Skip to main content

Commercialization of Investigational Cell Therapy Products

  • Chapter
  • First Online:
Book cover Cell Therapy

Abstract

Over the last several decades, cellular therapies have emerged as novel forms of treatment with potential to benefit patients who currently have limited to no treatment options. Cell therapies have been developed for a wide variety of maladies, including heart disease, neurodegenerative diseases, immunodeficiencies, as well as hematologic and solid cancers. However, due to their substantial complexity compared to small molecules or other biologic drugs, developing and commercializing cell therapies remains difficult. Some commonly identified challenges include maintaining stable funding through lengthy developmental timelines, rigorous regulatory hurdles, scalability and manufacturing concerns, distribution, and unclear reimbursement processes. However, limited commercial successes have not dampened enthusiasm or expectations for the field. Here, we describe examples of cellular therapy products that have been successfully commercialized, as well as the components necessary to achieve commercialization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mason, C., & Dunnill, P. (2008). A brief definition of regenerative medicine. Regenerative Medicine, 3(1), 1–5.

    PubMed  Google Scholar 

  2. Tang, J., Hubbard-Lucey, V. M., Pearce, L., et al. (2018). The global landscape of cancer cell therapy. Nature Reviews. Drug Discovery, 17(7), 465–466.

    CAS  PubMed  Google Scholar 

  3. Li, M. D., Atkins, H., & Bubela, T. (2014). The global landscape of stem cell clinical trials. Regenerative Medicine, 9(1), 27–39.

    CAS  PubMed  Google Scholar 

  4. Yano, K., Speidel, A. T., & Yamato, M. (2018). Four Food and Drug Administration draft guidance documents and the REGROW Act: A litmus test for future changes in human cell- and tissue-based products regulatory policy in the United States? Journal of Tissue Engineering and Regenerative Medicine, 12(7), 1579–1593.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Mason, C., Brindley, D. A., Culme-Seymour, E. J., & Davie, N. L. (2011). Cell therapy industry: Billion dollar global business with unlimited potential. Regenerative Medicine, 6(3), 265–272.

    PubMed  Google Scholar 

  6. Rao, M. S. (2011). Funding translational work in cell-based therapy. Cell Stem Cell, 9(1), 7–10.

    CAS  PubMed  Google Scholar 

  7. Mason, C. (2009). ISSCR 2009 industry panel session: Promoting translation and commercialization. Cell Stem Cell, 5(4), 379–384.

    CAS  PubMed  Google Scholar 

  8. Epicel. (2020). Epicel 2020. https://www.epicel.com/. Last accessed 3 Sept 2020.

  9. Rheinwald, J. G., & Green, H. (1975). Serial cultivation of strains of human epidermal keratinocytes: The formation of keratinizing colonies from single cells. Cell, 6(3), 331–343.

    CAS  PubMed  Google Scholar 

  10. Green, H. (2008). The birth of therapy with cultured cells. BioEssays, 30(9), 897–903.

    PubMed  Google Scholar 

  11. De Bie, C. (2007). Genzyme: 15 years of cell and gene therapy research. Regenerative Medicine, 2(1), 95–97.

    PubMed  Google Scholar 

  12. Dodson, B. P., & Levine, A. D. (2015). Challenges in the translation and commercialization of cell therapies. BMC Biotechnology, 15, 70.

    PubMed  PubMed Central  Google Scholar 

  13. Administration USFaD. (2016). Guidance for Industry and Food and Drug Administration Staff – Humanitarian Use Device (HUD) Designations. https://www.fda.gov/media/85356/download. Last accessed 3 Sept 2020.

  14. Administration USFaD. (2019). Humanitarian device exemption. Updated September 05, 2019. https://www.fda.gov/medical-devices/premarket-submissions/humanitarian-device-exemption#definitions. Last accessed 3 Sept 2020.

  15. Zaslav, K., Cole, B., Brewster, R., DeBerardino, T., et al. (2009). Investigators SSP. A prospective study of autologous chondrocyte implantation in patients with failed prior treatment for articular cartilage defect of the knee: Results of the Study of the Treatment of Articular Repair (STAR) clinical trial. The American Journal of Sports Medicine, 37(1), 42–55.

    PubMed  Google Scholar 

  16. Administration USFaD. (2019). MACI package insert June 2019. https://www.maci.com/patients/?carticel. Last accessed 3 Sept 2020.

  17. Administration USFaD. (2010). PROVENGE package insert 2010. https://www.fda.gov/media/78511/download. Last accessed 3 Sept 2020.

  18. Timmerman, L. (2009). Dendreon may not survive its success: Q&A with founder Chris Henney, Part 1. https://xconomy.com/seattle/2009/07/27/dendreon-may-not-survive-its-success-qa-with-founder-chris-henney-part-1/. Last accessed 3 Sept 2020.

  19. Small, E. J., Schellhammer, P. F., Higano, C. S., Redfern, C. H., et al. (2006). Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. Journal of Clinical Oncology, 24(19), 3089–3094.

    CAS  PubMed  Google Scholar 

  20. Kantoff, P. W., Higano, C. S., Shore, N. D., Berger, E. R., et al. (2010). Investigators IS. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. The New England Journal of Medicine, 363(5), 411–422.

    CAS  PubMed  Google Scholar 

  21. Higano, C. S., Small, E. J., Schellhammer, P., Yasothan, U., et al. (2010). Sipuleucel-T. Nature Reviews Drug Discovery, 9(7), 513–514.

    CAS  PubMed  Google Scholar 

  22. Lazarus, H. M., Haynesworth, S. E., & Gerson, S. L. (1995). Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): Implications for therapeutic use. Bone Marrow Transplantation, 16(4), 557–564.

    CAS  PubMed  Google Scholar 

  23. Pittenger, M. F., & Martin, B. J. (2004). Mesenchymal stem cells and their potential as cardiac therapeutics. Circulation Research, 95(1), 9–20.

    CAS  PubMed  Google Scholar 

  24. Kuci, S., Henschler, R., & Muller, I. (2012). Basic biology and clinical application of multipotent mesenchymal stromal cells: From bench to bedside. Stem Cells International, 2012, 185943.

    PubMed  PubMed Central  Google Scholar 

  25. Karussis, D., Karageorgiou, C., Vaknin-Dembinsky, A., Gowda-Kurkalli, B., et al. (2010). Immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Archives of Neurology, 67(10), 1187–1194.

    PubMed  PubMed Central  Google Scholar 

  26. Garcia-Olmo, D., Garcia-Arranz, M., Herreros, D., Pascual, I., et al. (2005). A phase I clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation. Diseases of the Colon and Rectum, 48(7), 1416–1423.

    PubMed  Google Scholar 

  27. Wu, H., & Mahato, R. I. (2014). Mesenchymal stem cell-based therapy for type 1 diabetes. Discovery Medicine, 17(93), 139–143.

    PubMed  Google Scholar 

  28. Katuchova, J., Harvanova, D., Spakova, T., Kalanin, R., et al. (2015). Mesenchymal stem cells in the treatment of type 1 diabetes mellitus. Endocrine Pathology, 26(2), 95–103.

    CAS  PubMed  Google Scholar 

  29. Davies, L. C., Alm, J. J., Heldring, N., Moll, G., et al. (2016). Type 1 diabetes mellitus donor mesenchymal stromal cells exhibit comparable potency to healthy controls in vitro. Stem Cells Translational Medicine, 5(11), 1485–1495.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ringden, O., Uzunel, M., Rasmusson, I., Remberger, M., et al. (2006). Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation, 81(10), 1390–1397.

    PubMed  Google Scholar 

  31. von Bonin, M., Stolzel, F., Goedecke, A., Richter, K., et al. (2009). Treatment of refractory acute GVHD with third-party MSC expanded in platelet lysate-containing medium. Bone Marrow Transplantation, 43(3), 245–251.

    Google Scholar 

  32. Kebriaei, P., & Robinson, S. (2011). Treatment of graft-versus-host-disease with mesenchymal stromal cells. Cytotherapy, 13(3), 262–268.

    PubMed  Google Scholar 

  33. Kebriaei, P., Isola, L., Bahceci, E., Holland, K., et al. (2009). Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease. Biology of Blood and Marrow Transplantation, 15(7), 804–811.

    CAS  PubMed  Google Scholar 

  34. Martin, P. J., Uberti, J., & Soiffer, R. J. (2010). Prochymal improves response rates in patients with steroid-refractory acute graft versus host disease (SR-GVHD) involving the liver and gut: Results of a randomized, placebo-controlled, multicenter phase III trial in GVHD. Biol Blood Marrow Transplant, 16(2 (Suppl 2)), S169–S170.

    Google Scholar 

  35. Kebriaei, P., Hayes, J., Daly, A., Uberti, J., et al. (2020). Phase 3 randomized study of Remestemcel-L versus placebo added to second-line therapy in patients with steroid-refractory acute graft-versus-host disease. Biology of Blood and Marrow Transplantation, 26(5), 835–844.

    CAS  PubMed  Google Scholar 

  36. Kurtzberg, J., Prockop, S., Teira, P., Bittencourt, H., et al. (2014). Allogeneic human mesenchymal stem cell therapy (remestemcel-L, Prochymal) as a rescue agent for severe refractory acute graft-versus-host disease in pediatric patients. Biology of Blood and Marrow Transplantation, 20(2), 229–235.

    PubMed  Google Scholar 

  37. Daly, A. (2012). Remestemcel-L, the first cellular therapy product for the treatment of graft-versus-host disease. Drugs Today (Barc), 48(12), 773–783.

    CAS  Google Scholar 

  38. Kurtzberg, J., Abdel-Azim, H., Carpenter, P., Chaudhury, S., et al. (2020). A phase 3, single-arm, prospective study of Remestemcel-L, ex vivo culture-expanded adult human mesenchymal stromal cells for the treatment of pediatric patients who failed to respond to steroid treatment for acute graft-versus-host disease. Biology of Blood and Marrow Transplantation, 26(5), 845–854.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kurtzberg, J., Prockop, S., Chaudhury, S., Horn, B., et al. (2020). Group MSBS. Study 275: Updated expanded access program for Remestemcel-L in steroid-refractory acute graft-versus-host disease in children. Biology of Blood and Marrow Transplantation, 26(5), 855–864.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Astor, L. (2020). FDA priority review granted to Remestemcel-L for pediatric steroid-refractory acute GVHD https://www.targetedonc.com/view/fda-priority-review-granted-to-remestemcell-for-pediatric-steroidrefractory-acute-gvhd. Last accessed 3 Sept 2020.

  41. Kurtzberg, J., Martin, P. J., Prockop, S., Burke, E., Segal, K., & editors. (2020). Aggregate results of Remestemcel-L treatment of steroid-refractory acute graft-versus-host-disease in pediatric patients. Transplantation and Cellular Therapy Meeting; Orlando, Florida, 19–23 February 2020.

    Google Scholar 

  42. Mesoblast. http://mesoblast.com/product-candidates/product-candidates-overview. Last accessed 3 Sept 2020.

  43. Kuwana, Y., Asakura, Y., Utsunomiya, N., Nakanishi, M., et al. (1987). Expression of chimeric receptor composed of immunoglobulin-derived V regions and T-cell receptor-derived C regions. Biochemical and Biophysical Research Communications, 149(3), 960–968.

    CAS  PubMed  Google Scholar 

  44. Gross, G., Waks, T., & Eshhar, Z. (1989). Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proceedings of the National Academy of Sciences of the United States of America, 86(24), 10024–10028.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Eshhar, Z., Waks, T., Gross, G., & Schindler, D. G. (1993). Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proceedings of the National Academy of Sciences of the United States of America, 90(2), 720–724.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Brocker, T., & Karjalainen, K. (1995). Signals through T cell receptor-zeta chain alone are insufficient to prime resting T lymphocytes. The Journal of Experimental Medicine, 181(5), 1653–1659.

    CAS  PubMed  Google Scholar 

  47. Gong, M. C., Latouche, J. B., Krause, A., Heston, W. D., et al. (1999). Cancer patient T cells genetically targeted to prostate-specific membrane antigen specifically lyse prostate cancer cells and release cytokines in response to prostate-specific membrane antigen. Neoplasia (New York, NY)., 1(2), 123–127.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kershaw, M. H., Westwood, J. A., Parker, L. L., Wang, G., et al. (2006). A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clinical Cancer Research, 12(20 Pt 1), 6106–6115. https://doi.org/10.1158/1078-0432.CCR-06-1183. Epub 2006/10/26. PubMed PMID: 17062687; PMCID: PMC2154351. Last accessed 3 Sept 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Krause, A., Guo, H. F., & Latouche, J. B. (1998). Antigen-dependent CD28 signaling selectively enhances survival and proliferation in genetically modified activated human primary T lymphocytes. The Journal of Experimental Medicine, 188(4), 619–626.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Brentjens, R. J., Latouche, J. B., Santos, E., Marti, F., et al. (2003). Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nature Medicine, 9(3), 279–286.

    CAS  PubMed  Google Scholar 

  51. Finney, H. M., Lawson, A. D., Bebbington, C. R., & Weir, A. N. (1998). Chimeric receptors providing both primary and costimulatory signaling in T cells from a single gene product. Journal of Immunology, 161(6), 2791–2797.

    CAS  Google Scholar 

  52. Finney, H. M., Akbar, A. N., & Lawson, A. D. (2004). Activation of resting human primary T cells with chimeric receptors: Costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCR zeta chain. Journal of Immunology, 172(1), 104–113.

    CAS  Google Scholar 

  53. Imai, C., Mihara, K., Andreansky, M., Nicholson, I. C., et al. (2004). Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia, 18(4), 676–684.

    CAS  PubMed  Google Scholar 

  54. Maher, J., Brentjens, R. J., & Gunset, G. (2002). Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta /CD28 receptor. Nature Biotechnology, 20(1), 70–75.

    CAS  PubMed  Google Scholar 

  55. Kowolik, C. M., Topp, M. S., Gonzalez, S., Pfeiffer, T., et al. (2006). CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Research, 66(22), 10995–11004.

    CAS  PubMed  Google Scholar 

  56. Pule, M. A., Savoldo, B., Myers, G. D., Rossig, C., et al. (2008). Virus-specific T cells engineered to coexpress tumor-specific receptors: Persistence and antitumor activity in individuals with neuroblastoma. Nature Medicine, 14(11), 1264–1270. Epub 2008/11/04. https://doi.org/10.1038/nm.1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Brentjens, R. J., Santos, E., Nikhamin, Y., Yeh, R., et al. (2007). Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts. Clinical Cancer Research, 13(18 Pt 1), 5426–5435.

    CAS  PubMed  Google Scholar 

  58. Milone, M. C., Fish, J. D., Carpenito, C., Carroll, R. G., et al. (2009). Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Molecular Therapy, 17(8), 1453–1464.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kochenderfer, J. N., Yu, Z., & Frasheri, D. (2010). Adoptive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells. Blood, 116(19), 3875–3886.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Porter, D. L., Levine, B. L., & Kalos, M. (2011). Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. The New England Journal of Medicine, 365(8), 725–733.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kochenderfer, J. N., Dudley, M. E., Feldman, S. A., Wilson, W. H., et al. (2012). B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood, 119(12), 2709–2720.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Brentjens, R. J., Davila, M. L., Riviere, I., Park, J., et al. (2013). CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Science Translational Medicine, 5(177), 177ra38.

    PubMed  PubMed Central  Google Scholar 

  63. Grupp, S. A., Kalos, M., Barrett, D., Aplenc, R., et al. (2013). Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. New England Journal of Medicine, 368(16), 1509–1518.

    CAS  Google Scholar 

  64. Kochenderfer, J. N., Dudley, M. E., Kassim, S. H., Somerville, R. P., et al. (2015). Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. Journal of Clinical Oncology, 33(6), 540–549.

    CAS  PubMed  Google Scholar 

  65. Kochenderfer, J. N., Wilson, W. H., Janik, J. E., Dudley, M. E., et al. (2010). Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood, 116(20), 4099–4102.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Gilead. (2012). Kite Pharma partners with the National Cancer Institute to develop novel cellular immunotherapy clinical products. https://www.gilead.com/news-and-press/press-room/press-releases/2012/10/kite-pharma-part-ners-with-the-national-cancer-institute-to-develop-novel-cellular-immuno-therapy-clinical-products. Last accessed 3 Sept 2020.

    Google Scholar 

  67. Locke, F. L., Neelapu, S. S., Bartlett, N. L., Siddiqi, T., et al. (2017). Phase 1 results of ZUMA-1: A multicenter study of KTE-C19 anti-CD19 CAR T cell therapy in refractory aggressive lymphoma. Molecular Therapy, 25(1), 285–295.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kochenderfer, J. N., Somerville, R. P. T., Lu, T., Shi, V., et al. (2017). Lymphoma remissions caused by anti-CD19 chimeric antigen receptor T cells are associated with high serum Interleukin-15 levels. Journal of Clinical Oncology, 35(16), 1803–1813.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Neelapu, S. S., Locke, F. L., Bartlett, N. L., Lekakis, L. J., et al. (2017). Axicabtagene Ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. The New England Journal of Medicine, 377(26), 2531–2544.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kalos, M., Levine, B. L., Porter, D. L., Katz, S., et al. (2011). T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Science Translational Medicine, 3(95), 95ra73.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Porter, D. L., Hwang, W. T., Frey, N. V., Lacey, S. F., et al. (2015). Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Science Translational Medicine, 7(303), 303ra139.

    PubMed  PubMed Central  Google Scholar 

  72. Maude, S. L., Frey, N., Shaw, P. A., Aplenc, R., et al. (2014). Chimeric antigen receptor T cells for sustained remissions in leukemia. The New England Journal of Medicine, 371(16), 1507–1517.

    PubMed  PubMed Central  Google Scholar 

  73. Maude, S. L., Teachey, D. T., Rheingold, S. R., Shaw, P. A., et al. (2016). Sustained remissions with CD19-specific chimeric antigen receptor (CAR)-modified T cells in children with relapsed/refractory ALL. Journal of Clinical Oncology, 34(15 suppl).

    Google Scholar 

  74. Maude, S. L., Laetsch, T. W., Buechner, J., Rives, S., et al. (2018). Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. The New England Journal of Medicine, 378(5), 439–448.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Schuster, S. J., Svoboda, J., Chong, E. A., Nasta, S. D., et al. (2017). Chimeric antigen receptor T cells in refractory B-cell lymphomas. The New England Journal of Medicine, 377(26), 2545–2554.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Schuster, S. J., Bishop, M. R., Tam, C. S., Waller, E. K., Borchmann, P., et al. (2019). Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. The New England Journal of Medicine, 380(1), 45–56.

    CAS  PubMed  Google Scholar 

  77. Penn Medicine News. (2014). University of Pennsylvania’s personalized cellular therapy for Leukemia receives FDA’s breakthrough therapy designation. https://www.pennmedicine.org/news/news-releases/2014/july/university-of-pennsylvanias-pe. Last accessed 3 Sept 2020.

    Google Scholar 

  78. Administration USFaD. (2018). FDA approves tisagenlecleucel for adults with relapsed or refractory large B-cell lymphoma. https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm606540.htm. Last accessed 3 Sept 2020.

  79. Slaughter, S., & Rhoades, G. (1996). The emergence of a competitiveness research and development policy coalition and the commercialization of academic science and technology. Science Technology and Human Values, 21(3), 303–339. https://doi.org/10.1177/016224399602100303

    Article  Google Scholar 

  80. Lathyris, D. N., Patsopoulos, N. A., Salanti, G., & Ioannidis, J. P. (2010). Industry sponsorship and selection of comparators in randomized clinical trials. European Journal of Clinical Investigation, 40(2), 172–182.

    CAS  PubMed  Google Scholar 

  81. Lexchin, J., Bero, L. A., Djulbegovic, B., & Clark, O. (2003). Pharmaceutical industry sponsorship and research outcome and quality: Systematic review. BMJ, 326(7400), 1167–1170.

    PubMed  PubMed Central  Google Scholar 

  82. Patsopoulos, N. A., Ioannidis, J. P., & Analatos, A. A. (2006). Origin and funding of the most frequently cited papers in medicine: Database analysis. BMJ, 332(7549), 1061–1064.

    PubMed  PubMed Central  Google Scholar 

  83. Grunbaum, R. Biotech’s pitfalls tripped up Dendreon, led it to bankruptcy 2014. Available from: https://www.seattletimes.com/business/biotechrsquos-pitfalls-tripped-up-dendreon-led-it-to-bankruptcy/. Last accessed 3 Sept 2020.

  84. Levine, B. L., Miskin, J., Wonnacott, K., & Keir, C. (2017). Global manufacturing of CAR T cell therapy. Molecular Therapy Methods & Clinical Development, 4, 92–101. https://doi.org/10.1016/j.omtm.2016.12.006. Epub 2017/03/28. Last accessed 3 Sept 2020.

    Article  CAS  Google Scholar 

  85. Gee, A. P. (2018). GMP CAR-T cell production. Best Practice & Research Clinical Haematology, 31(2), 126–134. https://doi.org/10.1016/j.beha.2018.01.002. Epub 2018/06/19. Last accessed 3 Sept 2020.

    Article  Google Scholar 

  86. Cuende, N., & Izeta, A. (2010). Clinical translation of stem cell therapies: A bridgeable gap. Cell Stem Cell, 6(6), 508–512. https://doi.org/10.1016/j.stem.2010.05.005. Epub 2010/06/24. Last accessed 3 Sept 2020.

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosures

HEH is a co-founder with equity in Allovir and Marker Therapeutics, has served on Advisory Boards for Gilead, Tessa Therapeutics, Novartis, PACT Pharma, and Kiadis, and received research funding from Tessa Therapeutics and Kuur Therapeutics. LCH serves on an Advisory Board for Incyte. AA has no disclosures.

Grant Support

The authors are supported by NIH NCI SPORE in Lymphoma 5P50CA126752, SU2C/AACR 604817 Meg Vosburg T cell Lymphoma Dream Team, and a CPRIT fellowship to AA (RP160283). Stand Up To Cancer is a program of the Entertainment Industry Foundation administered by the American Association for Cancer Research. We also appreciate the support of the shared resources of the Dan L Duncan Comprehensive Cancer Center (P30 CA125123).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LaQuisa C. Hill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Afrough, A., Heslop, H.E., Hill, L.C. (2022). Commercialization of Investigational Cell Therapy Products. In: Gee, A.P. (eds) Cell Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-75537-9_9

Download citation

Publish with us

Policies and ethics