Skip to main content

From Contrastive to Abductive Explanations and Back Again

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12414))

Abstract

Explanations of Machine Learning (ML) models often address a question. Such explanations can be related with selecting feature-value pairs which are sufficient for the prediction. Recent work has investigated explanations that address a question, i.e. finding a change of feature values that guarantee a change of prediction. Given their goals, these two forms of explaining predictions of ML models appear to be mostly unrelated. However, this paper demonstrates otherwise, and establishes a rigorous formal relationship between and explanations. Concretely, the paper proves that, for any given instance, explanations are minimal hitting sets of explanations and vice-versa. Furthermore, the paper devises novel algorithms for extracting and enumerating both forms of explanations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    There is also a recent XAI service offered by Google: https://cloud.google.com/explainable-ai/, inspired on similar ideas [28].

  2. 2.

    In contrast with recent work [39], which studies the relationship between global model-based (abductive) explanations and adversarial examples.

  3. 3.

    A local abductive (resp. contrastive) explanation is a minimal hitting set of the set of all local contrastive (resp. abductive) explanations.

  4. 4.

    \({\mathcal {M}}\) is referred to as the (formal) model of the ML model \(\mathbb {M}\). The use of FOL is not restrictive, with fragments of FOL being used in recent years for modeling ML models in different settings. These include NNs [38] and Bayesian Network Classifiers [76], among others.

  5. 5.

    This alternative notation is used for simplicity and clarity with respect to earlier work [38, 39, 75]. Furthermore, defining \({\mathcal {M}}\) as a predicate allows for multiple predictions for the same point in feature space. Nevertheless, such cases are not considered in this paper.

  6. 6.

    By definition of prime implicant, abductive explanations are sufficient reasons for the prediction. Hence the names used in recent work: abductive explanations [38], PI-explanations [75, 76] and sufficient reasons [15, 16].

  7. 7.

    The definitions in this section are often presented for the propositional case, but the extension to the first-order case is straightforward.

  8. 8.

    The choice of a decision tree aims only at keeping the example(s) presented in the paper as simple as possible. The ideas proposed in the paper apply to any ML model that can be represented with FOL. This encompasses any existing ML model, with minor adaptations in case the ML model keeps state.

  9. 9.

    The abbreviations used relate with the names in the decision tree, and serve for saving space.

  10. 10.

    Depending on the ML problem, more expressive fragments of FOL logic could be considered [47]. Well-known examples include real, integer and integer-real arithmetic, but also nonlinear arithmetic [47].

  11. 11.

    Which in this case are used as propositional variables.

  12. 12.

    Although in general not the case, in Example 5 and Example 6 an MUS of size 1 is also an MCS of size 1.

  13. 13.

    The prototype and the experimental setup are available at https://github.com/alexeyignatiev/xdual.

References

  1. Achinstein, P.: The Nature of Explanation. Oxford University Press, Oxford (1980)

    Google Scholar 

  2. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018)

    Article  Google Scholar 

  3. Alonso, J.M., Castiello, C., Mencar, C.: A bibliometric analysis of the explainable artificial intelligence research field. In: Medina, J., et al. (eds.) IPMU 2018. CCIS, vol. 853, pp. 3–15. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91473-2_1

    Chapter  Google Scholar 

  4. Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine bias (2016). http://tiny.cc/dd7mjz

  5. Anjomshoae, S., Najjar, A., Calvaresi, D., Främling, K.: Explainable agents and robots: results from a systematic literature review. In: AAMAS, pp. 1078–1088 (2019)

    Google Scholar 

  6. Asher, N., Paul, S., Russell, C.: Adequate and fair explanations. CoRR, abs/2001.07578 (2020)

    Google Scholar 

  7. Bacchus, F., Katsirelos, G.: Using minimal correction sets to more efficiently compute minimal unsatisfiable sets. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 70–86. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21668-3_5

    Chapter  Google Scholar 

  8. Bailey, J., Stuckey, P.J.: Discovery of minimal unsatisfiable subsets of constraints using hitting set dualization. In: Hermenegildo, M.V., Cabeza, D. (eds.) PADL 2005. LNCS, vol. 3350, pp. 174–186. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30557-6_14

    Chapter  Google Scholar 

  9. Bendík, J., Černá, I., Beneš, N.: Recursive online enumeration of all minimal unsatisfiable subsets. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 143–159. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4_9

    Chapter  Google Scholar 

  10. Biran, O., Cotton, C.: Explanation and justification in machine learning: a survey. In: IJCAI-17 Workshop on Explainable AI (XAI), vol. 8, p. 1 (2017)

    Google Scholar 

  11. Birnbaum, E., Lozinskii, E.L.: Consistent subsets of inconsistent systems: structure and behaviour. J. Exp. Theoret. Artif. Intell. 15(1), 25–46 (2003)

    Article  Google Scholar 

  12. Bonfietti, A., Lombardi, M., Milano, M.: Embedding decision trees and random forests in constraint programming. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 74–90. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18008-3_6

    Chapter  MATH  Google Scholar 

  13. Bromberger, S.: An approach to explanation. In: Butler, R. (ed.) Analytical Philsophy, pp. 72–105. Oxford University Press, Oxford (1962)

    Google Scholar 

  14. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: KDD, pp. 785–794. ACM (2016)

    Google Scholar 

  15. Darwiche, A.: Three modern roles for logic in AI. In: PODS, pp. 229–243 (2020)

    Google Scholar 

  16. Darwiche, A., Hirth, A.: On the reasons behind decisions. In: ECAI, pp. 712–720 (2020)

    Google Scholar 

  17. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24

    Chapter  Google Scholar 

  18. Dhurandhar, A., et al.: Explanations based on the missing: towards contrastive explanations with pertinent negatives. In: NIPS, pp. 590–601 (2018)

    Google Scholar 

  19. Dosilovic, F.K., Brcic, M., Hlupic, N.: Explainable artificial intelligence: a survey. In: MIPRO, pp. 210–215 (2018)

    Google Scholar 

  20. Dua, D., Graff, C.: UCI machine learning repository (2017)

    Google Scholar 

  21. Auditing black-box predictive models (2016). http://tiny.cc/6e7mjz

  22. Feldman, M., Friedler, S.A., Moeller, J., Scheidegger, C., Venkatasubramanian, S.: Certifying and removing disparate impact. In: KDD, pp. 259–268. ACM (2015)

    Google Scholar 

  23. Felfernig, A., Schubert, M., Zehentner, C.: An efficient diagnosis algorithm for inconsistent constraint sets. Artif. Intell. Eng. Des. Anal. Manuf. 26, 53–62 (2012)

    Article  Google Scholar 

  24. Friedler, S., Scheidegger, C., Venkatasubramanian, S.: On algorithmic fairness, discrimination and disparate impact (2015)

    Google Scholar 

  25. Friedler, S.A., Scheidegger, C., Venkatasubramanian, S., Choudhary, S., Hamilton, E.P., Roth, D.: A comparative study of fairness-enhancing interventions in machine learning. In: FAT, pp. 329–338. ACM (2019)

    Google Scholar 

  26. Frosst, N., Hinton, G.E.: Distilling a neural network into a soft decision tree. In: CEx@AI*IA (2017)

    Google Scholar 

  27. Gario, M., Micheli, A.: PySMT: a solver-agnostic library for fast prototyping of SMT-based algorithms. In: SMT Workshop (2015)

    Google Scholar 

  28. Google. AI Explainability Whitepaper (2019). http://tiny.cc/tjz2hz

  29. Grégoire, É., Izza, Y., Lagniez, J.: Boosting MCSes enumeration. In: IJCAI, pp. 1309–1315 (2018)

    Google Scholar 

  30. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. 51(5), 93:1–93:42 (2019)

    Article  Google Scholar 

  31. Hoffman, R.R., Klein, G.: Explaining explanation, part 1: theoretical foundations. IEEE Intell. Syst. 32(3), 68–73 (2017)

    Article  Google Scholar 

  32. Hoffman, R.R., Miller, T., Mueller, S.T., Klein, G., Clancey, W.J.: Explaining explanation, part 4: a deep dive on deep nets. IEEE Intell. Syst. 33(3), 87–95 (2018)

    Article  Google Scholar 

  33. Hoffman, R.R., Mueller, S.T., Klein, G.: Explaining explanation, part 2: empirical foundations. IEEE Intell. Syst. 32(4), 78–86 (2017)

    Article  Google Scholar 

  34. Hoffman, R.R., Mueller, S.T., Klein, G., Litman, J.: Metrics for explainable AI: challenges and prospects. CoRR, abs/1812.04608 (2018)

    Google Scholar 

  35. Ignatiev, A.: Towards trustable explainable AI. In: IJCAI, pp. 5154–5158 (2020)

    Google Scholar 

  36. Ignatiev, A., Morgado, A., Marques-Silva, J.: PySAT: a Python toolkit for prototyping with SAT Oracles. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 428–437. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94144-8_26

    Chapter  MATH  Google Scholar 

  37. Ignatiev, A., Morgado, A., Marques-Silva, J.: RC2: an efficient MaxSAT solver. J. Satisf. Boolean Model. Comput. 11, 53–64 (2019)

    MathSciNet  Google Scholar 

  38. Ignatiev, A., Narodytska, N., Marques-Silva, J.: Abduction-based explanations for machine learning models. In: AAAI, pp. 1511–1519 (2019)

    Google Scholar 

  39. Ignatiev, A., Narodytska, N., Marques-Silva, J.: On relating explanations and adversarial examples. In: NeurIPS, pp. 15857–15867 (2019)

    Google Scholar 

  40. Ignatiev, A., Narodytska, N., Marques-Silva, J.: On validating, repairing and refining heuristic ML explanations. CoRR, abs/1907.02509 (2019)

    Google Scholar 

  41. Izza, Y., Ignatiev, A., Marques-Silva, J.: On explaining decision trees. CoRR, abs/2010.11034 (2020)

    Google Scholar 

  42. Janota, M., Marques-Silva, J.: On the query complexity of selecting minimal sets for monotone predicates. Artif. Intell. 233, 73–83 (2016)

    Article  MathSciNet  Google Scholar 

  43. Jha, S., Sahai, T., Raman, V., Pinto, A., Francis, M.: Explaining AI decisions using efficient methods for learning sparse Boolean formulae. J. Autom. Reasoning 63(4), 1055–1075 (2019)

    Article  MathSciNet  Google Scholar 

  44. Junker, U.: QUICKXPLAIN: preferred explanations and relaxations for over-constrained problems. In: AAAI, pp. 167–172 (2004)

    Google Scholar 

  45. Klein, G.: Explaining explanation, part 3: the causal landscape. IEEE Intell. Syst. 33(2), 83–88 (2018)

    Article  Google Scholar 

  46. Kohavi, R.: Scaling up the accuracy of Naive-Bayes classifiers: a decision-tree hybrid. In: KDD, pp. 202–207 (1996)

    Google Scholar 

  47. Kroening, D., Strichman, O.: Decision Procedures - An Algorithmic Point of View. Texts in Theoretical Computer Science. An EATCS Series, 2nd edn. Springer, Heidelberg (2016). https://doi.org/10.1007/s10601-015-9183-0

    Book  MATH  Google Scholar 

  48. Liffiton, M.H., Previti, A., Malik, A., Silva, J.M.: Fast, flexible MUS enumeration. Constraints 21(2), 223–250 (2016). https://doi.org/10.1007/s10601-015-9183-0

    Article  MathSciNet  MATH  Google Scholar 

  49. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable subsets of constraints. J. Autom. Reasoning 40(1), 1–33 (2008). https://doi.org/10.1007/s10817-007-9084-z

    Article  MathSciNet  MATH  Google Scholar 

  50. Lombardi, M., Milano, M., Bartolini, A.: Empirical decision model learning. Artif. Intell. 244, 343–367 (2017)

    Article  MathSciNet  Google Scholar 

  51. Lundberg, S.M., Lee, S.: A unified approach to interpreting model predictions. In: NIPS, pp. 4765–4774 (2017)

    Google Scholar 

  52. Marques-Silva, J., Gerspacher, T., Cooper, M.C., Ignatiev, A., Narodytska, N.: Explaining Naive Bayes and other linear classifiers with polynomial time and delay. In: NeurIPS (2020)

    Google Scholar 

  53. Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A.: On computing minimal correction subsets. In: IJCAI, pp. 615–622 (2013)

    Google Scholar 

  54. Marques-Silva, J., Janota, M., Belov, A.: Minimal sets over monotone predicates in Boolean formulae. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 592–607. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_39

    Chapter  Google Scholar 

  55. Marques-Silva, J., Janota, M., Mencía, C.: Minimal sets on propositional formulae. Problems and reductions. Artif. Intell. 252, 22–50 (2017)

    Article  MathSciNet  Google Scholar 

  56. Mencía, C., Ignatiev, A., Previti, A., Marques-Silva, J.: MCS extraction with sublinear Oracle queries. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 342–360. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_21

    Chapter  Google Scholar 

  57. Mencía, C., Previti, A., Marques-Silva, J.: Literal-based MCS extraction. In: IJCAI, pp. 1973–1979 (2015)

    Google Scholar 

  58. Miller, T.: Contrastive explanation: a structural-model approach. CoRR, abs/1811.03163 (2018)

    Google Scholar 

  59. Miller, T.: “but why?” Understanding Explainable artificial intelligence. ACM Crossroads 25(3), 20–25 (2019)

    Article  Google Scholar 

  60. Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019)

    Article  MathSciNet  Google Scholar 

  61. Mittelstadt, B.D., Russell, C., Wachter, S.: Explaining explanations in AI. In: FAT, pp. 279–288 (2019)

    Google Scholar 

  62. Montavon, G., Samek, W., Müller, K.: Methods for interpreting and understanding deep neural networks. Digital Signal Process. 73, 1–15 (2018)

    Article  MathSciNet  Google Scholar 

  63. Narodytska, N., Bjørner, N., Marinescu, M.V., Sagiv, M.: Core-guided minimal correction set and core enumeration. In: IJCAI, pp. 1353–1361 (2018)

    Google Scholar 

  64. Narodytska, N., Shrotri, A., Meel, K.S., Ignatiev, A., Marques-Silva, J.: Assessing heuristic machine learning explanations with model counting. In: Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 267–278. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24258-9_19

    Chapter  Google Scholar 

  65. Perron, L., Furnon, V.: Or-tools

    Google Scholar 

  66. Poole, D., Mackworth, A.K.: Artificial Intelligence - Foundations of Computational Agents. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  67. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: ICLR (2016)

    Google Scholar 

  68. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987)

    Article  MathSciNet  Google Scholar 

  69. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: explaining the predictions of any classifier. In: KDD, pp. 1135–1144 (2016)

    Google Scholar 

  70. Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: high-precision model-agnostic explanations. In: AAAI, pp. 1527–1535 (2018)

    Google Scholar 

  71. Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.): Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. LNCS (LNAI), vol. 11700. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28954-6

    Book  Google Scholar 

  72. Samek, W., Müller, K.: Towards explainable artificial intelligence. In: Samek, et al. [71], pp. 5–22

    Google Scholar 

  73. Schmidt, P., Witte, A.D.: Predicting recidivism in North Carolina, 1978 and 1980. Inter-University Consortium for Political and Social Research (1988)

    Google Scholar 

  74. Shih, A., Choi, A., Darwiche, A.: Formal verification of Bayesian network classifiers. In: PGM, pp. 427–438 (2018)

    Google Scholar 

  75. Shih, A., Choi, A., Darwiche, A.: A symbolic approach to explaining Bayesian network classifiers. In: IJCAI, pp. 5103–5111 (2018)

    Google Scholar 

  76. Shih, A., Choi, A., Darwiche, A.: Compiling Bayesian network classifiers into decision graphs. In: AAAI, pp. 7966–7974 (2019)

    Google Scholar 

  77. Tran, S.N., d’Avila Garcez, A.S.: Deep logic networks: inserting and extracting knowledge from deep belief networks. IEEE Trans. Neural Netw. Learn. Syst. 29(2), 246–258 (2018)

    Article  MathSciNet  Google Scholar 

  78. Verwer, S., Zhang, Y., Ye, Q.C.: Auction optimization using regression trees and linear models as integer programs. Artif. Intell. 244, 368–395 (2017)

    Article  MathSciNet  Google Scholar 

  79. Xu, F., Uszkoreit, H., Du, Y., Fan, W., Zhao, D., Zhu, J.: Explainable AI: a brief survey on history, research areas, approaches and challenges. In: Tang, J., Kan, M.-Y., Zhao, D., Li, S., Zan, H. (eds.) NLPCC 2019. LNCS (LNAI), vol. 11839, pp. 563–574. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32236-6_51

    Chapter  Google Scholar 

Download references

Acknowledgments

This work is supported by the AI Interdisciplinary Institute ANITI (Artificial and Natural Intelligence Toulouse Institute), funded by the French program “Investing for the Future – PIA3” under Grant agreement no ANR-19-PI3A-0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Narodytska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ignatiev, A., Narodytska, N., Asher, N., Marques-Silva, J. (2021). From Contrastive to Abductive Explanations and Back Again. In: Baldoni, M., Bandini, S. (eds) AIxIA 2020 – Advances in Artificial Intelligence. AIxIA 2020. Lecture Notes in Computer Science(), vol 12414. Springer, Cham. https://doi.org/10.1007/978-3-030-77091-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77091-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77090-7

  • Online ISBN: 978-3-030-77091-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics