Skip to main content

Sweet Rules: Linking Glycosylation to Antibody Function

  • Chapter
  • First Online:
Antibody Glycosylation

Part of the book series: Experientia Supplementum ((EXS,volume 112))

Abstract

Antibodies produced upon infections with pathogenic microorganisms are essential for clearing primary infections and for providing the host with long-lasting immunity. Moreover, antibodies have become the most widely used platform for developing novel therapies against cancer and autoimmunity, requiring an in-depth understanding of how antibodies mediate their activity in vivo and which factors modulate pro- or anti-inflammatory antibody activities. Since the discovery that select residues present in the sugar domain attached to the immunoglobulin G (IgG) fragment crystallizable (Fc) region can modulate both, pro- and anti-inflammatory effector functions, a wealth of studies has focused on understanding how IgG glycosylation is regulated and how this knowledge can be used to optimize therapeutic antibody activity. With the introduction of glycoengineered afucosylated antibodies in cancer therapy and the initiation of clinical testing of highly sialylated anti-inflammatory antibodies the proof-of-concept that understanding antibody glycosylation can lead to clinical innovation has been provided. The focus of this review is to summarize recent insights into how antibody glycosylation is regulated in vivo and how select sugar residues impact IgG function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 149.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADCC:

Antibody-dependent cell-mediated cytotoxicity

Asp:

Asparagine

B4GALT1:

β-1,4-galactosyltransferase 1

BCR:

B cell receptor

CD:

Cluster of differentiation

CDC:

Complement-dependent cytotoxicity

CMP-SA:

Cytidine monophospho-sialic acid

ER:

Endoplasmic reticulum

Fab:

Fragment antigen binding

Fc:

Fragment crystallizable

FcαR:

Fc-alpha receptor

FcεR:

Fc-epsilon receptor

FcγR:

Fc gamma receptor

FcRn:

Neonatal Fc receptor

FNAIT:

Fetal or neonatal alloimmune thrombocytopenia

G0:

Agalactosylated

G1:

Monogalactosylated

G2:

Digalactosylated

GlcNAc :

N-acetylglucosamine

IFNγ:

Interferon gamma

Ig:

Immunoglobulin

IL:

Interleukin

ITAM:

Immunoreceptor tyrosine-based activation motif

ITIM:

Immunoreceptor tyrosine-based inhibitory motif

IVIg:

Intravenous immunoglobulin G

JC:

Joining chain

KA:

Association constant

Man:

Mannose

MBL:

Mannose-binding lectin

MHCII:

Major histocompatibility complex II

N:

Asparagine

NK cell:

Natural killer cell

PC:

Plasma cell

PNGaseF:

Peptide-N4-(N-acetyl-beta-glucosaminyl) asparagine amidase

RA:

Rheumatoid arthritis

SC:

Secretory component

ST6Gal1:

β-galactoside-α2,6-sialyltransferase 1

STAT6:

Signal transducer and activator of transcription 6

TCR:

T cell receptor

TD :

T cell-dependent

Tfh cell:

T follicular helper cell

Th cell:

T helper cell

TI:

T cell-independent

TNFα:

Tumor necrosis factor-alpha

Treg:

Regulatory T cell

References

  • Ahmed AA, Giddens J, Pincetic A, Lomino JV, Ravetch JV, Wang LX, Bjorkman PJ (2014) Structural characterization of anti-inflammatory immunoglobulin G Fc proteins. J Mol Biol 426:3166–3179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anthony RM, Nimmerjahn F, Ashline DJ, Reinhold VN, Paulson JC, Ravetch JV (2008a) Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science 320:373–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anthony RM, Wermeling F, Karlsson MC, Ravetch JV (2008b) Identification of a receptor required for the anti-inflammatory activity of IVIG. Proc Natl Acad Sci USA 105:19571–19578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anthony RM, Kobayashi T, Wermeling F, Ravetch JV (2011) Intravenous gammaglobulin suppresses inflammation through a novel T(H)2 pathway. Nature 475:110–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armitage RJ, Goff LK, Beverley PC (1989) Expression and functional role of CD23 on T cells. Eur J Immunol 19:31–35

    Article  CAS  PubMed  Google Scholar 

  • Arnold JN, Radcliffe CM, Wormald MR, Royle L, Harvey DJ, Crispin M, Dwek RA, Sim RB, Rudd PM (2004) The glycosylation of human serum IgD and IgE and the accessibility of identified oligomannose structures for interaction with mannan-binding lectin. J Immunol 173:6831–6840

    Article  CAS  PubMed  Google Scholar 

  • Arnold JN, Royle L, Dwek RA, Rudd PM, Sim RB (2005) Human immunoglobulin glycosylation and the lectin pathway of complement activation. Adv Exp Med Biol 564:27–43

    Article  CAS  PubMed  Google Scholar 

  • Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA (2007) The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol 25:21–50

    Article  CAS  PubMed  Google Scholar 

  • Arroyo S, Tiessen RG, Denney WS, Jin J, van Lersel MP, Zeitz H, Manning AM, Schipperus MR, Bussel JB (2019) Hyper-sialylated IgG M254, an innovative therapeutic candidate, evaluated in healthy volunteers and in patients with immune thrombocytopenia purpura: safety, tolerability, pharmacokinetics, and pharmacodynamics. Blood 134

    Google Scholar 

  • Baenziger J, Kornfeld S, Kochwa S (1974a) Structure of the carbohydrate units of IgE immunoglobulin. I. Over-all composition, glycopeptide isolation, and structure of the high mannose oligosaccharide unit. J Biol Chem 249:1889–1896

    Article  CAS  PubMed  Google Scholar 

  • Baenziger J, Kornfeld S, Kochwa S (1974b) Structure of the carbohydrate units of IgE immunoglobulin. II. Sequence of the sialic acid-containing glycopeptides. J Biol Chem 249:1897–1903

    Article  CAS  PubMed  Google Scholar 

  • Bakema JE, van Egmond M (2011) The human immunoglobulin A Fc receptor FcalphaRI: a multifaceted regulator of mucosal immunity. Mucosal Immunol 4:612–624

    Article  CAS  PubMed  Google Scholar 

  • Balog CI, Stavenhagen K, Fung WL, Koeleman CA, McDonnell LA, Verhoeven A, Mesker WE, Tollenaar RA, Deelder AM, Wuhrer M (2012) N-glycosylation of colorectal cancer tissues: a liquid chromatography and mass spectrometry-based investigation. Mol Cell Proteomics 11:571–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartsch YC, Eschweiler S, Leliavski A, Lunding HB, Wagt S, Petry J, Lilienthal GM, Rahmoller J, de Haan N, Holscher A et al (2020) IgG Fc sialylation is regulated during the germinal center reaction following immunization with different adjuvants. J Allergy Clin Immunol 146:652–666 e611

    Article  CAS  PubMed  Google Scholar 

  • Bas M, Terrier A, Jacque E, Dehenne A, Pochet-Beghin V, Beghin C, Dezetter AS, Dupont G, Engrand A, Beaufils B et al (2019) Fc sialylation prolongs serum half-life of therapeutic antibodies. J Immunol 202:1582–1594

    Article  CAS  PubMed  Google Scholar 

  • Basset C, Devauchelle V, Durand V, Jamin C, Pennec YL, Youinou P, Dueymes M (1999) Glycosylation of immunoglobulin A influences its receptor binding. Scand J Immunol 50:572–579

    Article  CAS  PubMed  Google Scholar 

  • Basu M, Hakimi J, Dharm E, Kondas JA, Tsien WH, Pilson RS, Lin P, Gilfillan A, Haring P, Braswell EH et al (1993) Purification and characterization of human recombinant IgE-Fc fragments that bind to the human high affinity IgE receptor. J Biol Chem 268:13118–13127

    Article  CAS  PubMed  Google Scholar 

  • Bayry J, Negi VS, Kaveri SV (2011) Intravenous immunoglobulin therapy in rheumatic diseases. Nat Rev Rheumatol 7:349–359

    Article  CAS  PubMed  Google Scholar 

  • Bjorklund JE, Karlsson T, Magnusson CG (1999) N-glycosylation influences epitope expression and receptor binding structures in human IgE. Mol Immunol 36:213–221

    Article  CAS  PubMed  Google Scholar 

  • Borrok MJ, Jung ST, Kang TH, Monzingo AF, Georgiou G (2012) Revisiting the role of glycosylation in the structure of human IgG Fc. ACS Chem Biol 7:1596–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boune S, Hu P, Epstein AL, Khawli LA (2020) Principles of N-linked glycosylation variations of IgG-based therapeutics: pharmacokinetic and functional considerations. Antibodies (Basel) 9

    Google Scholar 

  • Bozza S, Kasermann F, Kaveri SV, Romani L, Bayry J (2019) Intravenous immunoglobulin protects from experimental allergic bronchopulmonary aspergillosis via a sialylation-dependent mechanism. Eur J Immunol 49:195–198

    Article  CAS  PubMed  Google Scholar 

  • Brandsma AM, Hogarth PM, Nimmerjahn F, Leusen JH (2016) Clarifying the confusion between cytokine and Fc receptor “common gamma chain”. Immunity 45:225–226

    Article  CAS  PubMed  Google Scholar 

  • Bruhns P, Jonsson F (2015) Mouse and human FcR effector functions. Immunol Rev 268:25–51

    Article  CAS  PubMed  Google Scholar 

  • Bussel J (2006) Treatment of immune thrombocytopenic purpura in adults. Semin Hematol 43:S3-10; discussion S18-19

    Google Scholar 

  • Campbell IK, Miescher S, Branch DR, Mott PJ, Lazarus AH, Han D, Maraskovsky E, Zuercher AW, Neschadim A, Leontyev D et al (2014) Therapeutic effect of IVIG on inflammatory arthritis in mice is dependent on the Fc portion and independent of sialylation or basophils. J Immunol 192:5031–5038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandler KB, Mehta N, Leon DR, Suscovich TJ, Alter G, Costello CE (2019) Multi-isotype glycoproteomic characterization of serum antibody heavy chains reveals isotype- and subclass-specific N-glycosylation profiles. Mol Cell Proteomics 18:686–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung S, Quarmby V, Gao X, Ying Y, Lin L, Reed C, Fong C, Lau W, Qiu ZJ, Shen A et al (2012) Quantitative evaluation of fucose reducing effects in a humanized antibody on Fcgamma receptor binding and antibody-dependent cell-mediated cytotoxicity activities. MAbs 4:326–340

    Article  PubMed  PubMed Central  Google Scholar 

  • Crispin M, Yu X, Bowden TA (2013) Crystal structure of sialylated IgG Fc: implications for the mechanism of intravenous immunoglobulin therapy. Proc Natl Acad Sci USA 110:E3544–E3546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dashivets T, Thomann M, Rueger P, Knaupp A, Buchner J, Schlothauer T (2015) Multi-angle effector function analysis of human monoclonal IgG glycovariants. PLoS One 10:e0143520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davies J, Jiang L, Pan LZ, LaBarre MJ, Anderson D, Reff M (2001) Expression of GnTIII in a recombinant anti-CD20 CHO production cell line: Expression of antibodies with altered glycoforms leads to an increase in ADCC through higher affinity for FC gamma RIII. Biotechnol Bioeng 74:288–294

    Article  CAS  PubMed  Google Scholar 

  • de Haan N, Reiding KR, Driessen G, van der Burg M, Wuhrer M (2016) Changes in healthy human IgG Fc-glycosylation after birth and during early childhood. J Proteome Res 15:1853–1861

    Article  PubMed  CAS  Google Scholar 

  • de Haan N, Reiding KR, Kristic J, Hipgrave Ederveen AL, Lauc G, Wuhrer M (2017) The N-glycosylation of mouse immunoglobulin G (IgG)-fragment crystallizable differs between IgG subclasses and strains. Front Immunol 8:608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Haan N, Falck D, Wuhrer M (2020) Monitoring of immunoglobulin N- and O-glycosylation in health and disease. Glycobiology 30:226–240

    Article  PubMed  CAS  Google Scholar 

  • Dekkers G, Treffers L, Plomp R, Bentlage AEH, de Boer M, Koeleman CAM, Lissenberg-Thunnissen SN, Visser R, Brouwer M, Mok JY et al (2017) Decoding the human immunoglobulin G-glycan repertoire reveals a spectrum of Fc-receptor- and complement-mediated-effector activities. Front Immunol 8:877

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deshpande N, Jensen PH, Packer NH, Kolarich D (2010) GlycoSpectrumScan: fishing glycopeptides from MS spectra of protease digests of human colostrum sIgA. J Proteome Res 9:1063–1075

    Article  CAS  PubMed  Google Scholar 

  • Dorrington KJ, Bennich HH (1978) Structure-function relationships in human immunoglobulin E. Immunol Rev 41:3–25

    Article  CAS  PubMed  Google Scholar 

  • Dougher CWL, Buffone A Jr, Nemeth MJ, Nasirikenari M, Irons EE, Bogner PN, Lau JTY (2017) The blood-borne sialyltransferase ST6Gal-1 is a negative systemic regulator of granulopoiesis. J Leukoc Biol 102:507–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ephrem A, Chamat S, Miquel C, Fisson S, Mouthon L, Caligiuri G, Delignat S, Elluru S, Bayry J, Lacroix-Desmazes S et al (2008) Expansion of CD4+CD25+ regulatory T cells by intravenous immunoglobulin: a critical factor in controlling experimental autoimmune encephalomyelitis. Blood 111:715–722

    Article  CAS  PubMed  Google Scholar 

  • Ferrara C, Stuart F, Sondermann P, Brunker P, Umana P (2006) The carbohydrate at FcgammaRIIIa Asn-162. An element required for high affinity binding to non-fucosylated IgG glycoforms. J Biol Chem 281:5032–5036

    Article  CAS  PubMed  Google Scholar 

  • Ferrara C, Grau S, Jager C, Sondermann P, Brunker P, Waldhauer I, Hennig M, Ruf A, Rufer AC, Stihle M et al (2011) Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcgammaRIII and antibodies lacking core fucose. Proc Natl Acad Sci USA 108:12669–12674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiebiger BM, Maamary J, Pincetic A, Ravetch JV (2015) Protection in antibody- and T cell-mediated autoimmune diseases by antiinflammatory IgG Fcs requires type II FcRs. Proc Natl Acad Sci USA 112:E2385–E2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franc V, Rehulka P, Raus M, Stulik J, Novak J, Renfrow MB, Sebela M (2013) Elucidating heterogeneity of IgA1 hinge-region O-glycosylation by use of MALDI-TOF/TOF mass spectrometry: role of cysteine alkylation during sample processing. J Proteomics 92:299–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galli SJ, Tsai M (2012) IgE and mast cells in allergic disease. Nat Med 18:693–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Vallejo JJ, van Dijk W, van Die I, Gringhuis SI (2005) Tumor necrosis factor-alpha up-regulates the expression of beta1,4-galactosyltransferase I in primary human endothelial cells by mRNA stabilization. J Biol Chem 280:12676–12682

    Article  CAS  PubMed  Google Scholar 

  • Gomes MM, Wall SB, Takahashi K, Novak J, Renfrow MB, Herr AB (2008) Analysis of IgA1 N-glycosylation and its contribution to FcalphaRI binding. Biochemistry 47:11285–11299

    Article  CAS  PubMed  Google Scholar 

  • Gould HJ, Sutton BJ (2008) IgE in allergy and asthma today. Nat Rev Immunol 8:205–217

    Article  CAS  PubMed  Google Scholar 

  • Gounni AS, Lamkhioued B, Ochiai K, Tanaka Y, Delaporte E, Capron A, Kinet JP, Capron M (1994) High-affinity IgE receptor on eosinophils is involved in defence against parasites. Nature 367:183–186

    Article  CAS  PubMed  Google Scholar 

  • Gringhuis SI, Garcia-Vallejo JJ, van Het Hof B, van Dijk W (2005) Convergent actions of I kappa B kinase beta and protein kinase C delta modulate mRNA stability through phosphorylation of 14-3-3 beta complexed with tristetraprolin. Mol Cell Biol 25:6454–6463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen IS, Baeten DLP, den Dunnen J (2019) The inflammatory function of human IgA. Cell Mol Life Sci 76:1041–1055

    Article  CAS  PubMed  Google Scholar 

  • Hess C, Winkler A, Lorenz AK, Holecska V, Blanchard V, Eiglmeier S, Schoen AL, Bitterling J, Stoehr AD, Petzold D et al (2013) T cell-independent B cell activation induces immunosuppressive sialylated IgG antibodies. J Clin Invest 123:3788–3796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holland M, Yagi H, Takahashi N, Kato K, Savage CO, Goodall DM, Jefferis R (2006) Differential glycosylation of polyclonal IgG, IgG-Fc and IgG-Fab isolated from the sera of patients with ANCA-associated systemic vasculitis. Biochim Biophys Acta 1760:669–677

    Article  CAS  PubMed  Google Scholar 

  • Issekutz AC, Rowter D, Miescher S, Kasermann F (2015) Intravenous IgG (IVIG) and subcutaneous IgG (SCIG) preparations have comparable inhibitory effect on T cell activation, which is not dependent on IgG sialylation, monocytes or B cells. Clin Immunol

    Google Scholar 

  • Jansen BC, Bondt A, Reiding KR, Lonardi E, de Jong CJ, Falck D, Kammeijer GS, Dolhain RJ, Rombouts Y, Wuhrer M (2016) Pregnancy-associated serum N-glycome changes studied by high-throughput MALDI-TOF-MS. Sci Rep 6:23296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jefferis R, Lund J (1997) Glycosylation of antibody molecules: structural and functional significance. Chem Immunol 65:111–128

    CAS  PubMed  Google Scholar 

  • Johannes L, Jacob R, Leffler H (2018) Galectins at a glance. J Cell Sci 131

    Google Scholar 

  • Jones AJ, Papac DI, Chin EH, Keck R, Baughman SA, Lin YS, Kneer J, Battersby JE (2007) Selective clearance of glycoforms of a complex glycoprotein pharmaceutical caused by terminal N-acetylglucosamine is similar in humans and cynomolgus monkeys. Glycobiology 17:529–540

    Article  CAS  PubMed  Google Scholar 

  • Jones MB, Oswald DM, Joshi S, Whiteheart SW, Orlando R, Cobb BA (2016) B-cell-independent sialylation of IgG. Proc Natl Acad Sci USA 113:7207–7212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanda Y, Yamada T, Mori K, Okazaki A, Inoue M, Kitajima-Miyama K, Kuni-Kamochi R, Nakano R, Yano K, Kakita S et al (2007) Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: the high-mannose, hybrid, and complex types. Glycobiology 17:104–118

    Article  CAS  PubMed  Google Scholar 

  • Kaneko Y, Nimmerjahn F, Ravetch JV (2006) Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313:670–673

    Article  CAS  PubMed  Google Scholar 

  • Kao D, Danzer H, Collin M, Gross A, Eichler J, Stambuk J, Lauc G, Lux A, Nimmerjahn F (2015) A monosaccharide residue is sufficient to maintain mouse and human IgG subclass activity and directs IgG effector functions to cellular Fc receptors. Cell Rep 13:2376–2385

    Article  CAS  PubMed  Google Scholar 

  • Kao D, Lux A, Schaffert A, Lang R, Altmann F, Nimmerjahn F (2017) IgG subclass and vaccination stimulus determine changes in antigen specific antibody glycosylation in mice. Eur J Immunol 47:2070–2079

    Article  CAS  PubMed  Google Scholar 

  • Kapur R, Kustiawan I, Vestrheim A, Koeleman CA, Visser R, Einarsdottir HK, Porcelijn L, Jackson D, Kumpel B, Deelder AM et al (2014) A prominent lack of IgG1-Fc fucosylation of platelet alloantibodies in pregnancy. Blood 123:471–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karsten CM, Pandey MK, Figge J, Kilchenstein R, Taylor PR, Rosas M, McDonald JU, Orr SJ, Berger M, Petzold D et al (2012) Anti-inflammatory activity of IgG1 mediated by Fc galactosylation and association of FcgammaRIIB and dectin-1. Nat Med 18:1401–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerr MA (1990) The structure and function of human IgA. Biochem J 271:285–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klaric L, Tsepilov YA, Stanton CM, Mangino M, Sikka TT, Esko T, Pakhomov E, Salo P, Deelen J, McGurnaghan SJ et al (2020) Glycosylation of immunoglobulin G is regulated by a large network of genes pleiotropic with inflammatory diseases. Sci Adv 6:eaax0301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobata A (2008) The N-linked sugar chains of human immunoglobulin G: their unique pattern, and their functional roles. Biochim Biophys Acta 1780:472–478

    Article  CAS  PubMed  Google Scholar 

  • Korn T, Bettelli E, Gao W, Awasthi A, Jager A, Strom TB, Oukka M, Kuchroo VK (2007) IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 448:484–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krapp S, Mimura Y, Jefferis R, Huber R, Sondermann P (2003) Structural analysis of human IgG-Fc glycoforms reveals a correlation between glycosylation and structural integrity. J Mol Biol 325:979–989

    Article  CAS  PubMed  Google Scholar 

  • Kristic J, Vuckovic F, Menni C, Klaric L, Keser T, Beceheli I, Pucic-Bakovic M, Novokmet M, Mangino M, Thaqi K et al (2014) Glycans are a novel biomarker of chronological and biological ages. J Gerontol A Biol Sci Med Sci 69:779–789

    Article  CAS  PubMed  Google Scholar 

  • Lecocq M, Detry B, Guisset A, Pilette C (2013) FcalphaRI-mediated inhibition of IL-12 production and priming by IFN-gamma of human monocytes and dendritic cells. J Immunol 190:2362–2371

    Article  CAS  PubMed  Google Scholar 

  • Lee MM, Nasirikenari M, Manhardt CT, Ashline DJ, Hanneman AJ, Reinhold VN, Lau JT (2014) Platelets support extracellular sialylation by supplying the sugar donor substrate. J Biol Chem 289:8742–8748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Mitsdoerffer M, Xiao S, Gu G, Sobel RA, Kuchroo VK (2015) IL-21R signaling is critical for induction of spontaneous experimental autoimmune encephalomyelitis. J Clin Invest 125:4011–4020

    Article  PubMed  PubMed Central  Google Scholar 

  • Leontyev D, Katsman Y, Ma XZ, Miescher S, Kasermann F, Branch DR (2012) Sialylation-independent mechanism involved in the amelioration of murine immune thrombocytopenia using intravenous gammaglobulin. Transfusion 52:1799–1805

    Article  CAS  PubMed  Google Scholar 

  • Li T, DiLillo DJ, Bournazos S, Giddens JP, Ravetch JV, Wang LX (2017a) Modulating IgG effector function by Fc glycan engineering. Proc Natl Acad Sci USA 114:3485–3490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Zhu Z, Chen W, Feng Y, Dimitrov DS (2017b) Crystallizable fragment glycoengineering for therapeutic antibodies development. Front Immunol 8:1554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin CW, Tsai MH, Li ST, Tsai TI, Chu KC, Liu YC, Lai MY, Wu CY, Tseng YC, Shivatare SS et al (2015) A common glycan structure on immunoglobulin G for enhancement of effector functions. Proc Natl Acad Sci USA 112:10611–10616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lubberts E (2015) The IL-23-IL-17 axis in inflammatory arthritis. Nat Rev Rheumatol 11:415–429

    Article  CAS  PubMed  Google Scholar 

  • Lux A, Yu X, Scanlan CN, Nimmerjahn F (2013) Impact of immune complex size and glycosylation on IgG binding to human FcgammaRs. J Immunol 190:4315–4323

    Article  CAS  PubMed  Google Scholar 

  • Mahan AE, Jennewein MF, Suscovich T, Dionne K, Tedesco J, Chung AW, Streeck H, Pau M, Schuitemaker H, Francis D et al (2016) Antigen-specific antibody glycosylation is regulated via vaccination. PLoS Pathog 12:e1005456

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malhotra R, Wormald MR, Rudd PM, Fischer PB, Dwek RA, Sim RB (1995) Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat Med 1:237–243

    Article  CAS  PubMed  Google Scholar 

  • Manhardt CT, Punch PR, Dougher CWL, Lau JTY (2017) Extrinsic sialylation is dynamically regulated by systemic triggers in vivo. J Biol Chem 292:13514–13520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massoud AH, Yona M, Xue D, Chouiali F, Alturaihi H, Ablona A, Mourad W, Piccirillo CA, Mazer BD (2014) Dendritic cell immunoreceptor: a novel receptor for intravenous immunoglobulin mediates induction of regulatory T cells. J Allergy Clin Immunol 133:853–863 e855

    Article  CAS  PubMed  Google Scholar 

  • Masuda K, Yamaguchi Y, Kato K, Takahashi N, Shimada I, Arata Y (2000) Pairing of oligosaccharides in the Fc region of immunoglobulin G. FEBS Lett 473:349–357

    Article  CAS  PubMed  Google Scholar 

  • Mattu TS, Pleass RJ, Willis AC, Kilian M, Wormald MR, Lellouch AC, Rudd PM, Woof JM, Dwek RA (1998) The glycosylation and structure of human serum IgA1, Fab, and Fc regions and the role of N-glycosylation on Fcalpha receptor interactions. J Biol Chem 273:2260–2272

    Article  CAS  PubMed  Google Scholar 

  • Mehta AS, Long RE, Comunale MA, Wang M, Rodemich L, Krakover J, Philip R, Marrero JA, Dwek RA, Block TM (2008) Increased levels of galactose-deficient anti-Gal immunoglobulin G in the sera of hepatitis C virus-infected individuals with fibrosis and cirrhosis. J Virol 82:1259–1270

    Article  CAS  PubMed  Google Scholar 

  • Milewski S, Mignini F, Borowski E (1991) Synergistic action of nikkomycin X/Z with azole antifungals on Candida albicans. J Gen Microbiol 137:2155–2161

    Article  CAS  PubMed  Google Scholar 

  • Millward TA, Heitzmann M, Bill K, Langle U, Schumacher P, Forrer K (2008) Effect of constant and variable domain glycosylation on pharmacokinetics of therapeutic antibodies in mice. Biologicals 36:41–47

    Article  CAS  PubMed  Google Scholar 

  • Miwa HE, Song Y, Alvarez R, Cummings RD, Stanley P (2012) The bisecting GlcNAc in cell growth control and tumor progression. Glycoconj J 29:609–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore JS, Wu X, Kulhavy R, Tomana M, Novak J, Moldoveanu Z, Brown R, Goepfert PA, Mestecky J (2005) Increased levels of galactose-deficient IgG in sera of HIV-1-infected individuals. AIDS 19:381–389

    Article  CAS  PubMed  Google Scholar 

  • Nettleton MY, Kochan JP (1995) Role of glycosylation sites in the IgE Fc molecule. Int Arch Allergy Immunol 107:328–329

    Article  CAS  PubMed  Google Scholar 

  • Nimmerjahn F, Ravetch JV (2005) Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science 310:1510–1512

    Article  CAS  PubMed  Google Scholar 

  • Nimmerjahn F, Ravetch JV (2006) Fcgamma receptors: old friends and new family members. Immunity 24:19–28

    Article  CAS  PubMed  Google Scholar 

  • Nimmerjahn F, Ravetch JV (2008) Fcgamma receptors as regulators of immune responses. Nat Rev Immunol 8:34–47

    Article  CAS  PubMed  Google Scholar 

  • Nimmerjahn F, Anthony RM, Ravetch JV (2007) Agalactosylated IgG antibodies depend on cellular Fc receptors for in vivo activity. Proc Natl Acad Sci USA 104:8433–8437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niwa R, Natsume A, Uehara A, Wakitani M, Iida S, Uchida K, Satoh M, Shitara K (2005a) IgG subclass-independent improvement of antibody-dependent cellular cytotoxicity by fucose removal from Asn297-linked oligosaccharides. J Immunol Methods 306:151–160

    Article  CAS  PubMed  Google Scholar 

  • Niwa R, Sakurada M, Kobayashi Y, Uehara A, Matsushima K, Ueda R, Nakamura K, Shitara K (2005b) Enhanced natural killer cell binding and activation by low-fucose IgG1 antibody results in potent antibody-dependent cellular cytotoxicity induction at lower antigen density. Clin Cancer Res 11:2327–2336

    Article  CAS  PubMed  Google Scholar 

  • Novak J, Renfrow MB, Gharavi AG, Julian BA (2013) Pathogenesis of immunoglobulin A nephropathy. Curr Opin Nephrol Hypertens 22:287–294

    Article  CAS  PubMed  Google Scholar 

  • Oefner CM, Winkler A, Hess C, Lorenz AK, Holecska V, Huxdorf M, Schommartz T, Petzold D, Bitterling J, Schoen AL et al (2012) Tolerance induction with T cell-dependent protein antigens induces regulatory sialylated IgGs. J Allergy Clin Immunol 129:1647–1655 e1613

    Article  CAS  PubMed  Google Scholar 

  • Oettgen HC (2016) Fifty years later: Emerging functions of IgE antibodies in host defense, immune regulation, and allergic diseases. J Allergy Clin Immunol 137:1631–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohmi Y, Ise W, Harazono A, Takakura D, Fukuyama H, Baba Y, Narazaki M, Shoda H, Takahashi N, Ohkawa Y et al (2016) Sialylation converts arthritogenic IgG into inhibitors of collagen-induced arthritis. Nat Commun 7:11205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oortwijn BD, Roos A, van der Boog PJ, Klar-Mohamad N, van Remoortere A, Deelder AM, Daha MR, van Kooten C (2007) Monomeric and polymeric IgA show a similar association with the myeloid FcalphaRI/CD89. Mol Immunol 44:966–973

    Article  CAS  PubMed  Google Scholar 

  • Othy S, Topcu S, Saha C, Kothapalli P, Lacroix-Desmazes S, Kasermann F, Miescher S, Bayry J, Kaveri SV (2014) Sialylation may be dispensable for reciprocal modulation of helper T cells by intravenous immunoglobulin. Eur J Immunol 44:2059–2063

    Article  CAS  PubMed  Google Scholar 

  • Pagan JD, Kitaoka M, Anthony RM (2018) Engineered sialylation of pathogenic antibodies in vivo attenuates autoimmune disease. Cell 172:564–577 e513

    Article  CAS  PubMed  Google Scholar 

  • Parekh RB, Dwek RA, Sutton BJ, Fernandes DL, Leung A, Stanworth D, Rademacher TW, Mizuochi T, Taniguchi T, Matsuta K et al (1985) Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature 316:452–457

    Article  CAS  PubMed  Google Scholar 

  • Parekh R, Roitt I, Isenberg D, Dwek R, Rademacher T (1988) Age-related galactosylation of the N-linked oligosaccharides of human serum IgG. J Exp Med 167:1731–1736

    Article  CAS  PubMed  Google Scholar 

  • Peschke B, Keller CW, Weber P, Quast I, Lunemann JD (2017) Fc-galactosylation of human immunoglobulin gamma isotypes improves C1q binding and enhances complement-dependent cytotoxicity. Front Immunol 8:646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pezer M, Stambuk J, Perica M, Razdorov G, Banic I, Vuckovic F, Gospic AM, Ugrina I, Vecenaj A, Bakovic MP et al (2016) Effects of allergic diseases and age on the composition of serum IgG glycome in children. Sci Rep 6:33198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeifle R, Rothe T, Ipseiz N, Scherer HU, Culemann S, Harre U, Ackermann JA, Seefried M, Kleyer A, Uderhardt S et al (2017) Regulation of autoantibody activity by the IL-23-TH17 axis determines the onset of autoimmune disease. Nat Immunol 18:104–113

    Article  CAS  PubMed  Google Scholar 

  • Pilette C, Detry B, Guisset A, Gabriels J, Sibille Y (2010) Induction of interleukin-10 expression through Fcalpha receptor in human monocytes and monocyte-derived dendritic cells: role of p38 MAPKinase. Immunol Cell Biol 88:486–493

    Article  CAS  PubMed  Google Scholar 

  • Pincetic A, Bournazos S, DiLillo DJ, Maamary J, Wang TT, Dahan R, Fiebiger BM, Ravetch JV (2014) Type I and type II Fc receptors regulate innate and adaptive immunity. Nat Immunol 15:707–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plomp R, Hensbergen PJ, Rombouts Y, Zauner G, Dragan I, Koeleman CA, Deelder AM, Wuhrer M (2014) Site-specific N-glycosylation analysis of human immunoglobulin e. J Proteome Res 13:536–546

    Article  CAS  PubMed  Google Scholar 

  • Plomp R, Bondt A, de Haan N, Rombouts Y, Wuhrer M (2016) Recent advances in clinical glycoproteomics of immunoglobulins (Igs). Mol Cell Proteomics 15:2217–2228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plomp R, Ruhaak LR, Uh HW, Reiding KR, Selman M, Houwing-Duistermaat JJ, Slagboom PE, Beekman M, Wuhrer M (2017) Subclass-specific IgG glycosylation is associated with markers of inflammation and metabolic health. Sci Rep 7:12325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Plomp R, de Haan N, Bondt A, Murli J, Dotz V, Wuhrer M (2018) Comparative glycomics of immunoglobulin A and G from saliva and plasma reveals biomarker potential. Front Immunol 9:2436

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pucic M, Muzinic A, Novokmet M, Skledar M, Pivac N, Lauc G, Gornik O (2012) Changes in plasma and IgG N-glycome during childhood and adolescence. Glycobiology 22:975–982

    Article  CAS  PubMed  Google Scholar 

  • Quast I, Keller CW, Maurer MA, Giddens JP, Tackenberg B, Wang LX, Munz C, Nimmerjahn F, Dalakas MC, Lunemann JD (2015) Sialylation of IgG Fc domain impairs complement-dependent cytotoxicity. J Clin Invest 125:4160–4170

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajput B, Shaper NL, Shaper JH (1996) Transcriptional regulation of murine beta1,4-galactosyltransferase in somatic cells. Analysis of a gene that serves both a housekeeping and a mammary gland-specific function. J Biol Chem 271:5131–5142

    Article  CAS  PubMed  Google Scholar 

  • Raju TS (2008) Terminal sugars of Fc glycans influence antibody effector functions of IgGs. Curr Opin Immunol 20:471–478

    Article  CAS  PubMed  Google Scholar 

  • Raju TS, Briggs JB, Chamow SM, Winkler ME, Jones AJ (2001) Glycoengineering of therapeutic glycoproteins: in vitro galactosylation and sialylation of glycoproteins with terminal N-acetylglucosamine and galactose residues. Biochemistry 40:8868–8876

    Article  CAS  PubMed  Google Scholar 

  • Rieber EP, Rank G, Kohler I, Krauss S (1993) Membrane expression of Fc epsilon RII/CD23 and release of soluble CD23 by follicular dendritic cells. Adv Exp Med Biol 329:393–398

    Article  CAS  PubMed  Google Scholar 

  • Riteau N, Radtke AJ, Shenderov K, Mittereder L, Oland SD, Hieny S, Jankovic D, Sher A (2016) Water-in-oil-only adjuvants selectively promote T follicular helper cell polarization through a type I IFN and IL-6-dependent pathway. J Immunol 197:3884–3893

    Article  CAS  PubMed  Google Scholar 

  • Robinett RA, Guan N, Lux A, Biburger M, Nimmerjahn F, Meyer AS (2018) Dissecting FcgammaR regulation through a multivalent binding model. Cell Syst 7:41–48 e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roopenian DC, Akilesh S (2007) FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol 7:715–725

    Article  CAS  PubMed  Google Scholar 

  • Rossato E, Ben Mkaddem S, Kanamaru Y, Hurtado-Nedelec M, Hayem G, Descatoire V, Vonarburg C, Miescher S, Zuercher AW, Monteiro RC (2015) Reversal of arthritis by human monomeric IgA through the receptor-mediated SH2 domain-containing phosphatase 1 inhibitory pathway. Arthritis Rheumatol 67:1766–1777

    Article  CAS  PubMed  Google Scholar 

  • Royle L, Roos A, Harvey DJ, Wormald MR, van Gijlswijk-Janssen D, el Redwan RM, Wilson IA, Daha MR, Dwek RA, Rudd PM (2003) Secretory IgA N- and O-glycans provide a link between the innate and adaptive immune systems. J Biol Chem 278:20140–20153

    Article  CAS  PubMed  Google Scholar 

  • Saphire EO, Stanfield RL, Crispin MD, Parren PW, Rudd PM, Dwek RA, Burton DR, Wilson IA (2002) Contrasting IgG structures reveal extreme asymmetry and flexibility. J Mol Biol 319:9–18

    Article  CAS  PubMed  Google Scholar 

  • Satoh M, Iida S, Shitara K (2006) Non-fucosylated therapeutic antibodies as next-generation therapeutic antibodies. Expert Opin Biol Ther 6:1161–1173

    Article  CAS  PubMed  Google Scholar 

  • Scallon BJ, Tam SH, McCarthy SG, Cai AN, Raju TS (2007) Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Mol Immunol 44:1524–1534

    Article  CAS  PubMed  Google Scholar 

  • Schaffert A, Hanic M, Novokmet M, Zaytseva O, Kristic J, Lux A, Nitschke L, Peipp M, Pezer M, Hennig R et al (2019) Minimal B cell extrinsic IgG glycan modifications of pro- and anti-inflammatory IgG preparations in vivo. Front Immunol 10:3024

    Article  CAS  PubMed  Google Scholar 

  • Schwab I, Nimmerjahn F (2013) Intravenous immunoglobulin therapy: how does IgG modulate the immune system? Nat Rev Immunol 13:176–189

    Article  CAS  PubMed  Google Scholar 

  • Schwab I, Biburger M, Kronke G, Schett G, Nimmerjahn F (2012) IVIg-mediated amelioration of ITP in mice is dependent on sialic acid and SIGNR1. Eur J Immunol 42:826–830

    Article  CAS  PubMed  Google Scholar 

  • Schwab I, Mihai S, Seeling M, Kasperkiewicz M, Ludwig R, Nimmerjahn F (2014) Broad requirement for terminal sialic acid residues and FcgRIIB for the preventive and therapeutic activity of intravenous immunoglobulins in vivo. Eur J Immunol

    Google Scholar 

  • Schwab I, Lux A, Nimmerjahn F (2015) Pathways responsible for human autoantibody and therapeutic intravenous IgG activity in humanized mice. Cell Rep 13:610–620

    Article  CAS  PubMed  Google Scholar 

  • Seeling M, Bruckner C, Nimmerjahn F (2017) Differential antibody glycosylation in autoimmunity: sweet biomarker or modulator of disease activity? Nat Rev Rheumatol 13:621–630

    Article  CAS  PubMed  Google Scholar 

  • Seite JF, Cornec D, Renaudineau Y, Youinou P, Mageed RA, Hillion S (2010) IVIg modulates BCR signaling through CD22 and promotes apoptosis in mature human B lymphocytes. Blood 116:1698–1704

    Article  CAS  PubMed  Google Scholar 

  • Selman MH, de Jong SE, Soonawala D, Kroon FP, Adegnika AA, Deelder AM, Hokke CH, Yazdanbakhsh M, Wuhrer M (2012) Changes in antigen-specific IgG1 Fc N-glycosylation upon influenza and tetanus vaccination. Mol Cell Proteomics 11(M111):014563

    PubMed  Google Scholar 

  • Shade KT, Platzer B, Washburn N, Mani V, Bartsch YC, Conroy M, Pagan JD, Bosques C, Mempel TR, Fiebiger E, Anthony RM (2015) A single glycan on IgE is indispensable for initiation of anaphylaxis. J Exp Med 212:457–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shade KT, Conroy ME, Anthony RM (2019) IgE Glycosylation in Health and Disease. Curr Top Microbiol Immunol 423:77–93

    PubMed  PubMed Central  Google Scholar 

  • Shade KC, Conroy ME, Washburn N, Kitaoka M, Huynh DJ, Laprise E, Patil SU, Shreffler WG, Anthony RM (2020) Sialylation of immunoglobulin E is a determinant of allergic pathogenicity. Nature 582:265–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shields RL, Lai J, Keck R, O'Connell LY, Hong K, Meng YG, Weikert SH, Presta LG (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem 277:26733–26740

    Article  CAS  PubMed  Google Scholar 

  • Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M, Uchida K, Anazawa H, Satoh M, Yamasaki M et al (2003) The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem 278:3466–3473

    Article  CAS  PubMed  Google Scholar 

  • Sondermann P, Huber R, Oosthuizen V, Jacob U (2000) The 3.2-A crystal structure of the human IgG1 Fc fragment-Fc gammaRIII complex. Nature 406:267–273

    Article  CAS  PubMed  Google Scholar 

  • Sondermann P, Pincetic A, Maamary J, Lammens K, Ravetch JV (2013) General mechanism for modulating immunoglobulin effector function. Proc Natl Acad Sci USA 110:9868–9872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonneveld ME, Natunen S, Sainio S, Koeleman CA, Holst S, Dekkers G, Koelewijn J, Partanen J, van der Schoot CE, Wuhrer M, Vidarsson G (2016) Glycosylation pattern of anti-platelet IgG is stable during pregnancy and predicts clinical outcome in alloimmune thrombocytopenia. Br J Haematol 174:310–320

    Article  CAS  PubMed  Google Scholar 

  • Sonneveld ME, Koeleman CAM, Plomp HR, Wuhrer M, van der Schoot CE, Vidarsson G (2018) Fc-glycosylation in human IgG1 and IgG3 is similar for both total and anti-red-blood cell anti-K antibodies. Front Immunol 9:129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stambuk J, Nakic N, Vuckovic F, Pucic-Bakovic M, Razdorov G, Trbojevic-Akmacic I, Novokmet M, Keser T, Vilaj M, Stambuk T et al (2020) Global variability of the human IgG glycome. Aging (Albany NY) 12:15222–15259

    Article  CAS  Google Scholar 

  • Steffen U, Koeleman CA, Sokolova MV, Bang H, Kleyer A, Rech J, Unterweger H, Schicht M, Garreis F, Hahn J et al (2020) IgA subclasses have different effector functions associated with distinct glycosylation profiles. Nat Commun 11:120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subedi GP, Barb AW (2016) The immunoglobulin G1 N-glycan composition affects binding to each low affinity Fc gamma receptor. MAbs 8:1512–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tackenberg B, Jelcic I, Baerenwaldt A, Oertel WH, Sommer N, Nimmerjahn F, Lunemann JD (2009) Impaired inhibitory Fcgamma receptor IIB expression on B cells in chronic inflammatory demyelinating polyneuropathy. Proc Natl Acad Sci USA 106:4788–4792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takai T (2005) Fc receptors and their role in immune regulation and autoimmunity. J Clin Immunol 25:1–18

    Article  CAS  PubMed  Google Scholar 

  • Temming AR, Dekkers G, van de Bovenkamp FS, Plomp HR, Bentlage AEH, Szittner Z, Derksen NIL, Wuhrer M, Rispens T, Vidarsson G (2019) Human DC-SIGN and CD23 do not interact with human IgG. Sci Rep 9:9995

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomann M, Schlothauer T, Dashivets T, Malik S, Avenal C, Bulau P, Ruger P, Reusch D (2015) In vitro glycoengineering of IgG1 and its effect on Fc receptor binding and ADCC activity. PLoS One 10:e0134949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Twisselmann N, Bartsch YC, Pagel J, Wieg C, Hartz A, Ehlers M, Hartel C (2018) IgG Fc glycosylation patterns of preterm infants differ with gestational age. Front Immunol 9:3166

    Article  CAS  PubMed  Google Scholar 

  • Umana P, Jean-Mairet J, Moudry R, Amstutz H, Bailey JE (1999) Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat Biotechnol 17:176–180

    Article  CAS  PubMed  Google Scholar 

  • Vadrevu SK, Trbojevic-Akmacic I, Kossenkov AV, Colomb F, Giron LB, Anzurez A, Lynn K, Mounzer K, Landay AL, Kaplan RC et al (2018) Frontline Science: Plasma and immunoglobulin G galactosylation associate with HIV persistence during antiretroviral therapy. J Leukoc Biol 104:461–471

    Article  CAS  PubMed  Google Scholar 

  • van de Bovenkamp FS, Derksen NIL, Ooijevaar-de Heer P, van Schie KA, Kruithof S, Berkowska MA, van der Schoot CE, van der Burg M, Gils A et al (2018) Adaptive antibody diversification through N-linked glycosylation of the immunoglobulin variable region. Proc Natl Acad Sci USA 115:1901–1906

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Egmond M, Damen CA, van Spriel AB, Vidarsson G, van Garderen E, van de Winkel JG (2001) IgA and the IgA Fc receptor. Trends Immunol 22:205–211

    Article  PubMed  Google Scholar 

  • van Kooyk Y, Kalay H, Garcia-Vallejo JJ (2013) Analytical tools for the study of cellular glycosylation in the immune system. Front Immunol 4:451

    PubMed  PubMed Central  Google Scholar 

  • Vercelli D, Helm B, Marsh P, Padlan E, Geha RS, Gould H (1989) The B-cell binding site on human immunoglobulin E. Nature 338:649–651

    Article  CAS  PubMed  Google Scholar 

  • Vouldoukis I, Riveros-Moreno V, Dugas B, Ouaaz F, Becherel P, Debre P, Moncada S, Mossalayi MD (1995) The killing of Leishmania major by human macrophages is mediated by nitric oxide induced after ligation of the Fc epsilon RII/CD23 surface antigen. Proc Natl Acad Sci USA 92:7804–7808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker MR, Lund J, Thompson KM, Jefferis R (1989) Aglycosylation of human IgG1 and IgG3 monoclonal antibodies can eliminate recognition by human cells expressing Fc gamma RI and/or Fc gamma RII receptors. Biochem J 259:347–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wandall HH, Rumjantseva V, Sorensen AL, Patel-Hett S, Josefsson EC, Bennett EP, Italiano JE Jr, Clausen H, Hartwig JH, Hoffmeister KM (2012) The origin and function of platelet glycosyltransferases. Blood 120:626–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Balog CI, Stavenhagen K, Koeleman CA, Scherer HU, Selman MH, Deelder AM, Huizinga TW, Toes RE, Wuhrer M (2011) Fc-glycosylation of IgG1 is modulated by B-cell stimuli. Mol Cell Proteomics 10(M110):004655

    PubMed  Google Scholar 

  • Wang TT, Maamary J, Tan GS, Bournazos S, Davis CW, Krammer F, Schlesinger SJ, Palese P, Ahmed R, Ravetch JV (2015) Anti-HA glycoforms drive B cell affinity selection and determine influenza vaccine efficacy. Cell 162:160–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang TT, Sewatanon J, Memoli MJ, Wrammert J, Bournazos S, Bhaumik SK, Pinsky BA, Chokephaibulkit K, Onlamoon N, Pattanapanyasat K et al (2017) IgG antibodies to dengue enhanced for FcgammaRIIIA binding determine disease severity. Science 355:395–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Washburn N, Schwab I, Ortiz D, Bhatnagar N, Lansing JC, Medeiros A, Tyler S, Mekala D, Cochran E, Sarvaiya H et al (2015) Controlled tetra-Fc sialylation of IVIg results in a drug candidate with consistent enhanced anti-inflammatory activity. Proc Natl Acad Sci USA 112:E1297–E1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wermeling F, Anthony RM, Brombacher F, Ravetch JV (2013) Acute inflammation primes myeloid effector cells for anti-inflammatory STAT6 signaling. Proc Natl Acad Sci USA 110:13487–13491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wines BD, Hulett MD, Jamieson GP, Trist HM, Spratt JM, Hogarth PM (1999) Identification of residues in the first domain of human Fc alpha receptor essential for interaction with IgA. J Immunol 162:2146–2153

    Article  CAS  PubMed  Google Scholar 

  • Woof JM, Kerr MA (2006) The function of immunoglobulin A in immunity. J Pathol 208:270–282

    Article  CAS  PubMed  Google Scholar 

  • Wright A, Sato Y, Okada T, Chang K, Endo T, Morrison S (2000) In vivo trafficking and catabolism of IgG1 antibodies with Fc associated carbohydrates of differing structure. Glycobiology 10:1347–1355

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Hitchen PG, Panico M, North SJ, Barbouche MR, Binet D, Morris HR, Dell A, Haslam SM (2016) Glycoproteomic studies of IgE from a novel hyper IgE syndrome linked to PGM3 mutation. Glycoconj J 33:447–456

    Article  CAS  PubMed  Google Scholar 

  • Wuhrer M, Stam JC, van de Geijn FE, Koeleman CA, Verrips CT, Dolhain RJ, Hokke CH, Deelder AM (2007) Glycosylation profiling of immunoglobulin G (IgG) subclasses from human serum. Proteomics 7:4070–4081

    Article  CAS  PubMed  Google Scholar 

  • Young RJ, Owens RJ, Mackay GA, Chan CM, Shi J, Hide M, Francis DM, Henry AJ, Sutton BJ, Gould HJ (1995) Secretion of recombinant human IgE-Fc by mammalian cells and biological activity of glycosylation site mutants. Protein Eng 8:193–199

    Article  CAS  PubMed  Google Scholar 

  • Yu LC, Montagnac G, Yang PC, Conrad DH, Benmerah A, Perdue MH (2003) Intestinal epithelial CD23 mediates enhanced antigen transport in allergy: evidence for novel splice forms. Am J Physiol Gastrointest Liver Physiol 285:G223–G234

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Vasiljevic S, Mitchell DA, Crispin M, Scanlan CN (2013) Dissecting the molecular mechanism of IVIg therapy: the interaction between serum IgG and DC-SIGN is independent of antibody glycoform or Fc domain. J Mol Biol 425:1253–1258

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Marshall MJE, Cragg MS, Crispin M (2017) Improving antibody-based cancer therapeutics through glycan engineering. BioDrugs 31:151–166

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This manuscript was supported by funding from the German Research Foundation to F.N. (DFG FOR 2886, FOR 2953, NI711/9-1, and CRC1181-A07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Falk Nimmerjahn .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

Falk Nimmerjahn declares that he has no conflict of interest. Anja Werner declares that she has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nimmerjahn, F., Werner, A. (2021). Sweet Rules: Linking Glycosylation to Antibody Function. In: Pezer, M. (eds) Antibody Glycosylation. Experientia Supplementum, vol 112. Springer, Cham. https://doi.org/10.1007/978-3-030-76912-3_12

Download citation

Publish with us

Policies and ethics