Skip to main content

Time Matters: Time-Aware LSTMs for Predictive Business Process Monitoring

  • Conference paper
  • First Online:
Process Mining Workshops (ICPM 2020)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 406))

Included in the following conference series:

Abstract

Predictive business process monitoring (PBPM) aims to predict future process behavior during ongoing process executions based on event log data. Especially, techniques for the next activity and timestamp prediction can help to improve the performance of operational business processes. Recently, many PBPM solutions based on deep learning were proposed by researchers. Due to the sequential nature of event log data, a common choice is to apply recurrent neural networks with long short-term memory (LSTM) cells. We argue, that the elapsed time between events is informative. However, current PBPM techniques mainly use “vanilla” LSTM cells and hand-crafted time-related control flow features. To better model the time dependencies between events, we propose a new PBPM technique based on time-aware LSTM (T-LSTM) cells. T-LSTM cells incorporate the elapsed time between consecutive events inherently to adjust the cell memory. Furthermore, we introduce cost-sensitive learning to account for the common class imbalance in event logs. Our experiments on publicly available benchmark event logs indicate the effectiveness of the introduced techniques.

S. Chatterjee—Equal contribution with An Nguyen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/verenich/ProcessSequencePrediction.

  2. 2.

    https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb.

  3. 3.

    https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f.

  4. 4.

    https://github.com/verenich/ProcessSequencePrediction/tree/master/data.

  5. 5.

    https://www.tensorflow.org.

  6. 6.

    https://github.com/annguy/time-aware-pbpm.

References

  1. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-generation hyperparameter optimization framework. In: Proceedings of the 25rd International Conference on Knowledge Discovery and Data Mining (KDD) (2019)

    Google Scholar 

  2. Baytas, I.M., Xiao, C., Zhang, X., Wang, F., Jain, A.K., Zhou, J.: Patient subtyping via time-aware LSTM networks. In: Proceedings of the 23rd International Conference on Knowledge Discovery and Data Mining (KDD), pp. 65–74 (2017)

    Google Scholar 

  3. Bengio, Y., Simard, P., Frasconi, P., et al.: Learning long-term dependencies with gradient descent is difficult. Trans. Neural Networks 5(2), 157–166 (1994)

    Article  Google Scholar 

  4. Breuker, D., Matzner, M., Delfmann, P., Becker, J.: Comprehensible predictive models for business processes. MIS Q. 40(4), 1009–1034 (2016)

    Article  Google Scholar 

  5. Camargo, M., Dumas, M., González-Rojas, O.: Learning accurate LSTM models of business processes. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling, J. (eds.) BPM 2019. LNCS, vol. 11675, pp. 286–302. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26619-6_19

    Chapter  Google Scholar 

  6. Di Francescomarino, C., Ghidini, C., Maggi, F.M., Milani, F.: Predictive process monitoring methods: which one suits me best? In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 462–479. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_27

    Chapter  Google Scholar 

  7. Evermann, J., Rehse, J.R., Fettke, P.: Predicting process behaviour using deep learning. Decis. Support Syst. 100, 129–140 (2017). https://www.evermann2017predicting

  8. Greff, K., Srivastava, R.K., Koutník, J., Steunebrink, B.R., Schmidhuber, J.: LSTM: a search space odyssey. IEEE Trans. Neural Networks Learn. Syst. 28(10), 2222–2232 (2017)

    Article  MathSciNet  Google Scholar 

  9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  10. Khan, A., et al.: Memory-augmented neural networks for predictive process analytics. arXiv preprint arXiv:1802.00938 (2018)

  11. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  12. Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive monitoring of business processes. In: Jarke, M., et al. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 457–472. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07881-6_31

    Chapter  Google Scholar 

  13. Mehdiyev, N., Evermann, J., Fettke, P.: A novel business process prediction model using a deep learning method. Bus. Inf. Syst. Eng. 62(2), 143–157 (2018). https://doi.org/10.1007/s12599-018-0551-3

    Article  Google Scholar 

  14. Navarin, N., Vincenzi, B., Polato, M., Sperduti, A.: LSTM networks for data-aware remaining time prediction of business process instances. In: IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–7. IEEE (2017)

    Google Scholar 

  15. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_30

    Chapter  Google Scholar 

  16. Taymouri, F., La Rosa, M., Erfani, S., Bozorgi, Z.D., Verenich, I.: Predictive business process monitoring via generative adversarial nets: the case of next event prediction. In: Proceedings of the 18th International Conference on Business Process Management (BPM) (2020)

    Google Scholar 

  17. Weinzierl, S., et al.: An empirical comparison of deep-neural-network architectures for next activity prediction using context-enriched process event logs. arXiv:2005.01194 (2020)

  18. Weinzierl, S., Dunzer, S., Zilker, S., Matzner, M.: Prescriptive business process monitoring for recommending next best actions. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNBIP, vol. 392, pp. 193–209. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58638-6_12

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Srijeet Chatterjee: Equal contribution with An Nguyen

Corresponding author

Correspondence to An Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, A., Chatterjee, S., Weinzierl, S., Schwinn, L., Matzner, M., Eskofier, B. (2021). Time Matters: Time-Aware LSTMs for Predictive Business Process Monitoring. In: Leemans, S., Leopold, H. (eds) Process Mining Workshops. ICPM 2020. Lecture Notes in Business Information Processing, vol 406. Springer, Cham. https://doi.org/10.1007/978-3-030-72693-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72693-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72692-8

  • Online ISBN: 978-3-030-72693-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics