Skip to main content

Physiology and Motility of the Normal and Replaced Esophagus

  • Chapter
  • First Online:
Esophageal Preservation and Replacement in Children

Abstract

The esophagus serves as a conduit between the pharynx and the stomach. The normal esophagus has three functional regions including the upper esophageal sphincter (UES), esophageal body, and lower esophageal sphincter (LES). Each region has its specific function, and any disruption to these areas can compromise the esophageal motility. Various etiologies contribute to esophageal dysmotility, which may require surgical intervention. Common surgical disorders include esophageal atresia, severe peptic and caustic strictures, anastomotic strictures, achalasia, and other rare esophageal disorders. Here we cover the normal esophageal physiology and motility pattern and summarize common dysmotility patterns for associated surgical disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mu L, Sanders I, Wu BL, Biller HF. The intramuscular innervation of the human interarytenoid muscle. Laryngoscope. 1994;104(1 Pt 1):33–9. https://doi.org/10.1288/00005537-199401000-00008.

    Article  CAS  PubMed  Google Scholar 

  2. Sivarao DV, Goyal RK. Functional anatomy and physiology of the upper esophageal sphincter. Am J Med. 2000;108 Suppl 4a:27S–37S. https://doi.org/10.1016/s0002-9343(99)00337-x.

    Article  CAS  PubMed  Google Scholar 

  3. Kleinman RE, Sanderson IR. Walker’s pediatric gastrointestinal disease, Chapter 4.1. In: Esophageal motiltiy 4.1 normal motility and development of the esophageal neuroenteric system, vol. 1. 6th ed. People’s Medical Publishing House-USA; 2017. p. 59–72.

    Google Scholar 

  4. Mittal R, Vaezi MF. Esophageal motility disorders and gastroesophageal reflux disease. N Engl J Med. 2020;383(20):1961–72. https://doi.org/10.1056/NEJMra2000328.

    Article  CAS  PubMed  Google Scholar 

  5. Mittal RK. Regulation and dysregulation of esophageal peristalsis by the integrated function of circular and longitudinal muscle layers in health and disease. Am J Physiol Gastrointest Liver Physiol. 2016;311(3):G431–43. https://doi.org/10.1152/ajpgi.00182.2016.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Berthoud HR, Blackshaw LA, Brookes SJ, Grundy D. Neuroanatomy of extrinsic afferents supplying the gastrointestinal tract. Neurogastroenterol Motil. 2004;16(Suppl 1):28–33. https://doi.org/10.1111/j.1743-3150.2004.00471.x.

    Article  PubMed  Google Scholar 

  7. Hall JE, Hall ME. Chapter 63, General principles of gastrointestinal function—motility, nervous control, and blood circulation. In: Guyton and Hall textbook of medical physiology. Philadelphia: Elsevier; 2021.

    Google Scholar 

  8. Kovac JR, Preiksaitis HG, Sims SM. Functional and molecular analysis of L-type calcium channels in human esophagus and lower esophageal sphincter smooth muscle. Am J Physiol Gastrointest Liver Physiol. 2005;289(6):G998–1006. https://doi.org/10.1152/ajpgi.00529.2004.

    Article  CAS  PubMed  Google Scholar 

  9. Sanders KM. Regulation of smooth muscle excitation and contraction. Neurogastroenterol Motil. 2008;20(Suppl 1):39–53. https://doi.org/10.1111/j.1365-2982.2008.01108.x.

    Article  CAS  PubMed  Google Scholar 

  10. Huizinga JD, Lammers WJ. Gut peristalsis is governed by a multitude of cooperating mechanisms. Am J Physiol Gastrointest Liver Physiol. 2009;296(1):G1–8. https://doi.org/10.1152/ajpgi.90380.2008.

    Article  CAS  PubMed  Google Scholar 

  11. Sanders KM, Kito Y, Hwang SJ, Ward SM. Regulation of gastrointestinal smooth muscle function by interstitial cells. Physiology (Bethesda). 2016;31(5):316–26. https://doi.org/10.1152/physiol.00006.2016.

    Article  CAS  Google Scholar 

  12. Wyman JB, Dent J, Heddle R, Dodds WJ, Toouli J, Downton J. Control of belching by the lower oesophageal sphincter. Gut. 1990;31(6):639–46. https://doi.org/10.1136/gut.31.6.639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Babaei A, Bhargava V, Korsapati H, Zheng WH, Mittal RK. A unique longitudinal muscle contraction pattern associated with transient lower esophageal sphincter relaxation. Gastroenterology. 2008;134(5):1322–31. https://doi.org/10.1053/j.gastro.2008.02.031.

    Article  PubMed  Google Scholar 

  14. Tack J, Pandolfino JE. Pathophysiology of gastroesophageal reflux disease. Gastroenterology. 2018;154(2):277–88. https://doi.org/10.1053/j.gastro.2017.09.047.

    Article  CAS  PubMed  Google Scholar 

  15. Faure C, Thapar N, Di Lorenzo C. Chapter 7 Esophageal manometry. In: Pediatric neurogastroenterology. Cham: Springer International Publishing; 2017. p. 83–4.

    Chapter  Google Scholar 

  16. Goyal RK, Chaudhury A. Physiology of normal esophageal motility. J Clin Gastroenterol. 2008;42(5):610–9. https://doi.org/10.1097/mcg.0b013e31816b444d.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Staiano A, Boccia G, Miele E, Clouse RE. Segmental characteristics of oesophageal peristalsis in paediatric patients. Neurogastroenterol Motil. 2007;0(0):071121040122001. https://doi.org/10.1111/j.1365-2982.2007.00999.x.

    Article  Google Scholar 

  18. Yadlapati R, Kahrilas PJ, Fox MR, Bredenoord AJ, Prakash Gyawali C, Roman S, et al. Esophageal motility disorders on high-resolution manometry: Chicago classification version 4.0 ©. Neurogastroenterol Motil. 2021;33(1). https://doi.org/10.1111/nmo.14058.

  19. Rosen R, Garza JM, Tipnis N, Nurko S. An ANMS-NASPGHAN consensus document on esophageal and antroduodenal manometry in children. Neurogastroenterol Motil. 2018;30(3):e13239. https://doi.org/10.1111/nmo.13239.

    Article  Google Scholar 

  20. Kunisaki SM, Coran AG. Esophageal replacement. Semin Pediatr Surg. 2017;26(2):105–15. https://doi.org/10.1053/j.sempedsurg.2017.02.006.

    Article  PubMed  Google Scholar 

  21. Kahrilas PJ, Bredenoord AJ, Fox M, Gyawali CP, Roman S, Smout AJPM, et al. The Chicago classification of esophageal motility disorders, v3.0. Neurogastroenterol Motil. 2015;27(2):160–74. https://doi.org/10.1111/nmo.12477.

    Article  CAS  PubMed  Google Scholar 

  22. Shaw-Smith C. Oesophageal atresia, tracheo-oesophageal fistula, and the VACTERL association: review of genetics and epidemiology. J Med Genet. 2005;43(7):545–54. https://doi.org/10.1136/jmg.2005.038158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Castilloux J, Noble AJ, Faure C. Risk factors for short- and long-term morbidity in children with esophageal atresia. J Pediatr. 2010;156(5):755–60. https://doi.org/10.1016/j.jpeds.2009.11.038.

    Article  PubMed  Google Scholar 

  24. Krishnan U, Mousa H, Dall’Oglio L, Homaira N, Rosen R, Faure C, et al. ESPGHAN-NASPGHAN guidelines for the evaluation and treatment of gastrointestinal and nutritional complications in children with esophageal atresia-tracheoesophageal fistula. J Pediatr Gastroenterol Nutr. 2016;63(5):550–70. https://doi.org/10.1097/mpg.0000000000001401.

    Article  PubMed  Google Scholar 

  25. Lemoine C, Aspirot A, Morris M, Faure C. Esophageal dysmotility is present before surgery in isolated tracheoesophageal fistula. J Pediatr Gastroenterol Nutr. 2015;60(5):642–4. https://doi.org/10.1097/MPG.0000000000000667.

    Article  PubMed  Google Scholar 

  26. Romeo G, Zuccarello B, Proietto F, Romeo C. Disorders of the esophageal motor activity in atresia of the esophagus. J Pediatr Surg. 1987;22(2):120–4. https://doi.org/10.1016/s0022-3468(87)80425-6.

    Article  CAS  PubMed  Google Scholar 

  27. Gundry SR, Orringer MB. Esophageal motor dysfunction in an adult with a congenital tracheoesophageal fistula. Arch Surg. 1985;120(9):1082–3. https://doi.org/10.1001/archsurg.1985.01390330088019.

    Article  CAS  PubMed  Google Scholar 

  28. Dutta HK, Mathur M, Bhatnagar V. A histopathological study of esophageal atresia and tracheoesophageal fistula. J Pediatr Surg. 2000;35(3):438–41. https://doi.org/10.1016/s0022-3468(00)90209-4.

    Article  CAS  PubMed  Google Scholar 

  29. Nakazato Y, Wells TR, Landing BH. Abnormal tracheal innervation in patients with esophageal atresia and tracheoesophageal fistula: study of the intrinsic tracheal nerve plexuses by a microdissection technique. J Pediatr Surg. 1986;21(10):838–44. https://doi.org/10.1016/s0022-3468(86)80003-3.

    Article  CAS  PubMed  Google Scholar 

  30. Boleken M, Demirbilek S, Kirimiloglu H, Kanmaz T, Yucesan S, Celbis O, et al. Reduced neuronal innervation in the distal end of the proximal esophageal atretic segment in cases of esophageal atresia with distal tracheoesophageal fistula. World J Surg. 2007;31(7):1512–7. https://doi.org/10.1007/s00268-007-9070-y.

    Article  PubMed  Google Scholar 

  31. Davies MRQ. Anatomy of the extrinsic motor nerve supply to mobilized segments of the oesophagus disrupted by dissection during repair of oesophageal atresia with distal fistula. Br J Surg. 1996;83(9):1268–70. https://doi.org/10.1046/j.1365-2168.1996.02337.x.

    Article  CAS  PubMed  Google Scholar 

  32. Lemoine C, Aspirot A, Le Henaff G, Piloquet H, Levesque D, Faure C. Characterization of esophageal motility following esophageal atresia repair using high-resolution esophageal manometry. J Pediatr Gastroenterol Nutr. 2013;56(6):609–14. https://doi.org/10.1097/MPG.0b013e3182868773.

    Article  PubMed  Google Scholar 

  33. Pedersen RN, Markøw S, Kruse-Andersen S, Qvist N, Hansen TP, Gerke O, et al. Esophageal atresia: gastroesophageal functional follow-up in 5-15 year old children. J Pediatr Surg. 2013;48(12):2487–95. https://doi.org/10.1016/j.jpedsurg.2013.07.019.

    Article  PubMed  Google Scholar 

  34. Dutta HK, Grover VP, Dwivedi SN, Bhatnagar V. Manometric evaluation of postoperative patients of esophageal atresia and tracheo-esophageal fistula. Eur J Pediatr Surg. 2001;11(6):371–6. https://doi.org/10.1055/s-2001-19718.

    Article  CAS  PubMed  Google Scholar 

  35. Hoffman I, De Greef T, Haesendonck N, Tack J. Esophageal motility in children with suspected gastroesophageal reflux disease. J Pediatr Gastroenterol Nutr. 2010;50(6):601–8. https://doi.org/10.1097/MPG.0b013e3181c1f596.

    Article  PubMed  Google Scholar 

  36. Tomaselli V, Volpi M, Dell'Agnola C, Bini M, Rossi A, Indriolo A. Long-term evaluation of esophageal function in patients treated at birth for esophageal atresia. Pediatr Surg Int. 2003;19(1):40–3. https://doi.org/10.1007/s00383-002-0887-z.

    Article  CAS  PubMed  Google Scholar 

  37. Courbette O, Omari T, Aspirot A, Faure C. Characterization of esophageal motility in children with operated esophageal atresia using high-resolution impedance manometry and pressure flow analysis. J Pediatr Gastroenterol Nutr. 2020;71(3):304–9. https://doi.org/10.1097/MPG.0000000000002806.

    Article  CAS  PubMed  Google Scholar 

  38. Friedmacher F, Kroneis B, Huber-Zeyringer A, Schober P, Till H, Sauer H, et al. Postoperative complications and functional outcome after esophageal atresia repair: results from longitudinal single-center follow-up. J Gastrointest Surg. 2017;21(6):927–35. https://doi.org/10.1007/s11605-017-3423-0.

    Article  PubMed  Google Scholar 

  39. Pini Prato A, Carlucci M, Bagolan P, Gamba PG, Bernardi M, Leva E, et al. A cross-sectional nationwide survey on esophageal atresia and tracheoesophageal fistula. J Pediatr Surg. 2015;50(9):1441–56. https://doi.org/10.1016/j.jpedsurg.2015.01.004.

    Article  CAS  PubMed  Google Scholar 

  40. Lazarescu A, Karamanolis G, Aprile L, De Oliveira RB, Dantas R, Sifrim D. Perception of dysphagia: lack of correlation with objective measurements of esophageal function. Neurogastroenterol Motil. 2010;22(12):1292–7, e336–7. https://doi.org/10.1111/j.1365-2982.2010.01578.x.

    Article  CAS  PubMed  Google Scholar 

  41. Kawahara H, Kubota A, Hasegawa T, Okuyama H, Ueno T, Watanabe T, et al. Lack of distal esophageal contractions is a key determinant of gastroesophageal reflux disease after repair of esophageal atresia. J Pediatr Surg. 2007;42(12):2017–21. https://doi.org/10.1016/j.jpedsurg.2007.08.023.

    Article  PubMed  Google Scholar 

  42. Faure C, Thapar N, Di Lorenzo C. Pediatric neurogastroenterology, Chapter 28. Cham: Springer International Publishing; 2017. p. 317–21.

    Book  Google Scholar 

  43. Hoffman RS, Burns MM, Gosselin S. Ingestion of caustic substances. N Engl J Med. 2020;382(18):1739–48. https://doi.org/10.1056/NEJMra1810769.

    Article  CAS  PubMed  Google Scholar 

  44. Genc A, Mutaf O. Esophageal motility changes in acute and late periods of caustic esophageal burns and their relation to prognosis in children. J Pediatr Surg. 2002;37(11):1526–8. https://doi.org/10.1053/jpsu.2002.36177.

    Article  PubMed  Google Scholar 

  45. Collard JM, Romagnoli R, Otte JB, Kestens PJ. The denervated stomach as an esophageal substitute is a contractile organ. Ann Surg. 1998;227(1):33–9. https://doi.org/10.1097/00000658-199801000-00005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ravelli AM, Spitz L, Milla PJ. Gastric emptying in children with gastric transposition. J Pediatr Gastroenterol Nutr. 1994;19(4):403–9. https://doi.org/10.1097/00005176-199411000-00007.

    Article  CAS  PubMed  Google Scholar 

  47. Gupta DK, Charles AR, Srinivas M. Manometric evaluation of the intrathoracic stomach after gastric transposition in children. Pediatr Surg Int. 2004;20(6). https://doi.org/10.1007/s00383-004-1166-y.

  48. Gupta L, Bhatnagar V, Gupta AK, Kumar R. Long-term follow-up of patients with esophageal replacement by reversed gastric tube. Eur J Pediatr Surg. 2011;21(2):88–93. https://doi.org/10.1055/s-0030-1267240.

    Article  CAS  PubMed  Google Scholar 

  49. Kekre G, Dikshit V, Kothari P, Laddha A, Gupta A. Twenty-four hour pH study and manometry in gastric esophageal substitutes in children. Pediatr Gastroenterol Hepatol Nutr. 2018;21(4):257. https://doi.org/10.5223/pghn.2018.21.4.257.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Rodriguez L, Sood M, Di Lorenzo C, Saps M. An ANMS-NASPGHAN consensus document on anorectal and colonic manometry in children. Neurogastroenterol Motil. 2017;29(1). https://doi.org/10.1111/nmo.12944.

  51. Bharucha AE. High amplitude propagated contractions. Neurogastroenterol Motil. 2012;24(11):977–82. https://doi.org/10.1111/nmo.12019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Othersen HB, Clatworthy HW. Functional evaluation of esophageal replacement in children. J Thorac Cardiovasc Surg. 1967;53(1):55–63. https://doi.org/10.1016/s0022-5223(19)43240-6.

    Article  PubMed  Google Scholar 

  53. Isolauri J, Reinikainen P, Markkula H. Functional evaluation of interposed colon in esophagus. Manometric and 24-hour pH observations. Acta Chir Scand. 1987;153(1):21–4.

    CAS  PubMed  Google Scholar 

  54. Ure BM, Slany E, Eypasch EP, Gharib M, Holschneider AM, Troidl H. Long-term functional results and quality of life after colon interposition for long-gap oesophageal atresia. Eur J Pediatr Surg. 1995;5(4):206–10. https://doi.org/10.1055/s-2008-1066206.

    Article  CAS  PubMed  Google Scholar 

  55. Mansour KA, Hansen HA 2nd, Hersh T, Miller JI Jr, Hatcher CR Jr. Colon interposition for advanced nonmalignant esophageal stricture: experience with 40 patients. Ann Thorac Surg. 1981;32(6):584–91. https://doi.org/10.1016/s0003-4975(10)61803-6.

    Article  CAS  PubMed  Google Scholar 

  56. Gaur P, Blackmon SH. Jejunal graft conduits after esophagectomy. J Thorac Dis. 2014;6(Suppl 3):S333–40. https://doi.org/10.3978/j.issn.2072-1439.2014.05.07.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Jones EL, Skinner DB, Demeester TR, Elkins RC, Zuidema GD. Response of the interposed human colonic segment to an acid challenge. Ann Surg. 1973;177(1):75–8. https://doi.org/10.1097/00000658-197301000-00014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Benages A, Moreno-Ossett E, Paris F, Ridocci MT, Blasco E, Pastor J, et al. Motor activity after colon replacement of esophagus. Manometric evaluation. J Thorac Cardiovasc Surg. 1981;82(3):335–40.

    Article  CAS  Google Scholar 

  59. Moreno-Osset E, Tomas-Ridocci M, Paris F, Mora F, Garcia-Zarza A, Molina R, et al. Motor activity of esophageal substitute (stomach, jejunal, and colon segments). Ann Thorac Surg. 1986;41(5):515–9. https://doi.org/10.1016/s0003-4975(10)63031-7.

    Article  CAS  PubMed  Google Scholar 

  60. Dantas RO, Mamede RC. Motility of the transverse colon used for esophageal replacement. J Clin Gastroenterol. 2002;34(3):225–8. https://doi.org/10.1097/00004836-200203000-00005.

    Article  PubMed  Google Scholar 

  61. Bax KM. Jejunum for bridging long-gap esophageal atresia. Semin Pediatr Surg. 2009;18(1):34–9. https://doi.org/10.1053/j.sempedsurg.2008.10.007.

    Article  PubMed  Google Scholar 

  62. Meyers WC, Seigler HF, Hanks JB, Thompson WM, Postlethwait R, Jones RS, et al. Postoperative function of “free” jejunal transplants for replacement of the cervical esophagus. Ann Surg. 1980;192(4):439–50. https://doi.org/10.1097/00000658-198010000-00002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Blackmon SH, Correa AM, Skoracki R, Chevray PM, Kim MP, Mehran RJ, et al. Supercharged pedicled jejunal interposition for esophageal replacement: a 10-year experience. Ann Thorac Surg. 2012;94(4):1104–11; discussion 11–3. https://doi.org/10.1016/j.athoracsur.2012.05.123.

    Article  PubMed  Google Scholar 

  64. Bax NMA, Van Renterghem KM. Ileal pedicle grafting for esophageal replacement in children. Pediatr Surg Int. 2005;21(5):369–72. https://doi.org/10.1007/s00383-005-1433-6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhiren Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shan, A., Minnette, M., Patel, D. (2021). Physiology and Motility of the Normal and Replaced Esophagus. In: Pimpalwar, A. (eds) Esophageal Preservation and Replacement in Children. Springer, Cham. https://doi.org/10.1007/978-3-030-77098-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77098-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77097-6

  • Online ISBN: 978-3-030-77098-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics