Skip to main content

Pharmaceutical Pollutants in Aquatic Ecosystems

  • Chapter
  • First Online:
Anthropogenic Pollution of Aquatic Ecosystems

Abstract

Pollutants, including synthetic organic materials and heavy metals, are known to adversely affect physiological systems in all animal species studied so far, especially in aquatic ecosystems. Although many individual chemicals can disrupt normal functions, the combined actions of various pollutants are particularly worrying as they can have effects even when each individual chemical is present at concentrations too low to be individually effective. A special approach is currently being given to anthropogenic products called emerging pollutants, including drugs, hormones and by-products of human and animal metabolism which, despite being in very low concentrations, can cause biological effects which differ greatly between species, reflecting differences in exposure pattern, uptake pathways, post-uptake metabolism, accumulation rates and target organ sensitivity. Thus, understanding the effects of pollutants on wildlife and aquatic ecosystems will require a detailed study of many different species representing a wide range of taxa. However, these studies can be substantiated by knowledge gained under more controlled conditions, which may indicate likely mechanisms of action and appropriate endpoint measures. Responses may be exacerbated by interactions between the effects of pollutants, and environmental stressors, such as malnutrition or osmotic stress, and changes in these variables associated with climate change may further exacerbate physiological responses to pollutant burden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alder L, Greulich K, Kempe G, Vieth B (2006) Residue analysis of 500 high priority pesticides: better by GC–MS or LC–MS/MS? Mass Spectrom Rev 25(6):838–865

    Article  CAS  Google Scholar 

  • Aragão RBDA (2018) Fármacos Como Poluentes Emergentes Em Ambientes Aquáticos: Panorama De Consumo Na Região Metropolitana De São Paulo E Quadro Comparativo De Políticas Públicas Entre Países. Dissertação de mestrado, USP, Brazil, p 59

    Google Scholar 

  • Aus der Beek T, Weber FA, Bergmann A, Hickmann S, Ebert I, Hein A, Küster A (2016) Pharmaceuticals in the environment. Global occurrences and perspectives. Environ Toxicol Chem 35(4):823–835

    Article  CAS  Google Scholar 

  • Borrely SI, Caminada SML, Ponezi AN, Santos DRD, Silva VHO (2012) Contaminação das águas por resíduos de medicamentos: ênfase ao cloridrato de fluoxetina. Mundo da Saúde 36(4):556–563

    Article  Google Scholar 

  • Bound JP, Voulvoulis N (2005) Household disposal of pharmaceuticals as a pathway for aquatic contamination in the United Kingdom. Environ Health Perspect 113(12):1705–1711

    Article  Google Scholar 

  • Boxall AB (2004) The environmental side effects of medication: How are human and veterinary medicines in soils and water bodies affecting human and environmental health? EMBO Rep 5(12):1110–1116

    Article  CAS  Google Scholar 

  • Burns EE, Carter LJ, Snape J, Thomas-Oates J, Boxall AB (2018) Application of prioritization approaches to optimize environmental monitoring and testing of pharmaceuticals. J Toxicol Environ Health, Part B 21(3):115–141

    Article  CAS  Google Scholar 

  • Damstra T, Barlow S, Bergman A, Kavlock R, Van Der Kraak G (eds) (2011) Global assessment of the state-of-the-science of endocrine disruptors. Geneva: World Health Organization (WHO), International Labour Organization (ILO), United Nations Environment Programme (UNEP). Accessed at: http://www.who.int/ipcs/publications/new_issues/endocrine_disruptors/en/

  • Erzinger GS (2013) Emerging pollutants: environmental impact of disposal of drugs. Pharmaceut Anal Acta 4:

    Article  Google Scholar 

  • Erzinger GS, Häder D-P (2018) Regulations, political and societal aspects, toxicity limits. In: Häder D-P, Erzinger GS (eds) Bioassays: advanced methods and applications. Elsevier, Amsterdam, pp 51–67

    Chapter  Google Scholar 

  • Erzinger GS, Brasilino FF, Pinto LH, Häder D-P (2014) Environmental toxicity caused by derivatives of estrogen and chemical alternatives for removal. Pharm Anal Acta 5:8

    Article  Google Scholar 

  • Ferreira MGM (2008) Remoção da atividade estrogênica de 17ß-estradiol e de 17α-etinilestradiol pelos processos de ozonização e O3/H2O2. USP, Tese de Doutorado

    Google Scholar 

  • Gagné F, Blaise C, André C (2006) Occurrence of pharmaceutical products in a municipal effluent and toxicity to rainbow trout (Oncorhynchus mykiss) hepatocytes. Ecotoxicol Environ Saf 64(3):329–336

    Article  Google Scholar 

  • Gagné F, Blaise C, Salazar M, Salazar S, Hansen PD (2001) Evaluation of estrogenic effects of municipal effluents to the freshwater mussel Elliptio complanata. Comp Biochem Physiol Part C: Toxicol Pharmacol 128:213–225

    Article  Google Scholar 

  • Geissen V, Mol JGJ, Klumpp E, Umlauf G, Nadal M, Ploeg MJ, van der Zee SEATM, van der Ritsema CJ (2015) Emerging pollutants in the environment: a challenge for water resource management. Int Soil Water Conserv Res 3(1):57–65

    Article  Google Scholar 

  • Grenni P, Ancona V, Caracciolo AB (2018) Ecological effects of antibiotics on natural ecosystems: a review. Microchem J 136:25–39

    Article  CAS  Google Scholar 

  • Häder D-P, Erzinger G (eds) (2017) Bioassays: advanced methods and applications. Elsevier, Amsterdam, p 459

    Google Scholar 

  • Halling-Sørensen BNNS, Nielsen SN, Lanzky PF, Ingerslev F, Lützhøft HH, Jørgensen SE (1998) Occurrence, fate and effects of pharmaceutical substances in the environment-a review. Chemosphere 36(2):357–393

    Article  Google Scholar 

  • Hartung T (2009) Toxicology for the twenty-first century. Nature 460(7252):208–212

    Article  CAS  Google Scholar 

  • Heberer T (2002) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131(1–2):5–17

    Article  CAS  Google Scholar 

  • Hernando MD, Rodríguez A, Vaquero JJ, Fernández-Alba AR, García E (2011) Environmental risk assessment of emerging pollutants in water: approaches under horizontal and vertical EU legislation. Crit Rev Environ Sci Technol 41(7):699–731

    Article  Google Scholar 

  • Instituto Tata Brasil (2020) http://www.tratabrasil.org.br/estudos/estudos-itb/itb/ranking-do-saneamento-2020. Accessed on 30 Nov 2020

  • Kümmerer K (2009) Antibiotics in the aquatic environment a review–part I. Chemosphere 75(4):417–434

    Article  Google Scholar 

  • Kusturica MP, Tomas A, Sabo A (2016) Disposal of unused drugs: knowledge and behavior among people around the world. In: de Voogt P (ed) Reviews of environmental contamination and toxicology, vol 240. Springer, Cham, pp 71–104

    Google Scholar 

  • La Farre M, Pérez S, Kantiani L, Barceló D (2008) Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. TrAC Trends Anal Chem 27(11):991–1007

    Article  CAS  Google Scholar 

  • Liu ZH, Lu GN, Yin H, Dang Z, Rittmann B (2015) Removal of natural estrogens and their conjugates in municipal wastewater treatment plants: a critical review. Environ Sci Technol 49(9):5288–5300

    Article  CAS  Google Scholar 

  • Maniero MG, Bila DM, Dezotti M (2008) Degradation and estrogenic activity removal of 17β-estradiol and 17α-ethinylestradiol by ozonation and O3/H2O2. Sci Total Environ 407(1):105–115

    Article  Google Scholar 

  • McEniff G, Schmidt W, Quinn B (2020) Pharmaceuticals in the aquatic environment: a short summary of current knowledge and the potential impacts on aquatic biota and humans. EPA Research Programme 2014–2020, Published by the Environmental Protection Agency, Ireland, PG 52. Accessed on 20 Oct 2020. https://www.epa.ie/pubs/reports/research/water/Research%20142%20Report%20FINAL.pdf

  • Norman Network (2020) Network of reference laboratories, research centres and related organisations for monitoring of emerging environmental substance. Why do we need to address emerging substances? https://www.norman-network.net/?q=node/19. Accessed on 30 Nov 2020

  • OECD (2019) Pharmaceutical residues in freshwater: hazards and policy responses. https://www.oecd-ilibrary.org/sites/6a617955-en/index.html?itemId=/content/component/6a617955-en. https://doi.org/10.1787/c936f42d-en

  • Ong TT, Blanch EW, Jones OA (2018) Predicted environmental concentration and fate of the top 10 most dispensed Australian prescription pharmaceuticals. Environ Sci Pollut Res 25(11):10966–10976

    Article  Google Scholar 

  • Patel M, Kumar R, Kishor K, Mlsna T, Pittman CU Jr, Mohan D (2019) Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods. Chem Rev 119(6):3510–3673

    Article  CAS  Google Scholar 

  • Petrie B, Barden R, Kasprzyk-Hordern B (2015) A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res 72:3–27

    Article  CAS  Google Scholar 

  • Petrie B, McAdam EJ, Whelan MJ, Lester JN, Cartmell E (2013) The determination of nonylphenol and its precursors in a trickling filter wastewater treatment process. Anal Bioanal Chem 405(10):3243–3253

    Article  CAS  Google Scholar 

  • Pinto LH, Cardozo G, Soares JC, Erzinger GS (2016) Toxicidade ambiental de efluentes advindo de diferentes laboratórios de uma farmácia magistral. Revista Ambiente & Água 11(4):819–832

    Article  Google Scholar 

  • Portal tratamento de água. Segurança hídrica e abastecimento na Região Metropolitana de São Paulo (2018) https://www.tratamentodeagua.com.br/artigo/seguranca-hidrica-e-abastecimento-na-regiao-metropolitana-de-sao-paulo/. Accessed on 20 Oct 2020

  • Richardson ML, Bowron JM (1985) The fate of pharmaceutical chemicals in the aquatic environment. J Pharm Pharmacol 37(1):1–12

    Article  CAS  Google Scholar 

  • Rivera-Utrilla J, Sánchez-Polo M, Ferro-García MÁ, Prados-Joya G, Ocampo-Pérez R (2013) Pharmaceuticals as emerging contaminants and their removal from water: A review. Chemosphere 93(7):1268–1287

    Article  CAS  Google Scholar 

  • Rodgers-Gray TP, Jobling S, Morris S, Kelly C, Kirby S, Janbakhsh A, Harries JE, Waldock MJ, Jumpter JPO, Tyler CR (2000) Long-term temporal changes in the estrogenic composition of treated sewage effluent and its biological effects on fish. Environ Sci Technol 34(8):1521–1528

    Article  CAS  Google Scholar 

  • Semenza JC, Tolbert PE, Rubin CH, Guillette LJ Jr, Jackson RJ (1997) Reproductive toxins and alligator abnormalities at Lake Apopka, Florida. Environ Health Perspect 105(10):1030–1032

    Article  CAS  Google Scholar 

  • Shea K (2011) Infographic: unprescribed drugs in the water cycle. December 2, 2011/in North America, Pollution, Sanitation/Health, Water News, Water Policy & Politics.https://www.circleofblue.org/2011/world/infographic-unprescribed-%E2%80%94-drugs-in-the-water-cycle/. Accessed on 30 Nov 2020

  • SNIS—Sistema Nacional de Informações sobre Saneamento (2018) http://www.snis.gov.br/. Accessed on 30 Nov 2020

  • Stumpf M, Ternes TA, Wilken RD, Rodrigues SV, Baumann W (1999) Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil. Sci Total Environ 225(1–2):135–141

    Article  Google Scholar 

  • Valcárcel Y, González Alonso S, Rodriguez-Gil JL, Romo R, Gil A, Vatala L (2011) Analysis of the presence of cardiovascular and analgesic/anti-inflammatory/antipyretic drugs in fluvial and drinking water of the Madrid Region in Spain. Chemosphere 82(7):1062–1071

    Article  Google Scholar 

  • Van Donk E, Peacor S, Grosser K, Domis LNDS, Lürling M (2016) Pharmaceuticals may disrupt natural chemical information flows and species interactions in aquatic systems: ideas and perspectives on a hidden global change. In: Gunther FA, de Voogt P (eds) Reviews of environmental contamination and toxicology. Springer, Cham, pp 91–105

    Google Scholar 

  • Watts C, Maycock D, Crane M, Fawell J, Goslan E (2007) Desk based review of current knowledge on pharmaceuticals in drinking water and estimation of potential levels. Final Report. Drinking Water Inspectorate (DWI), Department for Environment, Food and Rural Affairs, 107. Accessed on 20 Oct 2020

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Erzinger, G.S., Strauch, S.M., Fröhlich, M., Machado, C.K., del Ciampo, L. (2021). Pharmaceutical Pollutants in Aquatic Ecosystems. In: Häder, DP., Helbling, E.W., Villafañe, V.E. (eds) Anthropogenic Pollution of Aquatic Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-030-75602-4_11

Download citation

Publish with us

Policies and ethics