sperm production and testicular composition in humans and rats. Biology of Reproduction, 22, 1233–1243.

    Article  CAS  PubMed  Google Scholar 

  106. Johnson, L., Petty, C. S., & Neaves, W. B. (1983). Further quantification of human spermatogenesis: Germ cell loss during postprophase of meiosis and its relationship to daily sperm production. Biology of Reproduction, 29, 207–215.

    Article  CAS  PubMed  Google Scholar 

  107. Mruk, D. D., & Cheng, C. Y. (2015). The mammalian blood-testis barrier: Its biology and regulation. Endocrine Reviews, 36(5), 564–591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yan, H. H., et al. (2008). Blood-testis barrier dynamics are regulated by testosterone and cytokines via their differential effects on the kinetics of protein endocytosis and recycling in Sertoli cells. The FASEB Journal, 22(6), 1945–1959.

    Article  CAS  PubMed  Google Scholar 

  109. Xia, W., et al. (2009). TGF-beta3 and TNFalpha perturb blood-testis barrier (BTB) dynamics by accelerating the clathrin-mediated endocytosis of integral membrane proteins: A new concept of BTB regulation during spermatogenesis. Developmental Biology, 327(1), 48–61.

    Article  CAS  PubMed  Google Scholar 

  110. Lie, P. P., Cheng, C. Y., & Mruk, D. D. (2011). Interleukin-1alpha is a regulator of the blood-testis barrier. The FASEB Journal, 25(4), 1244–1253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Xiao, X., et al. (2014). Differential effects of c-Src and c-Yes on the endocytic vesicle-mediated trafficking events at the Sertoli cell blood-testis barrier: An in vitro study. American Journal of Physiology. Endocrinology and Metabolism, 307(7), E553–E562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mruk, D. D., & Cheng, C. Y. (2011). An in vitro system to study Sertoli cell blood-testis barrier dynamics. Methods in Molecular Biology, 763, 237–252.

    Article  CAS  PubMed  Google Scholar 

  113. Xiao, X., et al. (2014). Cytokines, polarity proteins, and endosomal protein trafficking and signaling-the sertoli cell blood-testis barrier system in vitro as a study model. Methods in Enzymology, 534, 181–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Xiao, X., et al. (2011). c-Yes regulates cell adhesion at the blood-testis barrier and the apical ectoplasmic specialization in the seminiferous epithelium of rat testes. The International Journal of Biochemistry & Cell Biology, 43(4), 651–665.

    Article  CAS  Google Scholar 

  115. Lie, P. P., et al. (2009). Epidermal growth factor receptor pathway substrate 8 (Eps8) is a novel regulator of cell adhesion and the blood-testis barrier integrity in the seminiferous epithelium. The FASEB Journal, 23, 2555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Xiao, X., Mruk, D. D., & Cheng, C. Y. (2013). c-Yes regulates cell adhesion at the apical ectoplasmic specialization-blood-testis barrier axis via its effects on protein recruitment and distribution. American Journal of Physiology. Endocrinology and Metabolism, 304(2), E145–E159.

    Article  CAS  PubMed  Google Scholar 

  117. Lie, P. P., et al. (2010). Restricted Arp3 expression in the testis prevents blood-testis barrier disruption during junction restructuring at spermatogenesis. Proceedings of the National Academy of Sciences of the United States of America, 107(25), 11411–11416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Vogl, A. W., Young, J. S., & Du, M. (2013). New insights into roles of tubulobulbar complexes in sperm release and turnover of blood-testis barrier. International Review of Cell and Molecular Biology, 303, 319–355.

    Article  CAS  PubMed  Google Scholar 

  119. Siu, M. K., et al. (2003). Adhering junction dynamics in the testis are regulated by an interplay of beta 1-integrin and focal adhesion complex-associated proteins. Endocrinology, 144(5), 2141–2163.

    Article  CAS  PubMed  Google Scholar 

  120. Xiao, X., et al. (2014). Germ cell transport across the seminiferous epithelium during spermatogenesis. Physiology (Bethesda), 29(4), 286–298.

    CAS  Google Scholar 

  121. Clermont, Y., Morales, C., & Hermo, L. (1987). Endocytic activities of Sertoli cells in the rat. Annals of the New York Academy of Sciences, 513, 1–15.

    Article  CAS  PubMed  Google Scholar 

  122. Hermo, L., et al. (2010). Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 5: Intercellular junctions and contacts between germs cells and Sertoli cells and their regulatory interactions, testicular cholesterol, and genes/proteins associated with more than one germ cell generation. Microscopy Research and Technique, 73(4), 409–494.

    CAS  PubMed  Google Scholar 

  123. Boada-Romero, E., et al. (2020). The clearance of dead cells by efferocytosis. Nature Reviews. Molecular Cell Biology, 21, 398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lie, P. P., et al. (2012). Focal adhesion kinase-Tyr407 and -Tyr397 exhibit antagonistic effects on blood-testis barrier dynamics in the rat. Proceedings of the National Academy of Sciences of the United States of America, 109(31), 12562–12567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Key Research and Development Program of China (2018YFC1003504), National Natural Science Foundation of China (31371176, 81771647, 81502794 and 81973011), Zhejiang Provincial Natural Science Foundation of China (LY21H040005), Zhejiang Provincial Department of Education (Y202045395), Health Commission of Zhejiang Province (2020RC052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xiao, X. et al. (2021). The Seminiferous Epithelial Cycle of Spermatogenesis: Role of Non-receptor Tyrosine Kinases. In: Cheng, C., Sun, F. (eds) Molecular Mechanisms in Spermatogenesis. Advances in Experimental Medicine and Biology, vol 1381. Springer, Cham. https://doi.org/10.1007/978-3-030-77779-1_1

Download citation

Publish with us

Policies and ethics