Skip to main content

Abstract

Transcranial direct current stimulation (tDCS) noninvasively induces cortical excitability alterations via application of continuous, weak direct current through the scalp and has been adopted in clinical settings, particularly in psychiatry, as adjunctive treatment option. This chapter discusses the interaction between tDCS and application of pharmacological agents relevant for psychiatric disorders. It covers the underlying neurochemistry associated with tDCS mechanisms of action, as well as the alteration of tDCS effects, namely neuroplasticity, via major neuromodulator systems, including dopamine, acetylcholine, serotonin, and noradrenaline, which are involved in various psychiatric disorders, and also targets for pharmacological interventions. Furthermore, this chapter addresses the clinical relevance of the interplay between tDCS and corresponding pharmacological agents , to supply the reader with an overview for further implementation of the technique from bench to bedside.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 10 November 2021

    A correction has been published.

References

  1. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(Pt 3):633–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001;57:1899–901.

    Article  CAS  PubMed  Google Scholar 

  3. Nitsche MA, et al. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol. 2003;553:293–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liebetanz D, Nitsche MA, Tergau F, Paulus W. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain. 2002;125:2238–47.

    Article  PubMed  Google Scholar 

  5. Nitsche MA, et al. Consolidation of human motor cortical neuroplasticity by D-cycloserine. Neuropsychopharmacology. 2004;29:1573–8.

    Article  CAS  PubMed  Google Scholar 

  6. Lisman J, Three E. Ca2+ levels affect plasticity differently: the LTP zone, the LTD zone and no man’s land. J Physiol. 2001;532:285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Monai H, et al. Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain. Nat Commun. 2016;7:11100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Islam N, Aftabuddin M, Moriwaki A, Hattori Y, Hori Y. Increase in the calcium level following anodal polarization in the rat brain. Brain Res. 1995;684:206–8.

    Article  CAS  PubMed  Google Scholar 

  9. Grundey J, et al. Nicotine modulates human brain plasticity via calcium-dependent mechanisms. J Physiol. 2018;596:5429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Martins CW, de Melo Rodrigues LC, Nitsche MA, Nakamura-Palacios EM. AMPA receptors are involved in prefrontal direct current stimulation effects on long-term working memory and GAP-43 expression. Behav Brain Res. 2019;362:208–12.

    Article  CAS  PubMed  Google Scholar 

  11. Stagg CJ, et al. Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. J Neurosci. 2009;29:5202–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nitsche MA, et al. Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. J Physiol. 2005;568:291–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hone-Blanchet A, Edden RA, Fecteau S. Online effects of transcranial direct current stimulation in real time on human prefrontal and striatal metabolites. Biol Psychiatry. 2016;80:432–8.

    Article  PubMed  Google Scholar 

  14. Chung SW, Rogasch NC, Hoy KE, Fitzgerald PB. Measuring brain stimulation induced changes in cortical properties using TMS-EEG. Brain Stimul. 2015;8:1010–20.

    Article  PubMed  Google Scholar 

  15. Du X, et al. TMS evoked N100 reflects local GABA and glutamate balance. Brain Stimul. 2018;11:1071–9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Duman RS, Sanacora G, Krystal JH. Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments. Neuron. 2019;102:75–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wilkinson ST, Sanacora G. A new generation of antidepressants: an update on the pharmaceutical pipeline for novel and rapid-acting therapeutics in mood disorders based on glutamate/GABA neurotransmitter systems. Drug Discov Today. 2019;24:606–15.

    Article  CAS  PubMed  Google Scholar 

  18. Seamans JK, Yang CR. The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol. 2004;74:1–58.

    Article  CAS  PubMed  Google Scholar 

  19. Goto Y, Grace AA. The dopamine system and the pathophysiology of schizophrenia: a basic science perspective. Int Rev Neurobiol. 2007;78:41–68.

    Article  CAS  PubMed  Google Scholar 

  20. Tritsch NX, Sabatini BL. Dopaminergic modulation of synaptic transmission in cortex and striatum. Neuron. 2012;76:33–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Seamans JK, Durstewitz D, Christie BR, Stevens CF, Sejnowski TJ. Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons. Proc Natl Acad Sci U S A. 2001;98:301–6.

    Article  CAS  PubMed  Google Scholar 

  22. Beurrier C, Malenka RC. Enhanced inhibition of synaptic transmission by dopamine in the nucleus accumbens during behavioral sensitization to cocaine. J Neurosci. 2002;22:5817–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen G, Greengard P, Yan Z. Potentiation of NMDA receptor currents by dopamine D1 receptors in prefrontal cortex. Proc Natl Acad Sci U S A. 2004;101:2596–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jocoy EL, et al. Dissecting the contribution of individual receptor subunits to the enhancement of N-methyl-d-aspartate currents by dopamine D1 receptor activation in striatum. Front Syst Neurosci. 2011;5:28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Higley MJ, Sabatini BL. Competitive regulation of synaptic Ca2+ influx by D2 dopamine and A2A adenosine receptors. Nat Neurosci. 2010;13:958–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gribkoff VK, Ashe JH. Modulation by dopamine of population responses and cell membrane properties of hippocampal CA1 neurons in vitro. Brain Res. 1984;292:327–38.

    Article  CAS  PubMed  Google Scholar 

  27. Seamans JK, Gorelova N, Durstewitz D, Yang CR. Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal neurons. J Neurosci. 2001;21:3628–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gorelova N, Seamans JK, Yang CR. Mechanisms of dopamine activation of fast-spiking interneurons that exert inhibition in rat prefrontal cortex. J Neurophysiol. 2002;88:3150–66.

    Article  CAS  PubMed  Google Scholar 

  29. Lisman J, Grace AA, Duzel E. A neoHebbian framework for episodic memory; role of dopamine-dependent late LTP. Trends Neurosci. 2011;34:536–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nitsche MA, et al. Dopaminergic modulation of long-lasting direct current-induced cortical excitability changes in the human motor cortex. Eur J Neurosci. 2006;23:1651–7.

    Article  PubMed  Google Scholar 

  31. Kuo MF, Paulus W, Nitsche MA. Boosting focally-induced brain plasticity by dopamine. Cereb Cortex. 2008;18:648–51.

    Article  PubMed  Google Scholar 

  32. Monte-Silva K, Liebetanz D, Grundey J, Paulus W, Nitsche MA. Dosage-dependent non-linear effect of L-dopa on human motor cortex plasticity. J Physiol. 2010;588:3415–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thirugnanasambandam N, Grundey J, Paulus W, Nitsche MA. Dose-dependent nonlinear effect of L-DOPA on paired associative stimulation-induced neuroplasticity in humans. J Neurosci. 2011;31:5294–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fresnoza S, Paulus W, Nitsche MA, Kuo MF. Nonlinear dose-dependent impact of D1 receptor activation on motor cortex plasticity in humans. J Neurosci. 2014;34:2744–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fresnoza S, et al. Dosage-dependent effect of dopamine D2 receptor activation on motor cortex plasticity in humans. J Neurosci. 2014;34:10701–9.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Galloway MP, Wolf ME, Roth RH. Regulation of dopamine synthesis in the medial prefrontal cortex is mediated by release modulating autoreceptors: studies in vivo. J Pharmacol Exp Ther. 1986;236:689–98.

    CAS  PubMed  Google Scholar 

  37. Gögler N, et al. Parameter-based evaluation of attentional impairments in Schizophrenia and their modulation by prefrontal transcranial direct current stimulation. Front Psych. 2017;8:259.

    Article  Google Scholar 

  38. Gomes JS, et al. Left dorsolateral prefrontal cortex anodal tDCS effects on negative symptoms in Schizophrenia. Brain Stimul. 2015;8:989–91.

    Article  PubMed  Google Scholar 

  39. Mondino M, Haesebaert F, Poulet E, Suaud-Chagny MF, Brunelin J. Fronto-temporal transcranial Direct Current Stimulation (tDCS) reduces source-monitoring deficits and auditory hallucinations in patients with schizophrenia. Schizophr Res. 2015;161:515–6.

    Article  PubMed  Google Scholar 

  40. Agarwal SM, et al. Impact of antipsychotic medication on transcranial direct current stimulation (tDCS) effects in schizophrenia patients. Psychiatry Res. 2016;235:97–103.

    Article  CAS  PubMed  Google Scholar 

  41. Valiengo LDCL, et al. Efficacy and safety of transcranial direct current stimulation for treating negative symptoms in Schizophrenia a randomized clinical trial. JAMA Psychiat. 2020;77:121–9.

    Article  Google Scholar 

  42. Singer HS, Minzer K. Neurobiology of Tourette’s syndrome: concepts of neuroanatomic localization and neurochemical abnormalities. Brain and Development. 2003;25(Suppl 1):S70–84.

    Article  PubMed  Google Scholar 

  43. Edemann-Callesen H, et al. Non-invasive modulation reduces repetitive behavior in a rat model through the sensorimotor cortico-striatal circuit. Transl Psychiatry. 2018;8:11.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Fonteneau C, et al. Frontal transcranial direct current stimulation induces dopamine release in the ventral striatum in human. Cereb Cortex. 2018;28:2636–46.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Meyer B, et al. Increased neural activity in mesostriatal regions after prefrontal transcranial direct current stimulation and l-DOPA administration. J Neurosci. 2019;39:5326–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sarter M, Parikh V, Howe WM. nAChR agonist-induced cognition enhancement: integration of cognitive and neuronal mechanisms. Biochem Pharmacol. 2009;78:658–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hasselmo ME, Sarter M. Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology. 2011;36:52–73.

    Article  CAS  PubMed  Google Scholar 

  48. Rasmusson DD. The role of acetylcholine in cortical synaptic plasticity. Behav Brain Res. 2000;115:205–18.

    Article  CAS  PubMed  Google Scholar 

  49. Gu Q. Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity. Neuroscience. 2002;111:815–35.

    Article  CAS  PubMed  Google Scholar 

  50. Mansvelder HD, van Aerde KI, Couey JJ, Brussaard AB. Nicotinic modulation of neuronal networks: from receptors to cognition. Psychopharmacology. 2006;184:292–305.

    Article  CAS  PubMed  Google Scholar 

  51. Lucas-Meunier E, et al. Involvement of nicotinic and muscarinic receptors in the endogenous cholinergic modulation of the balance between excitation and inhibition in the young rat visual cortex. Cereb Cortex. 2009;19:2411–27.

    Article  PubMed  Google Scholar 

  52. McKay BE, Placzek AN, Dani JA. Regulation of synaptic transmission and plasticity by neuronal nicotinic acetylcholine receptors. Biochem Pharmacol. 2007;74:1120–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pistillo F, Clementi F, Zoli M, Gotti C. Nicotinic, glutamatergic and dopaminergic synaptic transmission and plasticity in the mesocorticolimbic system: focus on nicotine effects. Prog Neurobiol. 2015;124:1–27.

    Article  CAS  PubMed  Google Scholar 

  54. Levin ED, McClernon FJ, Rezvani AH. Nicotinic effects on cognitive function: behavioral characterization, pharmacological specification, and anatomic localization. Psychopharmacology. 2006;184:523–39.

    Article  CAS  PubMed  Google Scholar 

  55. Lambe EK, Picciotto MR, Aghajanian GK. Nicotine induces glutamate release from thalamocortical terminals in prefrontal cortex. Neuropsychopharmacology. 2003;28:216–25.

    Article  CAS  PubMed  Google Scholar 

  56. Kruglikov I, Rudy B. Perisomatic GABA release and thalamocortical integration onto neocortical excitatory cells are regulated by neuromodulators. Neuron. 2008;58:911–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gray R, Rajan AS, Radcliffe KA, Yakehiro M, Dani JA. Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature. 1996;383:713–6.

    Article  CAS  PubMed  Google Scholar 

  58. Léna C, Changeux JP. Role of Ca2+ ions in nicotinic facilitation of GABA release in mouse thalamus. J Neurosci. 1997;17:576–85.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Grundey J, et al. Cortical excitability in smoking and not smoking individuals with and without nicotine. Psychopharmacology. 2013;229:653–64.

    Article  CAS  PubMed  Google Scholar 

  60. Placzek AN, Zhang TA, Dani JA. Nicotinic mechanisms influencing synaptic plasticity in the hippocampus. Acta Pharmacol Sin. 2009;30:752–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Matsuyama S, Matsumoto A, Enomoto T, Nishizaki T. Activation of nicotinic acetylcholine receptors induces long-term potentiation in vivo in the intact mouse dentate gyrus. Eur J Neurosci. 2000;12:3741–7.

    Article  CAS  PubMed  Google Scholar 

  62. Couey JJ, et al. Distributed network actions by nicotine increase the threshold for spike-timing-dependent plasticity in prefrontal cortex. Neuron. 2007;54:73–87.

    Article  CAS  PubMed  Google Scholar 

  63. Kuo MF, Grosch J, Fregni F, Paulus W, Nitsche MA. Focusing effect of acetylcholine on neuroplasticity in the human motor cortex. J Neurosci. 2007;27:14442–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Thirugnanasambandam N, et al. Nicotinergic impact on focal and non-focal neuroplasticity induced by non-invasive brain stimulation in non-smoking humans. Neuropsychopharmacology. 2011;36:879–86.

    Article  CAS  PubMed  Google Scholar 

  65. Batsikadze G, Paulus W, Grundey J, Kuo MF, Nitsche MA. Effect of the nicotinic α4β2-receptor partial agonist Varenicline on non-invasive brain stimulation-induced neuroplasticity in the human motor cortex. Cereb Cortex. 2015;25:3249–59.

    Article  PubMed  Google Scholar 

  66. Lugon MD, et al. Mechanisms of nicotinic modulation of glutamatergic neuroplasticity in humans. Cereb Cortex. 2017;27:544–53.

    PubMed  Google Scholar 

  67. Grundey J, et al. Neuroplasticity in cigarette smokers is altered under withdrawal and partially restituted by nicotine exposition. J Neurosci. 2012;32:4156–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Batsikadze G, et al. Compromised neuroplasticity in cigarette smokers under nicotine withdrawal is restituted by the nicotinic α4β2-receptor partial agonist varenicline. Sci Rep. 2017;7:1387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hasan A, et al. Impaired long-term depression in schizophrenia: a cathodal tDCS pilot study. Brain Stimul. 2012;5:475–83.

    Article  PubMed  Google Scholar 

  70. Strube W, et al. Smoking restores impaired LTD-like plasticity in schizophrenia: a transcranial direct current stimulation study. Neuropsychopharmacology. 2015;40:822–30.

    Article  CAS  PubMed  Google Scholar 

  71. Brunelin J, Hasan A, Haesebaert F, Nitsche MA, Poulet E. Nicotine smoking prevents the effects of frontotemporal transcranial Direct Current Stimulation (tDCS) in hallucinating patients with schizophrenia. Brain Stimul. 2015;8:1225–7.

    Article  PubMed  Google Scholar 

  72. Smith RC, et al. Effects of transcranial direct current stimulation (tDCS) on cognition, symptoms, and smoking in schizophrenia: a randomized controlled study. Schizophr Res. 2015;168:260–6.

    Article  PubMed  Google Scholar 

  73. Buckley JS, Salpeter SR. A risk-benefit assessment of dementia medications: systematic review of the evidence. Drugs Aging. 2015;32:453–67.

    Article  CAS  PubMed  Google Scholar 

  74. Newhouse P, et al. Nicotine treatment of mild cognitive impairment A 6-month double-blind pilot clinical trial. Neurology. 2012;78:91–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mehta M, Adem A, Kahlon MS, Sabbagh MN. The nicotinic acetylcholine receptor: smoking and Alzheimer’s disease revisited. Front Biosci (Elite Ed). 2012;4:169–180.

    Google Scholar 

  76. Im JJ, et al. Effects of 6-month at-home transcranial direct current stimulation on cognition and cerebral glucose metabolism in Alzheimer’s disease. Brain Stimul. 2019;12:1222–8.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Iversen L, Iversen S, Bloom FE, Roth RH. Introduction to neuropsychopharmacology. Oxford University Press; 2008.

    Google Scholar 

  78. Pereira M, Martynhak BJ, Andreatini R, Svenningsson P. 5-HT6 receptor agonism facilitates emotional learning. Front Pharmacol. 2015;6:200.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Enge S, Fleischhauer M, Lesch KP, Strobel A. On the role of serotonin and effort in voluntary attention: evidence of genetic variation in N1 modulation. Behav Brain Res. 2011;216:122–8.

    Article  CAS  PubMed  Google Scholar 

  80. Acler M, Robol E, Fiaschi A, Manganotti P. A double blind placebo RCT to investigate the effects of serotonergic modulation on brain excitability and motor recovery in stroke patients. J Neurol. 2009;256:1152–8.

    Article  CAS  PubMed  Google Scholar 

  81. Brunoni AR, et al. The sertraline vs. electrical current therapy for treating depression clinical study: results from a factorial, randomized, controlled trial. JAMA Psychiat. 2013;70:383–91.

    Article  CAS  Google Scholar 

  82. Kraus C, Castrén E, Kasper S, Lanzenberger R. Serotonin and neuroplasticity - links between molecular, functional and structural pathophysiology in depression. Neurosci Biobehav Rev. 2017;77:317–26.

    Article  CAS  PubMed  Google Scholar 

  83. Ogren SO, et al. The role of 5-HT(1A) receptors in learning and memory. Behav Brain Res. 2008;195:54–77.

    Article  PubMed  Google Scholar 

  84. Bert B, Fink H, Rothe J, Walstab J, Bönisch H. Learning and memory in 5-HT(1A)-receptor mutant mice. Behav Brain Res. 2008;195:78–85.

    Article  CAS  PubMed  Google Scholar 

  85. Kojic L, Gu Q, Douglas RM, Cynader MS. Serotonin facilitates synaptic plasticity in kitten visual cortex: an in vitro study. Brain Res Dev Brain Res. 1997;101:299–304.

    Article  CAS  PubMed  Google Scholar 

  86. Kemp A, Manahan-Vaughan D. The 5-hydroxytryptamine4 receptor exhibits frequency-dependent properties in synaptic plasticity and behavioural metaplasticity in the hippocampal CA1 region in vivo. Cereb Cortex. 2005;15:1037–43.

    Article  PubMed  Google Scholar 

  87. Reiser G, Donié F, Binmöller FJ. Serotonin regulates cytosolic Ca2+ activity and membrane potential in a neuronal and in a glial cell line via 5-HT3 and 5-HT2 receptors by different mechanisms. J Cell Sci. 1989;93:545–55.

    Article  CAS  PubMed  Google Scholar 

  88. Normann C, Schmitz D, Fürmaier A, Döing C, Bach M. Long-term plasticity of visually evoked potentials in humans is altered in major depression. Biol Psychiatry. 2007;62:373–80.

    Article  PubMed  Google Scholar 

  89. Nitsche MA, et al. Serotonin affects transcranial direct current-induced neuroplasticity in humans. Biol Psychiatry. 2009;66:503–8.

    Article  CAS  PubMed  Google Scholar 

  90. Kuo HI, et al. Chronic enhancement of serotonin facilitates excitatory transcranial direct current stimulation-induced neuroplasticity. Neuropsychopharmacology. 2016;41:1223–30.

    Article  CAS  PubMed  Google Scholar 

  91. Batsikadze G, Paulus W, Kuo MF, Nitsche MA. Effect of serotonin on paired associative stimulation-induced plasticity in the human motor cortex. Neuropsychopharmacology. 2013;38:2260–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Prehn K, et al. Effects of anodal transcranial direct current stimulation and serotonergic enhancement on memory performance in young and older adults. Neuropsychopharmacology. 2017;42:551–61.

    Article  CAS  PubMed  Google Scholar 

  93. Lei S, Deng PY, Porter JE, Shin HS. Adrenergic facilitation of GABAergic transmission in rat entorhinal cortex. J Neurophysiol. 2007;98:2868–77.

    Article  CAS  PubMed  Google Scholar 

  94. Marzo A, Bai J, Otani S. Neuroplasticity regulation by noradrenaline in mammalian brain. Curr Neuropharmacol. 2009;7:286–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wójtowicz AM, Fidzinski P, Heinemann U, Behr J. Beta-adrenergic receptor activation induces long-lasting potentiation in burst-spiking but not regular-spiking cells at CA1-subiculum synapses. Neuroscience. 2010;171:367–72.

    Article  PubMed  Google Scholar 

  96. McElligott ZA, Winder DG. Alpha1-adrenergic receptor-induced heterosynaptic long-term depression in the bed nucleus of the stria terminalis is disrupted in mouse models of affective disorders. Neuropsychopharmacology. 2008;33:2313–23.

    Article  CAS  PubMed  Google Scholar 

  97. Kemp A, Manahan-Vaughan D. Beta-adrenoreceptors comprise a critical element in learning-facilitated long-term plasticity. Cereb Cortex. 2008;18:1326–34.

    Article  PubMed  Google Scholar 

  98. Nitsche MA, et al. Catecholaminergic consolidation of motor cortical neuroplasticity in humans. Cereb Cortex. 2004;14:1240–5.

    Article  PubMed  Google Scholar 

  99. Kuo HI, et al. Acute and chronic noradrenergic effects on cortical excitability in healthy humans. Int J Neuropsychopharmacol. 2017;20:634–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kuo HI, et al. Acute and chronic effects of noradrenergic enhancement on transcranial direct current stimulation-induced neuroplasticity in humans. J Physiol. 2017;595:1305–14.

    Article  CAS  PubMed  Google Scholar 

  101. Grimm S, et al. Imbalance between left and right dorsolateral prefrontal cortex in major depression is linked to negative emotional judgment: an fMRI study in severe major depressive disorder. Biol Psychiatry. 2008;63:369–76.

    Article  PubMed  Google Scholar 

  102. Padberg F, et al. Prefrontal transcranial direct current stimulation (tDCS) as treatment for major depression: study design and methodology of a multicenter triple blind randomized placebo controlled trial (DepressionDC). Eur Arch Psychiatry Clin Neurosci. 2017;267:751–66.

    Article  PubMed  Google Scholar 

  103. Sepede G, Corbo M, Fiori F, Martinotti G. Reboxetine in clinical practice: a review. Clin Ter. 2012;163:e255–62.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Nitsche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuo, MF., Nitsche, M.A. (2021). tDCS-Pharmacotherapy Interactions. In: Brunoni, A.R., Nitsche, M.A., Loo, C.K. (eds) Transcranial Direct Current Stimulation in Neuropsychiatric Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-76136-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76136-3_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76135-6

  • Online ISBN: 978-3-030-76136-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics