Skip to main content

Antiviral Plants in View of Avicenna’s The Canon of Medicine and Modern Medicine Against Common Cold

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 1328))

Abstract

Common cold is known as a serious clinical problem worldwide. Coronaviruses have long been identified as respiratory pathogens causing “common cold” in healthy people. The pandemic of 2019 novel coronavirus as a serious public health problem and concern has resulted in severe illness and death especially in the elderly. COVID-19 is picking up pace around the world and has spread to more than 219 countries. Due to the very easy spread of COVID-19 and its lack of recognized appropriate treatments and vaccines as well as potential therapeutic effects of several traditional herbal remedies, we decided to gather, evaluate, and compare the potential pharmacological effects of medicinal herbs from Avicenna’s perspective and modern medicine with antiviral properties which may lead to the discovery of suitable traditional treatments to prevent or reduce the adverse symptoms of common cold.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ADV:

Adenoviruses

AFP:

α-fetoprotein

ALT:

Alanine aminotransferase

ARV:

Antiretroviral

AST:

Aspartate aminotransferase

AuNPs:

Gold nanoparticles

BeA:

Betulinic acid

cAgNPs:

Citrate-coated silver nanoparticles

CCID50:

Cell culture infectious dose 50%

CI:

Confidence interval

COVID-19:

Coronavirus disease

CoVs:

Coronaviruses

CpHV-1:

Caprine herpesvirus 1

CVB1:

Coxsackievirus B1

DG:

Diammonium glycyrrhizin

EC50:

50% effective concentration

EEE:

Ent-epiafzelechin-(4α→8)-epiafzelechin

EGFP:

Enhanced green fluorescent protein

EO:

Essential oil

EV71:

Enterovirus 71

18β-GA:

18β-glycyrrhetinic acid

GEO:

Ginger essential oil

GL:

glycyrrhizinate

GMK:

Green monkey

GRA:

Glycyrrhizic acid

HA:

Hemagglutination

HBV:

Hepatitis B virus

HCoVs:

Human coronaviruses

HCV:

Hepatitis C virus

HEp-2:

Human epithelial type 2

HGG:

Honey

ginger

and garlic

HIV:

Human immunodeficiency virus

H1N1:

Hemagglutinin type 1 and neuraminidase type 1

HRSV:

Human respiratory syncytial virus

HSV-1:

Herpes simplex virus type 1

IAV:

Influenza A virus

IBV:

Infectious bronchitis virus

IC50:

Half maximal inhibitory concentration

IFIT1:

Interferon-induced protein with tetratricopeptide repeats 1

IFN-β:

Interferon beta

LC3:

light chain 3

LiCl:

lithium chloride

MDBK:

Madin-Darby bovine kidney

MDCK:

Madin-Darby canine kidney

MERS-CoV:

Middle East respiratory syndrome coronavirus

MeV:

Measles virus

NDV:

Newcastle disease virus

NHC:

National Health Commission

NS5B:

Nonstructural 5B

N/V:

nausea and vomiting

PBMCs:

Peripheral blood mononuclear cells

PHS:

P. harmala seeds

PI-3:

Parainfluenza type 3

PRV:

Piscine orthoreovirus

RSV:

Respiratory syncytial virus

SARS:

Severe acute respiratory syndrome

SARS-CoV-2:

Severe acute respiratory syndrome coronavirus 2

TMV:

Tobacco mosaic virus

USA:

the United States of America

WHO:

World Health Organization

References

  1. Passioti, M., Maggina, P., Megremis, S., & Papadopoulos, N. G. (2014). The common cold: Potential for future prevention or cure. Current Allergy and Asthma Reports, 14(2), 413–426.

    PubMed  PubMed Central  Google Scholar 

  2. De Luca, D., & Schildgen, O. (2018). Healthier without healthcare? The paradox of the common cold. Respiratory Research, 19, 260–261.

    PubMed  PubMed Central  Google Scholar 

  3. Heikkinen, T., & Järvinen, A. (2003). The common cold. Lancet, 361(9351), 51–59.

    PubMed  PubMed Central  Google Scholar 

  4. Roxas, M., & Jurenka, J. (2007). Colds and influenza: A review of diagnosis and conventional, botanical, and nutritional considerations. Alternative Medicine Review, 12(1), 25–48.

    PubMed  Google Scholar 

  5. Choopani, R., Sadr, S., Kaveh, S., Kaveh, N., & Dehghan, S. (2015). Pharmacological treatment of catarrh in Iranian traditional medicine. Journal of Traditional and Complementary Medicine, 5(2), 71–74.

    PubMed  PubMed Central  Google Scholar 

  6. Shao, W., Li, X., Goraya, M. U., Wang, S., & Chen, J. L. (2017). Evolution of influenza a virus by mutation and re-assortment. International Journal of Molecular Sciences, 18(8), 1650–1662.

    PubMed Central  Google Scholar 

  7. Gao, R., Sheng, Z., Sreenivasan, C. C., Wang, D., & Li, F. (2020). Influenza A virus antibodies with antibody-dependent cellular cytotoxicity function. Viruses, 12(3), 276–297.

    CAS  PubMed Central  Google Scholar 

  8. Rajaram, S., Boikos, C., Gelone, D. K., & Gandhi, A. (2020). Influenza vaccines: The potential benefits of cell-culture isolation and manufacturing. Therapeutic Advances in Vaccines and Immunotherapy, 8, 1–10.

    Google Scholar 

  9. Yang, Y., Peng, F., Wang, R., Guan, K., Jiang, T., Xu, G., et al. (2020). The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. Journal of Autoimmunity, 111, 102434–102450.

    Google Scholar 

  10. Lin, L. T., Hsu, W. C., & Lin, C. C. (2014). Antiviral natural products and herbal medicines. Journal of Traditional and Complementary Medicine, 4(1), 24–35.

    PubMed  PubMed Central  Google Scholar 

  11. Greenberg, S. B. (2016). Update on human rhinovirus and coronavirus infections. Seminars in Respiratory and Critical Care Medicine, 37(4), 555–571.

    PubMed  PubMed Central  Google Scholar 

  12. Mahase, E. (2020). Covid-19: Death rate is 0.66% and increases with age, study estimates. BMJ, 369, m1327. https://doi.org/10.1136/bmj.m1327.

    Article  PubMed  Google Scholar 

  13. Wang, C., Horby, P. W., Hayden, F. G., & Gao, G. F. (2020). A novel coronavirus outbreak of global health concern. Lancet, 395, 470–473.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. World Health Organization. (2020). COVID-19 weekly epidemiological update. November 01, 2020. https://apps.who.int/iris/bitstream/handle/10665/336478/nCoV-weeklysitrep01Nov20-eng.pdf

  15. Hageman, J. R. (2020). The coronavirus disease 2019 (COVID-19). Pediatric Annals, 49(3), e99–e100.

    PubMed  Google Scholar 

  16. Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., et al. (2020). Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. The New England Journal of Medicine, 382(13), 1199–1207.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Guan, W. J., Ni, Z. Y., Hu, Y., Liang, W. H., Ou, C. Q., He, J. X., et al. (2020). Clinical characteristics of 2019 novel coronavirus infection in China. MedRxiv. https://doi.org/10.1101/2020.02.06.20020974.

  18. Lauer, S. A., Grantz, K. H., Bi, Q., Jones, F. K., Zheng, Q., Meredith, H. R., et al. (2020). The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application. Annals of Internal Medicine, 172(9), 577–582.

    PubMed  Google Scholar 

  19. Smith, G. D., Ng, F., & Li, W. H. (2020). COVID-19: Emerging compassion, courage and resilience in the face of misinformation and adversity. Journal of Clinical Nursing, 29(9-10), 1425–1428.

    PubMed  PubMed Central  Google Scholar 

  20. Tang, B., Bragazzi, N. L., Li, Q., Tang, S., Xiao, Y., & Wu, J. (2020). An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov). Infectious Disease Modelling, 5, 248–255.

    PubMed  PubMed Central  Google Scholar 

  21. Tayarani-Najaran, Z., Tayarani-Najaran, N., & Emami, S. A. (2014). The history of Islamic medicine at a glance. In Polyphenols in human health and disease (pp. 17–27). Academic.

    Google Scholar 

  22. Naseri, M., Babaeian, M., Ghaffari, F., Kamalinejad, M., Feizi, A., Mazaheri, M., et al. (2016). Bloating: Avicenna’s perspective and modern medicine. Journal of Evidence-Based Complementary and Alternative Medicine, 21(2), 154–159.

    PubMed  Google Scholar 

  23. Heydari, P., Yavari, M., Adibi, P., Asghari, G., Ghanadian, S. M., Dida, G. O., et al. (2019). Medicinal properties and active constituents of Dracocephalum kotschyi and its significance in Iran: A systematic review. Evidence-based Complementary and Alternative Medicine, 2019(2), 1–14.

    Google Scholar 

  24. Fiore, C., Eisenhut, M., Krausse, R., Ragazzi, E., Pellati, D., Armanini, D., et al. (2008). Antiviral effects of Glycyrrhiza species. Phytotherapy Research, 22(2), 141–148.

    CAS  PubMed  Google Scholar 

  25. Ibn Sina, H. A. (1981–1997). Al–Qânun fi al–Tibb. In The Canon of Medicine (5 Vols.) New Delhi: Jamia Hamdard. (in Arabic).

    Google Scholar 

  26. Perera, C., & Efferth, T. (2012). Antiviral medicinal herbs and phytochemicals. Journal of Pharmacognosy, 3(1), 45–48.

    Google Scholar 

  27. Pompei, R., Laconi, S., & Ingianni, A. (2009). Antiviral properties of glycyrrhizic acid and its semisynthetic derivatives. Mini Reviews in Medicinal Chemistry, 9(8), 996–1001.

    CAS  PubMed  Google Scholar 

  28. Cinatl, J., Morgenstern, B., Bauer, G., Chandra, P., Rabenau, H., & Doerr, H. W. (2003). Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet, 361(9374), 2045–2046.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Alfajaro, M. M., Kim, H. J., Park, J. G., Ryu, E. H., Kim, J. Y., Jeong, Y. J., et al. (2012). Anti-rotaviral effects of Glycyrrhiza uralensis extract in piglets with rotavirus diarrhea. Virology Journal, 9(1), 310–319.

    PubMed  PubMed Central  Google Scholar 

  30. Yeh, C. F., Wang, K. C., Chiang, L. C., Shieh, D. E., Yen, M. H., & San Chang, J. (2013). Water extract of licorice had anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. Journal of Ethnopharmacology, 148(2), 466–473.

    Google Scholar 

  31. Laconi, S., Madeddu, M. A., & Pompei, R. (2014). Autophagy activation and antiviral activity by a licorice triterpene. Phytotherapy Research, 28(12), 1890–1892.

    CAS  PubMed  Google Scholar 

  32. Song, W., Si, L., Ji, S., Wang, H., Fang, X. M., Yu, L. Y., et al. (2014). Uralsaponins M–Y, antiviral triterpenoid saponins from the roots of Glycyrrhiza uralensis. Journal of Natural Products, 77(7), 1632–1643.

    CAS  PubMed  Google Scholar 

  33. Sui, X., Yin, J., & Ren, X. (2010). Antiviral effect of diammonium glycyrrhizinate and lithium chloride on cell infection by pseudorabies herpesvirus. Antiviral Research, 85(2), 346–353.

    CAS  PubMed  Google Scholar 

  34. Wolkerstorfer, A., Kurz, H., Bachhofner, N., & Szolar, O. H. (2009). Glycyrrhizin inhibits influenza A virus uptake into the cell. Antiviral Research, 83(2), 171–178.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sharifi-Rad, M., Varoni, E. M., Salehi, B., Sharifi-Rad, J., Matthews, K. R., Ayatollahi, S. A., et al. (2017). Plants of the genus Zingiber as source of antimicrobial agents: From tradition to pharmacy. Molecules, 22(12), E2145–E2164.

    PubMed  Google Scholar 

  36. Bai, L., Leong-Škorničková, J., & Xia, N. H. (2015). Taxonomic studies on Zingiber (Zingiberaceae) in China I: Zingiber kerrii and the synonymy of Z. menghaiense and Z. stipitatum. The Gardens’ Bulletin (Singapore), 67(1), 129–142.

    Google Scholar 

  37. Al-Awwadi, N. A. (2017). Potential health benefits and scientific review of ginger. Journal of Pharmacognosy and Phytotherapy, 9(9), 111–116.

    CAS  Google Scholar 

  38. Schnitzler, P., Koch, C., & Reichling, J. (2007). Susceptibility of drug-resistant clinical herpes simplex virus type 1 strains to essential oils of ginger, thyme, hyssop, and sandalwood. Antimicrobial Agents and Chemotherapy, 51(5), 1859–1862.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. San Chang, J., Wang, K. C., Yeh, C. F., Shieh, D. E., & Chiang, L. C. (2013). Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. Journal of Ethnopharmacology, 145(1), 146–151.

    Google Scholar 

  40. Abdel-Moneim, A., Morsy, B. M., Mahmoud, A. M., Abo-Seif, M. A., & Zanaty, M. I. (2013). Beneficial therapeutic effects of Nigella sativa and/or Zingiber officinale in HCV patients in Egypt. EXCLI Journal, 12, 943–955.

    PubMed  PubMed Central  Google Scholar 

  41. Dabaghzadeh, F., Khalili, H., Dashti-Khavidaki, S., Abbasian, L., & Moeinifard, A. (2014). Ginger for prevention of antiretroviral-induced nausea and vomiting: A randomized clinical trial. Expert Opinion on Drug Safety, 13(7), 859–866.

    PubMed  Google Scholar 

  42. Dorra, N., El-Berrawy, M., Sallam, S., & Mahmoud, R. (2019). Evaluation of antiviral and antioxidant activity of selected herbal extracts. Journal of High Institute of Public Health, 49(1), 36–40.

    Google Scholar 

  43. Vahed, H., Jafri, S. B., & Jamil, N. (2016). Propagation of influenza virus in lymphocytes determine by antiviral effects of honey, ginger and garlic decoction. J Antivir Antiretrovir, 8, 12–20.

    Google Scholar 

  44. Ahmed, I., Aslam, A., Mustafa, G., Masood, S., Ali, M. A., & Nawaz, M. (2017). Anti-avian influenza virus H9N2 activity of aqueous extracts of Zingiber officinalis (Ginger) and Allium sativum (Garlic) in chick embryos. Pakistan Journal of Pharmaceutical Sciences, 30(4), 1341–1344.

    PubMed  Google Scholar 

  45. Camero, M., Lanave, G., Catella, C., Capozza, P., Gentile, A., Fracchiolla, G., et al. (2019). Virucidal activity of ginger essential oil against caprine alphaherpesvirus-1. Veterinary Microbiology, 230, 150–155.

    CAS  PubMed  Google Scholar 

  46. Yang, X. X., Li, C. M., & Huang, C. Z. (2016). Curcumin modified silver nanoparticles for highly efficient inhibition of respiratory syncytial virus infection. Nanoscale, 8(5), 3040–3048.

    CAS  PubMed  Google Scholar 

  47. Lu, M., Han, Z. Q., Xu, Y., & Yao, L. (2013). In vitro and in vivo anti-tobacco mosaic virus activities of essential oils and individual compounds. Journal of Microbiology and Biotechnology, 23(6), 771–778.

    CAS  PubMed  Google Scholar 

  48. Koch, C., Reichling, J., Schneele, J., & Schnitzler, P. (2008). Inhibitory effect of essential oils against herpes simplex virus type 2. Phytomedicine, 15(1-2), 71–78.

    CAS  PubMed  Google Scholar 

  49. Kostermans, A. J. G. H. (1995). Lauraceae. A revised handbook to the Flora of Ceylon (M. D. Dasanayake, F. Fosberg, & W. D. Clayton, Eds., Vol. IX, pp. 112–129). New Delhi: Amerind Publishing Co. Pvt. Ltd.

    Google Scholar 

  50. Muhammad, D. R., & Dewettinck, K. (2017). Cinnamon and its derivatives as potential ingredient in functional food – A review. International Journal of Food Properties, 20(sup2), 2237–2263.

    CAS  Google Scholar 

  51. Yeh, C. F., San Chang, J., Wang, K. C., Shieh, D. E., & Chiang, L. C. (2013). Water extract of Cinnamomum cassia Blume inhibited human respiratory syncytial virus by preventing viral attachment, internalization, and syncytium formation. Journal of Ethnopharmacology, 147(2), 321–326.

    CAS  PubMed  Google Scholar 

  52. Fatima, M., Zaidi, N. U., Amraiz, D., & Afzal, F. (2016). In vitro antiviral activity of Cinnamomum cassia and its nanoparticles against H7N3 influenza a virus. Journal of Microbiology and Biotechnology, 26(1), 151–159.

    CAS  PubMed  Google Scholar 

  53. Dai, J., Wang, G., Li, W., Zhang, L., Yang, J., Zhao, X., et al. (2012). High-throughput screening for anti–influenza A virus drugs and study of the mechanism of procyanidin on influenza A virus–induced autophagy. Journal of Biomolecular Screening, 17(5), 605–617.

    CAS  PubMed  Google Scholar 

  54. Vimalanathan, S., & Hudson, J. (2014). Anti-influenza virus activity of essential oils and vapors. American Journal of Essential Oils and Natural Products, 2, 47–53.

    Google Scholar 

  55. Brochot, A., Guilbot, A., Haddioui, L., & Roques, C. (2017). Antibacterial, antifungal, and antiviral effects of three essential oil blends. MicrobiologyOpen, 6(4), e00459–e00464.

    PubMed Central  Google Scholar 

  56. Salehi, B., Stojanović-Radić, Z., Matejić, J., Sharopov, F., Antolak, H., Kręgiel, D., et al. (2018). Plants of genus Mentha: From farm to food factory. Plants, 7(3), 70–105.

    CAS  PubMed Central  Google Scholar 

  57. Naresh, D., Bharne, D., Saikia, P., & Vindal, V. (2018). Anthraquinone rich Cassia fistula pod extract induces IFIT1, antiviral protein. Indian Journal of Traditional Knowledge, 17(3), 474–479.

    Google Scholar 

  58. Tietjen, I., Gatonye, T., Ngwenya, B. N., Namushe, A., Simonambanga, S., Muzila, M., et al. (2016). Croton megalobotrys Müll Arg. and Vitex doniana (Sweet): Traditional medicinal plants in a three-step treatment regimen that inhibit in vitro replication of HIV-1. Journal of Ethnopharmacology, 191, 331–340.

    PubMed  Google Scholar 

  59. Zhou, M., Zhou, K., Xiang, N. J., Yang, L., Zhang, C. M., Wang, Y. D., et al. (2015). Flavones from Cassia siamea and their anti-tobacco mosaic virus activity. Journal of Asian Natural Products Research, 17(9), 882–887.

    CAS  PubMed  Google Scholar 

  60. Cheng, H. Y., Yang, C. M., Lin, T. C., Shieh, D. E., & Lin, C. C. (2006). ent-Epiafzelechin-(4α→ 8)-epiafzelechin extracted from Cassia javanica inhibits herpes simplex virus type 2 replication. Journal of Medical Microbiology, 55(2), 201–206.

    CAS  PubMed  Google Scholar 

  61. Sharifi-Rad, J., Mnayer, D., Tabanelli, G., Stojanović-Radić, Z. Z., Sharifi-Rad, M., Yousaf, Z., et al. (2016). Plants of the genus Allium as antibacterial agents: From tradition to pharmacy. Cellular and Molecular Biology, 62(9), 57–68.

    CAS  PubMed  Google Scholar 

  62. Meléndez-Villanueva, M. A., Morán-Santibañez, K., Martínez-Sanmiguel, J. J., Rangel-López, R., Garza-Navarro, M. A., Rodríguez-Padilla, C., et al. (2019). Virucidal activity of gold nanoparticles synthesized by green chemistry using garlic extract. Viruses, 11(12), 1111–1123.

    PubMed Central  Google Scholar 

  63. Ahmadi, S., Rajabi, Z., & Marandi, M. V. (2018). Evaluation of the antiviral effects of aqueous extracts of red and yellow onions (Allium Cepa) against avian influenza virus subtype H9N2. Virus, 8(9), 10–15.

    Google Scholar 

  64. Shojai, T. M., Langeroudi, A. G., Karimi, V., Barin, A., & Sadri, N. (2016). The effect of Allium sativum (Garlic) extract on infectious bronchitis virus in specific pathogen free embryonic egg. Avicenna Journal of Phytomedicine, 6(4), 458–467.

    CAS  Google Scholar 

  65. Yamasaki, K., Nakano, M., Kawahata, T., Mori, H., Otake, T., Ueda, N., et al. (1998). Anti-HIV-1 activity of herbs in Labiatae. Biological & Pharmaceutical Bulletin, 21(8), 829–833.

    CAS  Google Scholar 

  66. Lelešius, R., Karpovaitė, A., Mickienė, R., Drevinskas, T., Tiso, N., Ragažinskienė, O., et al. (2019). In vitro antiviral activity of fifteen plant extracts against avian infectious bronchitis virus. BMC Veterinary Research, 15(1), 178–187.

    PubMed  PubMed Central  Google Scholar 

  67. Schuhmacher, A., Reichling, J., & Schnitzler, P. (2003). Virucidal effect of peppermint oil on the enveloped viruses herpes simplex virus type 1 and type 2 in vitro. Phytomedicine, 10(6-7), 504–510.

    CAS  PubMed  Google Scholar 

  68. Petersen, G., Seberg, O., Thorsøe, S., Jørgensen, T., & Mathew, B. (2008). A phylogeny of the genus Crocus (Iridaceae) based on sequence data from five plastid regions. Taxon, 57(2), 487–499.

    Google Scholar 

  69. Hosseini, A., Razavi, B. M., & Hosseinzadeh, H. (2018). Pharmacokinetic properties of saffron and its active components. European Journal of Drug Metabolism and Pharmacokinetics, 43(4), 383–390.

    CAS  PubMed  Google Scholar 

  70. Soleymani, S., Zabihollahi, R., Shahbazi, S., & Bolhassani, A. (2018). Antiviral effects of saffron and its major ingredients. Current Drug Delivery, 15(5), 698–704.

    CAS  PubMed  Google Scholar 

  71. Liu, M. J., & Cheng, C. Y. (1994). A taxonomic study on the genus Ziziphus. Acta Horticulturae, 390, 161–166.

    Google Scholar 

  72. Rodriguez Villanueva, J., & Rodriguez Villanueva, L. (2017). Experimental and clinical pharmacology of Ziziphus jujuba Mills. Phytotherapy Research, 31(3), 347–365.

    PubMed  Google Scholar 

  73. Hong, E. H., Song, J. H., Kang, K. B., Sung, S. H., Ko, H. J., & Yang, H. (2015). Anti-influenza activity of betulinic acid from Ziziphus jujuba on influenza A/PR/8 virus. Biomolecules & Therapeutics, 23(4), 345–349.

    CAS  Google Scholar 

  74. Uritu, C. M., Mihai, C. T., Stanciu, G. D., Dodi, G., Alexa-Stratulat, T., Luca, A., et al. (2018). Medicinal plants of the family Lamiaceae in pain therapy: A review. Pain Research & Management, 2018. https://doi.org/10.1155/2018/7801543.

  75. Lungu, C., Corciova, A., Spac, A., Ciobanu, C., & Ivanescu, B. (2014). Evaluation of bioactive compounds from commercial lavender products and comparative histo-anatomical study. An Stiint U Al I-Mat, 60(2), 11–19.

    Google Scholar 

  76. Minami, M., Kita, M., Nakaya, T., Yamamoto, T., Kuriyama, H., & Imanishi, J. (2003). The inhibitory effect of essential oils on herpes simplex virus type-1 replication in vitro. Microbiology and Immunology, 47(9), 681–684.

    CAS  PubMed  Google Scholar 

  77. Ghasemi Pirbalouti, A., Emami Bistghani, Z., & Malekpoor, F. (2015). An overview on genus Thymus. Journal of Herbal Drugs, 6(2), 93–100.

    Google Scholar 

  78. Astani, A., Reichling, J., & Schnitzler, P. (2010). Comparative study on the antiviral activity of selected monoterpenes derived from essential oils. Phytotherapy Research, 24(5), 673–679.

    CAS  PubMed  Google Scholar 

  79. Rezatofighi, S. E., Seydabadi, A., & Nejad, S. M. (2014). Evaluating the efficacy of Achillea millefolium and Thymus vulgaris extracts against Newcastle disease virus in Ovo. Jundishapur Journal of Microbiology, 7(2), e9016–e9020.

    PubMed  PubMed Central  Google Scholar 

  80. Reichling, J., Schnitzler, P., Suschke, U., & Saller, R. (2009). Essential oils of aromatic plants with antibacterial, antifungal, antiviral, and cytotoxic properties – An overview. Journal of Complementary Medicine Research, 16(2), 79–90.

    Google Scholar 

  81. Amartuvshin, N., Dariimaa, S., & Tserenbaljid, G. (2006). Taxonomy of the genus Peganum L. (Peganaceae Van Tieghem) in Mongolia. Mong J Biol Sci, 4(2), 9–13.

    Google Scholar 

  82. Moloudizargari, M., Mikaili, P., Aghajanshakeri, S., Asghari, M. H., & Shayegh, J. (2013). Pharmacological and therapeutic effects of Peganum harmala and its main alkaloids. Pharmacognosy Reviews, 7(14), 199–212.

    PubMed  PubMed Central  Google Scholar 

  83. Moradi, M. T., Karimi, A., Rafieian-Kopaei, M., & Fotouhi, F. (2017). In vitro antiviral effects of Peganum harmala seed extract and its total alkaloids against Influenza virus. Microbial Pathogenesis, 110, 42–49.

    CAS  PubMed  Google Scholar 

  84. Moradi, M. T., Karimi, A., Fotouhi, F., Kheiri, S., & Torabi, A. (2017). In vitro and in vivo effects of Peganum harmala L. seeds extract against influenza A virus. Avicenna Journal of Phytomedicine, 7(6), 519–530.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kiani, S. J., Shamsi Shahrabadi, M., Ataei, A., & Sajjadi, N. (2007). Peganum harmala seed extract can prevent HSV-1 replication in vitro. Iranian Journal of Virology, 1(4), 11–16.

    Google Scholar 

  86. Chowdhury, T., Mandal, A., Roy, S. C., & De Sarker, D. (2017). Diversity of the genus Ocimum (Lamiaceae) through morpho-molecular (RAPD) and chemical (GC–MS) analysis. Journal of Genetic Engineering and Biotechnology, 15(1), 275–286.

    PubMed  PubMed Central  Google Scholar 

  87. Yucharoen, R., Anuchapreeda, S., & Tragoolpua, Y. (2011). Anti-herpes simplex virus activity of extracts from the culinary herbs Ocimum sanctum L., Ocimum basilicum L. and Ocimum americanum L. African Journal of Biotechnology, 10(5), 860–866.

    Google Scholar 

  88. Chiang, L. C., Ng, L. T., Cheng, P. W., Chiang, W., & Lin, C. C. (2005). Antiviral activities of extracts and selected pure constituents of Ocimum basilicum. Clinical and Experimental Pharmacology & Physiology, 32(10), 811–816.

    CAS  Google Scholar 

  89. Patil, V. A., & Nitave, S. A. (2014). A review on Eucalyptus globulus: A divine medicinal herb. World Journal of Pharmaceutical Sciences, 3(6), 559–567.

    Google Scholar 

  90. Fatehi, M., Farifteh, F., & Fatehi-Hassanabad, Z. (2004). Antispasmodic and hypotensive effects of Ferula asafoetida gum extract. Journal of Ethnopharmacology, 91(2-3), 321–324.

    PubMed  Google Scholar 

  91. Zhang, C. J., Li, W., Li, H. Y., Wang, Y. L., Yun, T., Song, Z. P., et al. (2009). In vivo and in vitro antiviral activity of five Tibetan medicinal plant extracts against herpes simplex virus type 2 infection. Pharmaceutical Biology, 47(7), 598–607.

    Google Scholar 

  92. Upadhyay, P. K. (2017). Pharmacological activities and therapeutic uses of resins obtained from Ferula asafoetida Linn.: A review. International Journal of Green Pharmacy, 11(2), S240–S247.

    CAS  Google Scholar 

  93. Lee, C. L., Chiang, L. C., Cheng, L. H., Liaw, C. C., Abd El-Razek, M. H., Chang, F. R., et al. (2009). Influenza A (H1N1) antiviral and cytotoxic agents from Ferula assa-foetida. Journal of Natural Products, 72, 1568–1572.

    CAS  PubMed  Google Scholar 

  94. Ghannadi, A., Fattahian, K., Shokoohinia, Y., Behbahani, M., & Shahnoush, A. (2014). Anti-viral evaluation of sesquiterpene coumarins from Ferula assa-foetida against HSV-1. Iranian Journal of Pharmaceutical Research, 13(2), 523–530.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Bernáth, J., & Németh, É. (2007). Chemical systematization of the genus Foeniculum Mill. based on the accumulation and qualitative differentiation of the essential oil. Natural Product Communications, 2(3), 309–314.

    Google Scholar 

  96. Orhan, İ. E., Özçelik, B., Kartal, M., & Kan, Y. (2012). Antimicrobial and antiviral effects of essential oils from selected Umbelliferae and Labiatae plants and individual essential oil components. Turkish Journal of Biology, 36(3), 239–246.

    CAS  Google Scholar 

  97. Bai, Y., Xia, B., Xie, W., Zhou, Y., Xie, J., Li, H., et al. (2016). Phytochemistry and pharmacological activities of the genus Prunella. Food Chemistry, 204, 483–496.

    CAS  PubMed  Google Scholar 

  98. Oh, C., Price, J., Brindley, M. A., Widrlechner, M. P., Qu, L., McCoy, J. A., et al. (2011). Inhibition of HIV-1 infection by aqueous extracts of Prunella vulgaris L. Virology Journal, 8(1), 188–197.

    PubMed  PubMed Central  Google Scholar 

  99. Taherpour, A. A., Maroofi, H., Bajelani, O., & Larijani, K. (2010). Chemical composition of the essential oil of Valeriana alliariifolia Adams of Iran. Natural Product Research, 24(10), 973–978.

    CAS  PubMed  Google Scholar 

  100. Ross, S. M. (2015). Valerian root and lemon balm extracts: A phytomedicine compound improves symptoms of hyperactivity, attention deficits, and impulsivity in children. Holistic Nursing Practice, 29(6), 391–395.

    PubMed  Google Scholar 

  101. Sundaresan, N., & Ilango, K. (2018). Review on Valeriana species-Valeriana wallichii and Valeriana jatamansi. International Journal of Pharmaceutical Sciences and Research, 10(11), 2697–2701.

    CAS  Google Scholar 

  102. Ganta, K. K., Mandal, A., Debnath, S., Hazra, B., & Chaubey, B. (2017). Anti-HCV activity from semi-purified methanolic root extracts of Valeriana wallichii. Phytotherapy Research, 31(3), 433–440.

    CAS  PubMed  Google Scholar 

  103. Shah, G., Kaur, M., Singh, P. S., Rahar, S., Dhabliya, F., Arya, Y., et al. (2012). Pharmacognostic parameters of Eucalyptus globulus leaves. Pharmacognosy Journal, 4(34), 38–43.

    Google Scholar 

Download references

Acknowledgment

The authors wish to thank the Mashhad University of Medical Sciences.

Conflict of Interest

The authors declare that they have no conflict of interests.

Funding

The study was funded by the Research Council of Mashhad University of Medical Sciences, Mashhad, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Tayarani-Najaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramazani, E., Emami, S.A., Tayarani-Najaran, N., Sahebkar, A., Tayarani-Najaran, Z. (2021). Antiviral Plants in View of Avicenna’s The Canon of Medicine and Modern Medicine Against Common Cold. In: Sahebkar, A., Sathyapalan, T. (eds) Natural Products and Human Diseases. Advances in Experimental Medicine and Biology(), vol 1328. Springer, Cham. https://doi.org/10.1007/978-3-030-73234-9_7

Download citation

Publish with us

Policies and ethics