Skip to main content

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

  • 715 Accesses

Abstract

The rich diversity of microorganisms represents a potential reservoir of bioactive compounds with valuable pharmaceutical and nutraceutical applications. Microbial EPS signifies one of the major biomolecules which are much explored in pharmaceutical and food industries. They have added advantage of production as they can be cultivated in a controlled condition and process can be optimised for large-scale production. Microbial EPS as immunomodulatory agent is of great interest due to its effectiveness in treating infectious diseases in the absence of suitable antimicrobial therapy and the international market for immunomodulators is believed to increase exponentially. Immunomodulatory activity is the pharmacological effect to influence the cellular and/or humoral immune system, either through stimulation or suppression, to maintain immune homeostasis. Such agents, which possess activity to modulate pathophysiological processes, are addressed as immunomodulatory agents. Immunostimulation or immunopotentiation augments immunological reactions to prevent or to control diseases either through humoral immunity or cell-mediated immunity, whereas immune suppression impedes immune responses. Numerous investigations have been conducted to evaluate the immunomodulatory potencies of these microbial EPS. This chapter gives an insight on the available literature on microbial EPS-based immune modulation, how immunomodulators work, factors influencing immunomodulation and evaluation of immunomodulatory activity of EPS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad NH, Mustafa S, Che Man YB (2015) Microbial polysaccharides and their modification approaches: a review. Int J Food Prop 18:332–347

    Article  CAS  Google Scholar 

  2. Ale EC, Bourin MJ, Peralta GH, Burns PG, Ávila OB, Contini L, Reinheimer J, Binetti AG (2019) Functional properties of exopolysaccharide (EPS) extract from Lactobacillus fermentum Lf2 and its impact when combined with Bifidobacterium animalis INL1 in yoghurt. Int Dairy J 96:114–125

    Article  CAS  Google Scholar 

  3. Badel S, Bernardi T, Michaud P (2011) New perspectives for Lactobacilli exopolysaccharides. Biotechnol Adv 29(1):54–66

    Article  CAS  PubMed  Google Scholar 

  4. Bae SY, Yim JH, Lee HK, Pyo S (2006) Activation of murine peritoneal macrophages by sulfated exopolysaccharide from marine microalga Gyrodinium impudicum (strain KG03): involvement of the NF-κB and JNK pathway. Int Immunopharmacol 6(3):473–484

    Article  CAS  PubMed  Google Scholar 

  5. Bafna AR, Mishra SH (2005) Immunomodulatory activity of methanol extract of roots of Cissampelospareira Linn. Ars Pharm 46:253–262

    Google Scholar 

  6. Basso, AMM, De Castro RJA, de Castro TB, Guimarães HI, Polez VLP, Carbonero ER et al (2019). Immunomodulatory activity of β-glucan-containing exopolysaccharides from Auricularia auricular in phagocytes and mice infected with Cryptococcus neoformans. Med Mycol 58(2):227–239. https://doi.org/10.1093/mmy/myz042

  7. Brennan J, Takei F, Wong S, Mager DL (1995) Carbohydrate recognition by a natural killer cell receptor, Ly-49C. J Biol Chem 28, 270(17):9691–9694

    Google Scholar 

  8. Broadbent JR, McMahon DJ, Welker DL, Oberg CJ, Moineau S (2003) Biochemistry, genetics, and applications of exopolysaccharide production in Streptococcus thermophilus: a review. J Dairy Sci 86(2):407–423

    Article  CAS  PubMed  Google Scholar 

  9. Brusilovsky M, Cordoba M, Rosental B, Hershkovitz O, Andrake MD, Pecherskaya A, Einarson MB, Zhou Y, Braiman A, Campbell KS, Porgador A (2013) Genome-wide siRNA screen reveals a new cellular partner of NK cell receptor KIR2DL4: heparan sulfate directly modulates KIR2DL4-mediated responses. J Immunol 191(10):5256–5267

    Article  CAS  PubMed  Google Scholar 

  10. Cambier J, Justement L, KarenNewell M, Chen Z, Harris L, Sandoval V, Ransom J (1987) Transmembrane signals and intracellular “second messengers” in the regulation of quiescent B-lymphocyte activation. Immunol Rev 95(1):37–57

    Article  CAS  PubMed  Google Scholar 

  11. Cao P, Wu S, Wu T, Deng Y, Zhang Q, Wang K, Zhang Y (2020) The important role of polysaccharides from a traditional Chinese medicine-Lung cleansing and detoxifying decoction against the COVID-19 pandemic. Carbohydr Polym 22:

    Article  CAS  Google Scholar 

  12. Chaisuwan W, Jantanasakulwong K, Wangtueai S, Phimolsiripol Y, Chaiyaso T, Techapun C, Phongthai S, You S, Regenstein JM, Seesuriyachan P (2020) Microbial exopolysaccharides for immune enhancement: fermentation, modifications and bioactivities. Food Biosci 35:100564. https://doi.org/10.1016/j.fbio.2020.100564

  13. Chatterjee S, Mukhopadhyay SK, Gauri SS, Dey S (2018) Sphingobactan, a new α-mannan exopolysaccharide from Arctic Sphingobacterium sp. IITKGP-BTPF3 capable of biological response modification. Int Immunopharmacol 60:84–95. https://doi.org/10.1016/j.intimp.2018.04.039

    Article  CAS  PubMed  Google Scholar 

  14. Chen YC, Wu YJ, Hu CY (2019) Monosaccharide composition influence and immunomodulatory effects of probiotic exopolysaccharides. Int J Biol Macromol 15(133):575–582

    Article  CAS  Google Scholar 

  15. Chen HW, Yang TS, Chen MJ et al (2014) Purification and immunomodulating activity of C-phycocyanin from Spirulina platensis cultured using power plant flue gas. Process Biochem 49:1337–1344

    Article  CAS  Google Scholar 

  16. Chen X, Xu X, Zhang L, Zeng F (2009) Chain conformation and anti-tumor activities of phosphorylated (1 → 3)-β-d-glucan from Poria cocos. Carbohydr Polym 15: 78(3):581–587

    Google Scholar 

  17. Chen X, Song L, Wang H, Liu S, Yu H, Wang X, Li R, Liu T, Li P (2019) Partial characterization, the immune modulation and anticancer activities of sulfated polysaccharides from filamentous microalgae Tribonema sp. Molecules 24(2):322

    Google Scholar 

  18. Chun H, Shin DH, Hong BS, Cho HY, Yang HC (2001) Purification and biological activity of acidic polysaccharide from leaves of Thymus vulgaris L. Biol Pharma Bull 24(8):941–946. https://doi.org/10.1248/bpb.24.941

    Article  CAS  Google Scholar 

  19. Cooper MA, Fehniger TA, Caligiuri MA (2001) The biology of human natural killer-cell subsets. Trends Immunol 22(11):633–640

    Article  CAS  PubMed  Google Scholar 

  20. Costa CRLM, Menolli RA, Osaku EF, Tramontina R, de Melo RH, do Amaral AE, Duarte PAD, de Carvalho MM, Smiderle FR, Silva JLDC, Mello RG (2019) Exopolysaccharides from Aspergillus terreus: Production, chemical elucidation and immunoactivity. Int J Biol Macromol 139:654–664

    Google Scholar 

  21. Courtois A, Berthou C, Guézennec J, Boisset C, Bordron A (2014) Exopolysaccharides isolated from hydrothermal vent bacteria can modulate the complement system. PLoS ONE 9(4):

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Cui L, Cohen JA, Broaders KE, Beaudette TT, Fréchet JM (2011) Mannosylated dextran nanoparticles: a pH-sensitive system engineered for immunomodulation through mannose targeting. Bioconjug Chem 18:22(5):949–957

    Google Scholar 

  23. Dambuza IM, Brown GD (2015) C-type lectins in immunity: recent developments. Curr Opin Immunol 32:21–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. De Stefano D, Maiuri MC, Carnuccio R (2010). Effects of hydroxytyrosol on macrophage activation. In: Olives and olive oil in health and disease prevention. Academic Press, pp 1275–1282. https://doi.org/10.1016/B978-0-12-374420-3.00141-8

  25. Del Cornò M, Gessani S, Conti L (2020) Shaping the innate immune response by dietary glucans: any role in the control of cancer? Cancers 12(1):155

    Google Scholar 

  26. Dertli E (2013) Biochemistry and functional analysis of exopolysaccharide production in Lactobacillus johnsonii. Doctoral dissertation, School of Biological Sciences

    Google Scholar 

  27. Dhama K, Saminathan M, Jacob SS, Singh M, Karthik K, Amarpal et al (2015) Effect of immunomodulation and immunomodulatory agents on health with some bioactive principles, modes of action and potent biomedical applications. Int J Pharmacol 11(4):253–290

    Google Scholar 

  28. Draget KI, Taylor C (2011) Chemical, physical and biological properties of alginates and their biomedical implications. Food Hydrocolloids 1;25(2):251–256

    Google Scholar 

  29. Fabregas J, Garcı́a D, Fernandez-Alonso M, Rocha AI, Gómez-Puertas P, Escribano JM, Coll JM (1999) In vitro inhibition of the replication of haemorrhagic septicaemia virus (VHSV) and African swine fever virus (ASFV) by extracts from marine microalgae. Antiviral Res 44(1):67–73. https://doi.org/10.1016/s0166-3542(99)00049-2

  30. Ferreira SS, Passos CP, Madureira P, Vilanova M, Coimbra MA (2015) Structure-function relationships of immunostimulatory polysaccharides: a review. Carbohydr Polym 132:378–396

    Article  CAS  PubMed  Google Scholar 

  31. Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633

    Article  CAS  PubMed  Google Scholar 

  32. Gad AS, Khadrawy YA, El-Nekeety AA et al (2011) Antioxidant activity and hepatoprotective effects of whey protein and Spirulina in rats. Nutrition 27(5):582–589

    Article  CAS  PubMed  Google Scholar 

  33. Gallois M, Oswald IP (2008) Immunomodulators as efficient alternatives to in-feed antimicrobials in pig production. Arch Zootech 11(3):15–32

    Google Scholar 

  34. Gauri SS, Mandal SM, Mondal KC, Dey S, Pati BR (2009) Enhanced production and partial characterization of an extracellular polysaccharide from newly isolated Azotobacter sp. SSB81. Bioresour Technol 100(18):4240–4243

    Google Scholar 

  35. Gazi U, Martinez-Pomares L (2009) Influence of the mannose receptor in host immune responses. Immunobiology 214:554–561

    Article  CAS  PubMed  Google Scholar 

  36. Ghule BV, Murugananthan G, Nakhat PD, Yeole PG (2006) Immunostimulant effects of Capparis zeylanica Linn. leaves. J Ethnopharmacol 108(2):311–315

    Google Scholar 

  37. Goldsby RA, Kindt TJ, Osborne BA, Kuby JI (2000) In: Kuby immunology. W H Freeman and Company, New York

    Google Scholar 

  38. Gong G, Dang T, Deng Y, Han J, Zou Z, Jing S, Zhang Y, Liu Q, Huang L, Wang Z (2018) Physicochemical properties and biological activities of polysaccharides from Lycium barbarum prepared by fractional precipitation. Int J Biol Macromol 109:611–618

    Article  CAS  PubMed  Google Scholar 

  39. Gordon S (2007) The macrophage: past, present and future. Eur J Immunol 37(S1):S9–S17

    Article  CAS  PubMed  Google Scholar 

  40. Gough PJ, Gordon S (2000) The role of scavenger receptors in the innate immune system. Microbes Infect 2:305–311

    Article  CAS  PubMed  Google Scholar 

  41. Goyal M, Baranwal M, Pandey SK et al (2019) Hetero-Polysaccharides Secreted from Dunaliella salina exhibit immunomodulatory activity against peripheral blood mononuclear cells and RAW 264.7 macrophages. Indian J Microbiol 59:428–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Griffioen AW, Sanders L, Rijkers GT, Zegers BJ (1992) Cell biology of B lymphocyte activation by polysaccharides. J Infect Dis S71–S73

    Google Scholar 

  43. Gugliandolo C, Spanò A, Lentini V, Arena A, Maugeri TL (2014) Antiviral and immunomodulatory effects of a novel bacterial exopolysaccharide of shallow marine vent origin. J Appli Microbiol 116(4):1028–1034

    Article  CAS  Google Scholar 

  44. Guzman S, Gato A, Lamela M, Freire-Garabal M, Calleja J (2003) Anti-inflammatory and immunomodulatory activities of polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum. Phytother Res 17(6):665–670

    Article  CAS  PubMed  Google Scholar 

  45. Guzman-Murillo M, Ascencio F (2000) Anti-adhesive activity of sulphated exopolysaccharides of microalgae on attachment of red sore disease-associated bacteria and Helicobacter pylori to tissue culture cells. Lett Appl Microbiol 30(6):473–478

    Article  CAS  PubMed  Google Scholar 

  46. Halaas Ø, Vik R, Espevik T (1998) Induction of Fas ligand in murine bone marrow NK cells by bacterial polysaccharides. J Immunol 160(9):4330–4336

    Article  CAS  PubMed  Google Scholar 

  47. Han B, Baruah K, Cox E, Vanrompay D, Bossier P (2020) Structure-functional activity relationship of β-glucans from the perspective of immunomodulation: a mini-review. Front Immunol 11:658. https://doi.org/10.3389/fimmu.2020.00658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Han SB, Yoon YD, Ahn HJ, Lee HS, Lee CW, Yoon WK, … & Kim H M (2003). Toll-like receptor-mediated activation of B cells and macrophages by polysaccharide isolated from cell culture of Acanthopanax senticosus. Int immunopharmaco, 3(9):1301–1312

    Google Scholar 

  49. Hermetter C, Fazekas F, Hochmeister S (2018) Systematic review: syndromes, early diagnosis, and treatment in autoimmune encephalitis. Front Neurol 9. https://doi.org/10.3389/fneur.2018.00706

  50. Herre J, Marshall AS, Caron E, Edwards AD, Williams DL, Schweighoffer E et al (2004) Dectin-1 uses novel mechanisms for yeast phagocytosis in macrophages. Blood 104:4038–4045

    Article  CAS  PubMed  Google Scholar 

  51. Hromádková Z, Ebringerová A, Sasinková V, Šandula J, Hřı́balová V, Omelková J (2013) Influence of the drying method on the physical properties and immunomodulatory activity of the particulate (1 → 3)-β-D-glucan from Saccharomyces cerevisiae. Carbohydr Polym 1;51(1):9–15

    Google Scholar 

  52. Hsieh HL, Lin CC, Shih RH, Hsiao LD, Yang CM (2012) NADPH oxidase-mediated redox signal contributes to lipoteichoic acid-induced MMP-9 upregulation in brain astrocytes. J Neuroinflamm 9(1):1–6

    Article  Google Scholar 

  53. Hsu HY, Chiu SL, Wen MH, Chen KY, Hua KF (2001) Ligands of macrophage scavenger receptor induce cytokine expression via differential modulation of protein kinase signaling pathways. J Biol Chem 276(31):28719–28730

    Article  CAS  PubMed  Google Scholar 

  54. Huang L, Shen M, Morris GA, Xie J (2019) Sulfated polysaccharides: immunomodulation and signaling mechanisms. Trends Food Sci Technol 92:1–11

    Article  CAS  Google Scholar 

  55. Hussain A, Wahab S, Ahmad MdP (2013) A systematic review of herbal immunomodulators in the Indian traditional health care system. Int J Inv Pharm Sci 1(3):261–266

    Google Scholar 

  56. Ilchmann A, Burgdorf S, Scheurer S, Waibler Z, Nagai R, Wellner A et al (2010) Glycation of a food allergen by the maillard reaction enhances its T-cell immunogenicity: role of macrophage scavenger receptor class A type I and II. J Allergy Clin Immun 125:175–183

    Article  CAS  PubMed  Google Scholar 

  57. Iwamoto Y, Xu X, Tamura T, Oda T, Muramatsu T (2003) Enzymatically depolymerized alginate oligomers that cause cytotoxic cytokine production in human mononuclear cells. Biosci Biotechnol Biochem 67(2):258–263

    Google Scholar 

  58. Jiang J, Wu C, Gao H, Song J, Li H (2010) Effects of Astragalus polysaccharides on immunologic function of erythrocyte in chickens infected with infectious bursa disease virus. Vaccine 28:5614–5616

    Article  CAS  PubMed  Google Scholar 

  59. Jiménez-Dalmaroni MJ, Gerswhin ME, Adamopoulos IE (2016) The critical role of toll-like receptors—from microbial recognition to autoimmunity: a comprehensive review. Autoimmun Rev 15(1):1–8

    Article  PubMed  CAS  Google Scholar 

  60. Jones SE, Paynich ML, Kearns DB, Knight KL (2014) Protection from intestinal inflammation by bacterial exopolysaccharides. J Immunol 192(10):4813–4820

    Article  CAS  PubMed  Google Scholar 

  61. Jung JY, Shin JS, Rhee YK, Cho CW, Lee MK, Hong HD, Lee KT (2015) In vitro and in vivo immunostimulatory activity of an exopolysaccharide-enriched fraction from Bacillus subtilis. J Appl Microbiol 118(3):739–752

    Article  CAS  PubMed  Google Scholar 

  62. Juvekar AR, Hule AK, Sakat SS, Chaughule VA (2009) In vitro and in vivo evaluation of immunomodulatory activity of methanol extract of Momordica charantia fruits. Drug Invent Today 1(2):89–94

    Google Scholar 

  63. Kalka-Moll WM, Tzianabos AO, Bryant PW, Niemeyer M, Ploegh HL., Kasper DL (2002) Zwitterionic polysaccharides stimulate T cells by MHC class II-dependent interactions. J Immunol 169(11):6149–6153

    Google Scholar 

  64. Kanmani P, Yuvaraj N, Paari KA, Pattukumar V, Arul V (2011) Production and purification of a novel exopolysaccharide from lactic acid bacterium Streptococcus phocae PI80 and its functional characteristics activity in vitro. Bioresour Technol 102(7):4827–4833

    Article  CAS  PubMed  Google Scholar 

  65. Kaur V, Bera, MB, Panesar PS. Kumar H, Kennedy JF (2014).Welan gum: microbial production, characterization, and applications. Int J Biomacromolecules, 65:454–461

    Google Scholar 

  66. Khan Z, Bhadouria P, Bisen PS (2005) Nutritional and therapeutic potential of Spirulina. Curr Pharm Biotechnol 6(5):373–379

    Article  CAS  PubMed  Google Scholar 

  67. Kim SJ, Park HJ, Shin HJ, Shon DH, Youn HS (2012) Suppression of TRIF-dependent signaling pathway of toll-like receptors by allyl isothiocyanate in RAW 264.7 macrophages. Int Immunopharmacol1 3(4):403–407

    Google Scholar 

  68. Kitazawa H, Harata T, Uemura J, Saito T, Kaneko T, Itoh T (1998) Phosphate group requirement for mitogenic activation of lymphocytes by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii ssp. bulgaricus. Int J Food Microbiol 40:169–175

    Article  CAS  PubMed  Google Scholar 

  69. Kouakou K, Schepetkin IA, Yapi A, Kirpotina LN, Jutila MA, Quinn MT (2013) Immunomodulatory activity of polysaccharides isolated from Alchornea cordifolia. J Ethnopharmacol 146(1):232–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kouakou, K., Schepetkin, I. A., Yapi, A., Kirpotina, L. N., Jutila, M. A., & Quinn, M. T. (2013). Immunomodulatory activity of polysaccharides isolated from Alchornea cordifolia.Journal of ethnopharmacology, 146(1), 232-242.

    Google Scholar 

  71. Kumar AS, Mody K, Jha B (2007) Bacterial exopolysaccharides—a perception. J Basic Microbiol 47(2):103–117

    Article  CAS  PubMed  Google Scholar 

  72. Kumar A, Takada Y, Boriek AM, Aggarwal BB (2004) Nuclear factor-κB: its role in health and disease. J Mol Med 82(7):434–448

    Article  CAS  PubMed  Google Scholar 

  73. Kumar CG, Sujitha P (2014) Kocuran, an exopolysaccharide isolated from Kocuria rosea strain BS-1 and evaluation of its in vitro immunosuppression activities. Enzyme Microbial Technol 55:113–120

    Google Scholar 

  74. Kumar AS, Mody K (2009) Microbial exopolysaccharides: variety and potential applications. In: Microbial production of biopolymers and polymer precursors: applications and perspectives, pp 229–253

    Google Scholar 

  75. Laiño J, Villena J, Kanmani P, Kitazawa H (2016) Immunoregulatory effects triggered by lactic acid bacteria exopolysaccharides: new insights into molecular interactions with host cells. Microorganisms 4(3):27

    Article  PubMed Central  CAS  Google Scholar 

  76. Lake AC, Vassy R, Di Benedetto M, Lavigne D, Le Visage C, Perret GY, Letourneur D (2006) Low molecular weight fucoidan increases VEGF165-induced endothelial cell migration by enhancing VEGF165 binding to VEGFR-2 and NRP1. J Biol Chem 281:37844–37852

    Article  CAS  PubMed  Google Scholar 

  77. Lei N, Wang M, Zhang L, Xiao S, Fei C, Wang X, Zhang K, Zheng W, Wang C, Yang R, Xue F (2015) Effects of low molecular weight yeast β-glucan on antioxidant and immunological activities in mice. Int J Mol Sci 16(9):21575–90

    Google Scholar 

  78. Leung MYK, Liu C, Koon JCM, Fung KP (2006) Polysaccharide biological response modifiers. Immunol Lett 105(2):101–114

    Article  CAS  PubMed  Google Scholar 

  79. Li WJ, Tang XF, Shuai XX, Jiang CJ, Liu X, Wang LF, Xie MY (2017) Mannose receptor mediates the immune response to Ganoderma atrum polysaccharides in macrophages. J Agric Food Chem 65(2):348–357

    Article  CAS  PubMed  Google Scholar 

  80. Lin MH, Yang YL, Chen YP, Hua KF, Lu CP, Sheu F, Wu SH (2011) A novel exopolysaccharide from the biofilm of Thermus aquaticus YT-1 induces the immune response through Toll-like receptor 2. J Biol Chem 286(20):17736–17745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Liu M, Li N, Geng Y (2014) Influences of sulfated polysaccharide from Pine (Pinus massoniana) Pollen on the immunomodulatory effects of B lymphocytes in mice. Chinese J Cell Biol 36:461–469

    CAS  Google Scholar 

  82. Liu C, Lu J, Lu L, Liu Y, Wang F, Xiao M (2010) Isolation, structural characterization and immunological activity of an exopolysaccharide produced by Bacillus licheniformis 8-37-0-1. Bioresour Technol 101(14):5528–5533

    Article  CAS  PubMed  Google Scholar 

  83. Liu CF, Tseng KC, Chiang SS, Lee BH, Hsu WH, Pan TM (2011) Immunomodulatory and antioxidant potential of Lactobacillus exopolysaccharides. J Sci Food 91(12):2284–2289

    CAS  Google Scholar 

  84. Liu J, Yang S, Li X, Yan Q, Reaney MJ, Jiang Z (2019) Alginate oligosaccharides: production, biological activities, and potential applications. Compr Rev Food Sci Food Saf 18(6):1859–1881

    Article  CAS  PubMed  Google Scholar 

  85. Liu F, Zhang X, Ling P, Liao J, Zhao M, Mei L, Shao H, Jiang P, Song Z, Chen Q, Wang F (2017) Immunomodulatory effects of xanthan gum in LPS-stimulated RAW 264.7 macrophages. Carbohydr Polym 1;169:65–74

    Google Scholar 

  86. Llamas I, Amjres H, Mata JA, Quesada E, Béjar V (2012) The potential biotechnological applications of the exopolysaccharide produced by the halophilic bacterium Halomonas almeriensis. Molecules 17:7103–7120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Luo T, Qin J, Liu M, Luo J, Ding F, Wang M, Zheng L (2015) Astragalus polysaccharide attenuates lipopolysaccharide-induced inflammatory responses in microglial cells: regulation of protein kinase B and nuclear factor-κB signaling. Inflamm Res 64(3–4):205–212

    Article  CAS  PubMed  Google Scholar 

  88. Marth T, Kelsall BL (1997) Regulation of interleukin-12 by complement receptor 3 signaling. J Exp Med 185(11):1987–1995. https://doi.org/10.1084/jem.185.11.1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mata JA, Béjar V, Llamas I, Arias S, Bressollier P, Tallon R (2006) Exopolysaccharides produced by the recently described halophilic bacteria Halomonas ventosae and Halomonas anticariensis. Res Microbiol 157:827–835

    Article  CAS  PubMed  Google Scholar 

  90. Matsui MS, Muizzuddin N, Arad S et al (2003) Sulfated polysaccharides from red microalgae have antiinflammatory properties in vitro and in vivo. Appl Biochem Biotechnol 104:13–22. https://doi.org/10.1385/ABAB:104:1:13

    Article  CAS  PubMed  Google Scholar 

  91. Matsushita M, Fujita T (1995) Cleavage of the third component of complement (C3) by mannose-binding protein-associated serine protease (MASP) with subsequent complement activation. Immunobiology 194(4–5):443–448.78

    Google Scholar 

  92. Medzhitov R, Preston-Hurlburt P, Kopp E, Stadlen A, Chen C et al (1998) MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 2(2):253–258

    Article  CAS  PubMed  Google Scholar 

  93. Meira DA, Pereira PCM, Marcondes-Machado J, Mendes RP, Barraviera B, Pellegrino J Jr, da Silva CL et al (1996) The use of glucan as immunostimulant in the treatment of paracoccidioidomycosis. Am J Trop Med Hyg 55(5):496–503

    Article  CAS  PubMed  Google Scholar 

  94. Ming H, Chen Y, Zhang F, Wang Q, Dong X, Gu J, Li Y (2015) Astragalus polysaccharides combined with cisplatin decreases the serum levels of CD44 and collagen type IV and hyaluronic acid in mice bearing Lewis lung cancer. Chinese J Cell Mol Immunol 31(7):909–913

    CAS  Google Scholar 

  95. Mizuno H, Tomotsune K, Islam M, Funabashi R, Albarracin L, Ikeda-Ohtsubo W, Sasaki Y (2020) Exopolysaccharides from Streptococcus thermophilus ST538 modulate the antiviral innate immune response in porcine intestinal epitheliocytes. Front Microbiol 11:894

    Article  PubMed  PubMed Central  Google Scholar 

  96. Montoya S, Sanchez OJ, Levin L (2013) Polysaccharide production by submerged and solid-state cultures from several medicinal higher Basidiomycetes. Int J Med Mushrooms 15(1):71–79

    Article  CAS  PubMed  Google Scholar 

  97. Mörk AC, Helmke RJ, Martinez JR, Michalek MT, Patchen ML, Zhang GH (1998) Effects of particulate and soluble (1–3)-β-glucans on Ca2+ influx in NR8383 alveolar macrophages. Immunopharmacology 40:77–89

    Google Scholar 

  98. Morris G, Harding S (2009) Polysaccharides, microbial. In: Encyclopedia of microbiology. Elsevier Inc., pp 482–494. https://doi.org/10.1016/B978-012373944-5.00135-8

  99. Nakamura T, Suzuki H, Wada Y, Kodama T, Doi T (2006) Fucoidan induces nitric oxide production via p 38 mitogen-activated protein kinase and NF-kappaB-dependent signaling pathways through macrophage scavenger receptors. Biochem Biophys Res Commun 343:286–295

    Google Scholar 

  100. Netea MG, Schlitzer A, Placek K, Joosten LA, Schultze JL (2019) Innate and adaptive immune memory: an evolutionary continuum in the host’s response to pathogens. Cell Host Microbe 25(1):13–26

    Article  CAS  PubMed  Google Scholar 

  101. Nowak B, Ciszek-Lenda M, Śróttek M et al (2012) Lactobacillus rhamnosus exopolysaccharide ameliorates arthritis induced by the systemic injection of collagen and lipopolysaccharide in DBA/1 mice. Arch Immunol Ther Exp 60:211–220. https://doi.org/10.1007/s00005-012-0170-5

    Article  CAS  Google Scholar 

  102. Nutt SL, Hodgkin PD, Tarlinton DM, Corcoran LM (2015) The generation of antibody-secreting plasma cells. Nat Rev Immunol 15:160–171

    Article  CAS  PubMed  Google Scholar 

  103. Ogata H, Su I, Miyake K, Nagai Y, Akashi S et al (2000) The toll like receptor protein RP105 regulates lipopolysaccharide signaling in B cells. J Exp Med 192(1):23–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Öner ET (2013) Microbial production of extracellular polysaccharides from biomass. In: Fang Z (ed) Pretreatment techniques for biofuels and biorefineries. Springer, Berlin Heidelberg, pp 35–56

    Google Scholar 

  105. Palomba S, Cavella S, Torrieri E, Piccolo A, Mazzei P, Blaiotta G, Ventorino V, Pepe O (2012) Wheat sourdough from Leuconostoc lactis and Lactobacillus curvatus exopolysaccharide-producing starter culture:polyphasic screening, homopolysaccharide composition and viscoelastic behavior. Appl Environ Microbiol

    Google Scholar 

  106. Pan D, Liu J, Zeng X, Liu L, Li H, Guo Y (2014) Immunomodulatory activity of selenium exopolysaccharide produced by Lactococcus lactis subsp, Lactis. Food Agr Immunol 26(2):248–259. https://doi.org/10.1080/09540105.2014.894000

    Article  CAS  Google Scholar 

  107. Pan D, Mei X (2010) Antioxidant activity of an exopolysaccharide purified from Lactococcus lactis subsp. lactis12. Carbohydr Polym 80(3):908–914

    Google Scholar 

  108. Park GT, Go RE, Lee HM, Lee GA, Kim CW, Seo JW, Hwang KA (2017) Potential anti-proliferative and immunomodulatory effects of marine microalgal exopolysaccharide on various human cancer cells and lymphocytes in vitro. Mar Biotechnol 19:136–146. https://doi.org/10.1007/s10126-017-9735-y

    Article  CAS  Google Scholar 

  109. Patten DA, Collett A (2013) Exploring the immunomodulatory potential of microbial-associated molecular patterns derived from the enteric bacterial microbiota. Microbiology159(Pt_8):1535–1544

    Google Scholar 

  110. Paynich ML, Jones-Burrage SE, Knight KL (2017) Exopolysaccharide from Bacillus subtilis induces anti-inflammatory M2 macrophages that prevent T cell–mediated disease. J Immunol 198(7):2689–2698

    Article  CAS  PubMed  Google Scholar 

  111. Pelizon AC, Kaneno R, Soares AMVC, Meira DA, Sartori A (2005) Immunomodulatory activities associated with β-glucan derived from Saccharomyces cerevisiae. Physiol Res 54(5):557–564

    Article  CAS  PubMed  Google Scholar 

  112. Pepe O, Ventorino V, Cavella S, Fagnano M, Brugno R (2013) Prebiotic content of bread prepared with flour from immature wheat grain and selected dextran-producing lactic acid bacteria. Appl Environ Microbiol 79(12):3779–3785

    Google Scholar 

  113. Perez Ramos A, Mohedano ML, Pardo MÁ, López P (2018) β-glucan-producing Pediococcus parvulus 2.6: test of probiotic and immunomodulatory properties in Zebrafish models. Front Microbiol 9:1684

    Google Scholar 

  114. Di Pippo F, Ellwood NT, Gismondi A, Bruno L, Rossi F, Magni P, De Philippis R (2013) Characterization of exopolysaccharides produced by seven biofilm-forming cyanobacterial strains for biotechnological applications. J Appl Phycol 25(6):1697–1708

    Article  CAS  Google Scholar 

  115. Poli A, Anzelmo G, Tommonaro G, Pavlova K, Casaburi A, Nicolaus B (2010) Production and chemical characterization of an exopolysaccharide synthesized by psychrophilic yeast strain Sporobolomyces salmonicolor AL1 isolated from Livingston Island, Antarctica. Folia Microbiol 55(6):576–581

    Article  CAS  Google Scholar 

  116. Poli A, Di Donato P, Abbamondi GR, Nicolaus B (2011) Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by archaea. Archaea 2011. https://doi.org/10.1155/2011/693253

  117. Ponkshe CA, Indap MM (2002) In vivo and in vitro evaluation for immunomodulatory activity of three marine animal extracts with reference to phagocytosis. Indian J Exp Biol 40:1399–1402

    CAS  PubMed  Google Scholar 

  118. PrabhuDas MR, Baldwin CL, Bollyky PL, Bowdish DM, Drickamer K, Febbraio M, McVicker B (2017) A consensus definitive classification of scavenger receptors and their roles in health and disease. J Immunol 198(10):3775–3789

    Article  CAS  PubMed  Google Scholar 

  119. Pérez Fernández ME, Quesada E, Gálvez J, Ruiz C (2000) Effect of exopolysaccharide V2-7, isolated from Halomonas eurihalina, on the proliferation in vitro of human peripheral blood lymphocytes. Immunopharm Immunot 22(1):131–141

    Google Scholar 

  120. Qi C, Cai Y, Gunn L, Ding C, Li B, Kloecker G, Qian K, Vasilakos J, Saijo S, Iwakura Y, Yannelli JR (2011) Differential pathways regulating innate and adaptive antitumor immune responses by particulate and soluble yeast-derived β-glucans. Am J Hematol 23;117(25):6825–6836

    Google Scholar 

  121. Raposo MFDJ, De Morais RMSC, Bernardo de Morais AMM (2013) Bioactivity and applications of sulphated polysaccharides from marine microalgae. Mar Drugs 11(1):233–252

    Article  PubMed  Google Scholar 

  122. Raposo MFJ, Morais AMMB, Morais RMSC (2014) Bioactivity and applications of polysaccharides from marine microalgae. In: Merillon JM, Ramawat KG (eds) Polysaccharides: bioactivity and biotechnology. Springer, Switzerland, p 38

    Google Scholar 

  123. Ray A, Dittel BN (2010) Isolation of mouse peritoneal cavity cells. Jove J Vis Exp 35:e1488

    Google Scholar 

  124. Ren D, Li C, Qin Y, Yin R, Du S, Liu H, Jin N (2015) Evaluation of immunomodulatory activity of two potential probiotic Lactobacillus strains by in vivo tests. Anaerobe35:22–27

    Google Scholar 

  125. Roeder A, Kirschning CJ, Rupec RA, Schaller M, Weindl G, Korting HC (2004) Toll-like receptors as key mediators in innate antifungal immunity. Med Mycol J42(6):485–498

    Article  CAS  Google Scholar 

  126. Ross GD (2000) Regulation of the adhesion versus cytotoxic functions of the Mac-1/CR3/alpha M beta2-integrin glycoprotein. Crit Rev Immunol 20:197–222

    Article  CAS  PubMed  Google Scholar 

  127. Rowe DC, McGettrick AF, Latz E, Monks BG, Gay NJ, Yamamoto M, Golenbock DT (2006) The myristoylation of TRIF-related adaptor molecule is essential for Toll-like receptor 4 signal transduction. Proc Natl Acad Sci USA 103:6299–6304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ruiz-Bravo A, Jimenez-Valera M, Moreno E, Guerra V, Ramos-Cormenzana A (2001) Biological response modifier activity of an exopolysaccharide from Paenibacillus jamilae CP-7. Clin Diagn Lab Immunol 8(4):706–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Rühmann B, Schmid J, Sieber V (2015) High throughput exopolysaccharide screening platform: from strain cultivation to monosaccharide composition and carbohydrate fingerprinting in one day. Carbohyd Polym 122:212–220

    Article  CAS  Google Scholar 

  130. Saito Y, Watanabe K, Fujioka D, Nakamura T, Obata JE, Kawabata K, Shimizu T (2012) Disruption of group IVA cytosolic phospholipase A2 attenuates myocardial ischemia-reperfusion injury partly through inhibition of TNF-alpha-mediated pathway. Am J Physiol HeartCirc Physiol 302:2018–2030

    Article  CAS  Google Scholar 

  131. Sajna KV, Kamat S (2020) Antibodies at work in the time of severe acute respiratory syndrome coronavirus 2. Cytotherapy (In press). https://doi.org/10.1016/j.jcyt.2020.08.009

    Article  Google Scholar 

  132. Šandula J, Kogan G, Kačuráková M, Machová E (1999) Microbial (1 → 3)-β-d-glucans, their preparation, physico-chemical characterization and immunomodulatory activity. Carbohyd Polym 38(3):247–253. https://doi.org/10.1016/s0144-8617(98)00099-x

  133. Schepetkin IA, Quinn MT (2006) Botanical polysaccharides: macrophage immunomodulation and therapeutic potential. Int Immunopharmacol 6(3):317–333

    Article  CAS  PubMed  Google Scholar 

  134. Schorey JS, Cooper AM (2003) Macrophage signalling upon mycobacterial infection: the MAP kinases lead the way. Cell Microbiol 5:133–142

    Article  CAS  PubMed  Google Scholar 

  135. Schuch RA, Oliveira TL, Collares TF, Monte LG, Inda GR, Dellagostin OA, Vendruscolo CT, Moreira AD, Hartwig DD (2017) The use of xanthan gum as vaccine adjuvant: an evaluation of immunostimulatory potential in balb/c mice and cytotoxicity in vitro. Biomed Res Int 7:2017

    Google Scholar 

  136. Selmi C, Leung PS, Fischer L et al (2011) The effects of Spirulina on anemia and immune function in senior citizens. Cell Mol Immunol 8(3):248–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Shankar T, Vijayabaskar P, Sivasankara NS, Sivakumar T (2014) Screening of exopolysaccharide producing bacterium Frateuria aurentia from elephant dung. App Sci Report 1:105–109

    Google Scholar 

  138. Shao BM, Xu W, Dai H, Tu P, Li Z, Gao XM (2004) A study on the immune receptors for polysaccharides from the roots of Astragalus membranaceus, a Chinese medicinal herb. Biochem Biophys Res Commun 320(4):1103–1111

    Article  CAS  PubMed  Google Scholar 

  139. Shokri H, Khosravi A, Taghavi M (2014) Efficacy of Spirulina platensis on immune functions in cancer mice with systemic candidiasis. J Mycol Res 1(1):7–13

    Google Scholar 

  140. Shrestha PR, Handral MU (2017) Evaluation of immunomodulatory activity of extract from rind of Nephelium lappaceum fruit. Int J Pharm Pharm Sci 9(1):38–43

    Article  Google Scholar 

  141. Smirnou D, Hrubošová D, Kulhánek J, Švík K, Bobková L, Moravcová V, Krčmář M, Franke L, Velebný V (2014) Cryptococcus laurentii extracellular biopolymer production for application in wound management. Appl Biochem Biotechnol 174:1344–1353. https://doi.org/10.1007/s12010-014-1105-x

    Article  CAS  PubMed  Google Scholar 

  142. Smith-Garvin JE, Koretzky GA, Jordan MS (2009) T cell activation. Annu Rev immunol 27:591–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Sudha P, Asdaq SM, Dhamingi SS, Chandrakala GK (2010) Immunomodulatory activity of methanolic leaf extract of Moringa oleifera in animals. Indian J Physiol Pharmacol 54(2):133–140

    Google Scholar 

  144. Sun L, Wang L, Zhou Y (2012) Immunomodulation and antitumor activities of different-molecular-weight polysaccharides from Porphyridium cruentum. Carbohyd Polym 87(2):1206–1210. https://doi.org/10.1016/j.carbpol.2011.08.097

    Article  CAS  Google Scholar 

  145. Surayot U, Lee S, You S (2018) Effects of sulfated fucan from the sea cucumber Stichopus japonicus on natural killer cell activation and cytotoxicity. Int J Biol Macromol 1(108):177–184

    Article  CAS  Google Scholar 

  146. Surayot U, Wang J, Seesuriyachan P, Kuntiya A, Tabarsa M, Lee Y, You S (2014) Exopolysaccharides from lactic acid bacteria: structural analysis, molecular weight effect on immunomodulation. Int J Biol Macromol 68:233–240

    Article  CAS  PubMed  Google Scholar 

  147. Surayot U, You S (2017) Structural effects of sulfated polysaccharides from Codium fragile on NK cell activation and cytotoxicity. Int J Biol Macromol 98:117–124

    Article  CAS  PubMed  Google Scholar 

  148. Surayot U, You S (2017) Structural effects of sulfated polysaccharides from Codium fragile on NK cell activation and cytotoxicity. Int J Biological Macromolecules 98:117–12

    Article  CAS  PubMed  Google Scholar 

  149. Surayot U, Lee JH, Park WJ, You SG (2016) Structural characteristics of polysaccharides extracted from Cladophora glomerata Kützing affecting nitric oxide releasing capacity of RAW 264.7 cells. Bioact Carbohydr 7(1):26–31

    Google Scholar 

  150. Surayot U, Wang J, Seesuriyachan P, Kuntiya A, Tabarsa M, Lee Y, You SG (2014) Exopolysaccharides from lactic acid bacteria: Structural analysis, molecular weight effect on immunomodulation. Int J Biological Macromol 68:233–240

    Google Scholar 

  151. Sutherland IW (1990) Biotechnology of microbial exopolysaccharides. Cambridge UniversityPress, Cambridge

    Google Scholar 

  152. Tamegai H, Takada Y, Okabe M, Asada Y, Kusano K, Katagiri YU, Nagahara Y (2013) Aureobasidium pullulans culture supernatant significantly stimulates R-848-activated phagocytosis of PMA-induced THP-1 macrophages. Immunopharmacol Immunotoxicol 35(4):455–461

    Article  CAS  PubMed  Google Scholar 

  153. Taylor ME (2001) Structure and function of the macrophage mannose receptor. Mammalian carbohydrate recognitionsystems. Springer, Berlin, Heidelberg, pp 105–121

    Chapter  Google Scholar 

  154. Taylor ME, Conary JT, Lennartz MR, Stahl PD, Drickamer K (1990) Primary structure of the mannose receptor contains multiple motifs resembling carbohydrate recognition domains. Int J Biol Chem 265:12156–12162

    Article  CAS  Google Scholar 

  155. Thirugnanasambandham K, Sivakumar V, Maran JP (2014) Process optimization and analysis of microwave assisted extraction of pectin from dragon fruit peel. Carbohyd Polym 112:622–626

    Article  CAS  Google Scholar 

  156. Thoma-Uszynski S, Stenger S, Takeuchi O, Ochoa MT, Engele M, Sieling PA, Akira S (2001) Induction of direct antimicrobial activity through mammalian toll-like receptors. Science 291(5508):1544–1547

    Google Scholar 

  157. Thornton BP, Vetvicka V, Pitman M, Goldman RC, Ross GD (1996) Analysis of the sugar specificity and molecular location of the beta-glucan-binding lectin site of complement receptor type 3 (CD11b/CD18). J Immunol 156:1235–1246

    Article  CAS  PubMed  Google Scholar 

  158. Tzianabos AO (2000) Polysaccharide immunomodulators as therapeutic agents: structural aspects and biologic function. Clin Microbiol Rev 13(4):523–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Tzianabos AO, Finberg RW, Wang Y, Chan M, Onderdonk AB, Jennings HJ, Kasper DL (2000) T cells activated by zwitterionic molecules prevent abscesses induced by pathogenic bacteria. J Biol Chem 275:6733

    Article  CAS  PubMed  Google Scholar 

  160. Ventorino V, Nicolaus B, Di Donato P, Pagliano G, Poli A, Robertiello A, Iavarone V, Pepe O (2019) Bioprospecting of exopolysaccharide-producing bacteria from different natural ecosystems for biopolymer synthesis from vinasse. Chem Biol Technol Agric 6(1):18. https://doi.org/10.1186/s40538-019-0154-3

    Article  CAS  Google Scholar 

  161. Wagner H (1990) Search for plant derived natural products with immunostimulatory activity: recent advances. Pure Appl Chem 62(7):1217–1222

    Article  CAS  Google Scholar 

  162. Wang CL, Lu CY, Pi CC, Zhuang YJ, Chu CL, Liu WH et al (2012) Extracellular polysaccharides produced by Ganoderma formosanum stimulate macrophage activation via multiple pattern-recognition receptors. BMC Complement Altern Med 12:119. https://doi.org/10.1186/1472-6882-12-119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Wang F, Qiao L, Chen L, Zhang C, Wang Y, Wang Y, Liu Y, Zhang N (2016) The immunomodulatory activities of pullulan and its derivatives in human pDC-like CAL-1 cell line. Int J Biol 1(86):764–771

    Google Scholar 

  164. Wang Q, Zhao G, Lin J, Li C, Jiang N, Xu Q, Zhang J (2016) Role of the mannose receptor during Aspergillus fumigatus infection and interaction with Dectin-1 in corneal epithelial cells. Cornea 35(2):267–273

    Google Scholar 

  165. Wang G, Zhu L, Yu B, Chen K, Liu B, Liu, J, Chen K (2016) Exopolysaccharide from Trichoderma pseudokoningii induces macrophage activation. Carbohyd Polym 149:112–120

    Google Scholar 

  166. Weng BB, Lin YC, Hu CW, Kao MY, Wang SH, Lo DY, Lai TY, Kan LS, Chiou RY(2011) Toxicological and immunomodulatory assessments of botryosphaeran (β-glucan) produced by Botryosphaeria rhodina RCYU 30101. Food Chem Toxicol 1;49(4):910–916

    Google Scholar 

  167. Wesche H, Henzel WJ, Shillinglaw W, Li S, Cao Z (1997) MyD88: an adaptor that recruits IRAK to the IL-1 receptor complex. Immunity 7(6):837–847

    Article  CAS  PubMed  Google Scholar 

  168. Xaplanteri P, Lagoumintzis G, Dimitracopoulos G, Paliogianni F (2009) Synergistic regulation of Pseudomonas aeruginosa-induced cytokine production in human monocytes by mannose receptor and TLR2. Eur J Immunol 39(3):730–740

    Article  CAS  PubMed  Google Scholar 

  169. Xiao R, Zheng Y (2016) Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnol Adv 34(7):1225–1244

    Article  CAS  PubMed  Google Scholar 

  170. Xu CL, Wang YZ, Jin ML, Yang XQ (2009) Preparation, characterization and immunomodulatory activity of selenium-enriched exopolysaccharide produced by bacterium Enterobacter cloacae Z0206. Bioresour Technol 100(6):2095–2097

    Article  CAS  PubMed  Google Scholar 

  171. Xu, X, Wu, X, Wang, Q, Cai, N, Zhang, H, Jiang, Z, … & Oda, T. (2014) Immunomodulatory effects of alginate oligosaccharides on murine macrophage RAW264. 7 cells and their structure–activity relationships. J Agr Food Chem 62(14):3168–3176

    Google Scholar 

  172. Yamagishi T, Tsuboi T, Kikuchi K (2003) Potent natural immunomodulator, rice water-soluble polysaccharide fractions with anticomplementary activity. Cereal Chem 80(1):5–8. https://doi.org/10.1094/cchem.2003.80.1.5

    Article  CAS  Google Scholar 

  173. Yamamoto M, Sato S, Hemmi H, Uematsu S, Hoshino K, Kaisho T, Takeuchi O, Takeda K, Akira S (2003) TRAM is specifically involved in the Toll-like receptor 4—mediated MyD88-independent signaling pathway. Nat Immunol 4(11):1144–1150

    Article  CAS  PubMed  Google Scholar 

  174. Yang Y, Yin C, Zhang MW (2012) Immunomodulatory activities and mechanisms of polysaccharides on T/B lymphocytes. Chinese J Cell Biol 34:67–74

    Google Scholar 

  175. Yim JH, Son E, Pyo S, Lee HK (2005) Novel sulfated polysaccharide derived from red-tide microalga Gyrodiniumim pudicum strain KG03 with immunostimulating activity in vivo. Mar Biotechnol 7:331–338

    Article  CAS  Google Scholar 

  176. Yin M, Zhang Y, Li H (2019) Advances in research on immunoregulation of macrophages by plant polysaccharides. Front Immunol 10:145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Yoon HS, Kim JW, Cho HR, Moon SB, Shin HD, Yang KJ, Lee HS, Kwon YS, Ku SK (2010) Immunomodulatory effects of Aureobasidium pullulans SM-2001 exopolymers on cyclophosphamide-treated mice. J Microbiol Biotechnol 20(2):438–445

    Article  CAS  PubMed  Google Scholar 

  178. You X, Li Z, Ma K, Zhang C, Chen X, Wang G, Li W (2020) Structural characterization and immunomodulatory activity of an exopolysaccharide produced by Lactobacillus helveticus LZ-R-5. Carbohyd Polym 235:

    Article  CAS  Google Scholar 

  179. Yu W, Chen G, Zhang P, Chen K (2016) Purification, partial characterization and antitumor effect of an exopolysaccharide from Rhizopus nigricans. Int J Biol Macromol 82:299–307

    Article  CAS  PubMed  Google Scholar 

  180. Yu Q, Nie SP, Li WJ, Zheng WY, Yin PF, Gong DM, Xie MY (2013) Macrophage immunomodulatory activity of a purified polysaccharide isolated from Ganodermaatrum. Phytother Res 27(2):186–191

    Article  CAS  PubMed  Google Scholar 

  181. Yu L, Sun G, Wei J, Wang Y, Du C, Li J (2016) Activation of macrophages by an exopolysaccharide isolated from Antarctic Psychrobacter sp. B-3. Chin J Oceanol Limnol 34(5):1064–1071

    Google Scholar 

  182. Zaidman BZ, Yassin M, Mahajna J, Wasser SP (2005) Medicinal mushroom modulators of molecular targets as cancer therapeutics. Appl Microbiol Biotechnol 67(4):453–468

    Article  CAS  PubMed  Google Scholar 

  183. Zamze S, Martinez-Pomares L, Jones H, Taylor PR, Stillion RJ, Gordon S, Wong SY (2002) Recognition of bacterial capsular polysaccharides and lipopolysaccharides by the macrophage mannose receptor. J Biol Chem 277(44):41613–41623

    Article  CAS  PubMed  Google Scholar 

  184. Zhang C, Huang K (2005) Characteristic immunostimulation by MAP, a polysaccharide isolated from the mucus of the loach, Misgurnus anguillicaudatus. Carbohyd Polym 59:75–82

    Article  CAS  Google Scholar 

  185. Zhang FX, Kirschning CJ, Mancinelli R, Xu XP, Jin Y et al (1999) Bacterial lipopolysaccharide activates nuclear factor-kappa B through interleukin-1 signaling mediators in cultured human dermal endothelial cells and mononuclear phagocytes. J BiolChem 274(12):7611–7614

    CAS  Google Scholar 

  186. Zhang P, Liu W, Peng Y, Han B, Yang Y (2014) Toll like receptor 4 (TLR4) mediates the stimulating activities of chitosan oligosaccharide on macrophages. Int Immunopharmacol 23:254–261

    Article  CAS  PubMed  Google Scholar 

  187. Zhao T, Feng Y, Li J, Mao R, Zou Y, Feng W, Wu X (2014) Schisandra polysaccharide evokes immunomodulatory activity through TLR 4-mediated activation of macrophages. Int J Biol Macromol 65:33–40

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jaseera, K.V., Abdulla, T. (2021). Microbial EPS as Immunomodulatory Agents. In: Nadda, A.K., K. V., S., Sharma, S. (eds) Microbial Exopolysaccharides as Novel and Significant Biomaterials. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-75289-7_9

Download citation

Publish with us

Policies and ethics