Skip to main content

Chemical Reactions at Freely Ascending Single Bubbles

  • Chapter
  • First Online:

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 128))

Abstract

A joint approach of chemists, mathematicians and engineers in the field of chemical reaction enhanced gas-liquid mass transfer on single bubbles is presented. New chemical systems are developed for homogenous chemical reactions in the liquid. By applying different metal-complex based reaction systems with diverse ligands in different reaction media (water and organic solvents) a broad range of reaction kinetics is available. As one measure, the bubble size change over time is investigated. The shrinking of the bubble allows the determination of overall mass transfer rates under diverse conditions. Numerous groups investigated the wake region of the bubble. The influence of the mixing behavior in this region on the mass transfer in general but also, e.g., on competitive consecutive chemical reactions is visualized. For a deeper understanding of the effect of surfactants on mass transfer, simulations are performed providing a high temporal and spatial resolution of the flow and concentration field near the bubbles surface. Furthermore, a compartment model for the description of the mass transfer near a single bubble is developed which allows the calculation of competitive consecutive chemical reactions with reasonable numerical effort.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Whitman WG (1923) The two-film theory of gas absorption. Chem Met Eng 29:146–149

    Google Scholar 

  2. Deising D, Bothe D, Marschall H (2018) Direct numerical simulation of mass transfer in bubbly flows. Comp Fluids 172(30):524–537

    Article  MathSciNet  Google Scholar 

  3. Darmana D, Henket RLB, Deen NG, Kuipers JAM (2007) Detailed modelling of hydrodynamics, mass transfer and chemical reactions in a bubble column using a discrete bubble model: chemisorption of CO2 into NaOH solution, numerical and experimental study. Chem Eng Sci 62:2556–2575

    Article  Google Scholar 

  4. Krauß M, Rzehak R (2018) Reactive absorption of CO2 in NaOH: An Euler-Euler simulation study. Chem Eng Sci 181:199–214

    Article  Google Scholar 

  5. Yoo M, Han SJ, Wee J-H (2013) Carbon dioxide capture capacity of sodium hydroxide aqueous solution. J Environ Manage 114:512–519

    Article  Google Scholar 

  6. Fleischer C, Becker S, Eigenberger G (1996) Detailed modeling of the chemisorption of CO2 into NaOH in a bubble column. Chem Eng Sci 51:1715–1724

    Article  Google Scholar 

  7. Kück UD, Kröger M, Bothe D, Räbiger N, Schlüter M, Warnecke H-J (2011) Skalenübergreifende Beschreibung der Transportprozesse bei Gas/Flüssig-Reaktionen. Chem Ing Tech 83(7):1084–1095

    Article  Google Scholar 

  8. Bäckström HLJ (1934) Der Kettenmechanismus bei der Autoxydation von Aldehyden. Z Phys Chem 25B(1):99–121

    Article  Google Scholar 

  9. Schneppensieper T, Wanat A, Stochel G, Goldstein S, Meyerstein D, van Eldik R (2001) Ligand effects on the kinetics of the reversible binding of NO to selected aminocarboxylato complexes of Iron(II) in aqueous solution. Eur J Inorg Chem 2001:2317–2325

    Article  Google Scholar 

  10. Schneppensieper T, Finkler S, Czap A, van Eldik R, Heus M, Nieuwenhuizen P, Wreesmann C, Abma W (2001) Tuning the reversible binding of NO to Iron(II) aminocarboxylate and related complexes in aqueous solution. Eur J Inorg Chem 2001:491–501

    Article  Google Scholar 

  11. Schneppensieper T, Wanat A, Stochel G, van Eldik R (2002) Mechanistic information on the reversible binding of NO to selected Iron(II) chelates from activation parameters. Inorg Chem 41(9):2565–2573

    Article  Google Scholar 

  12. Miska A, Schurr D, Rinke G, Dittmeyer R, Schindler S (2018) From model compounds to applications: kinetic studies on the activation of dioxygen using an iron complex in a SuperFocus mixer. Chem Eng Sci 190:459–465

    Article  Google Scholar 

  13. Miska A, Norbury J, Lerch M, Schindler S (2017) Dioxygen activation: potential future technical applications in reactive bubbly flows. Chem Eng Technol 40:1522–1526

    Article  Google Scholar 

  14. Paul M, Strassl F, Hoffmann A, Hoffmann M, Schlüter M, Herres-Pawlis S (2018) Reaction systems for bubbly flows. Eur J Inorg Chem 2018(20–21):2101–2124

    Article  Google Scholar 

  15. Mirica LM, Vance M, Rudd DJ, Hedman B, Hodgson KO, Solomon EI, Stack TDP (2005) Tyrosinase reactivity in a model complex: an alternative hydroxylation mechanism. Science 308(5703):1890–1982

    Article  Google Scholar 

  16. Mirica LM, Stack TDP (2005) A Tris(μ-hydroxy)tricopper(II) complex as a model of the native intermediate in laccase and its relationship to a binuclear analogue. Inorg Chem 44(7):2131–2133

    Article  Google Scholar 

  17. Merker D, Böhm L, Oßberger M, Klüfers P, Kraume M (2017) Mass transfer in reactive bubbly flows—a single-bubble study. Chem Eng Technol 40:1391–1399

    Article  Google Scholar 

  18. Timmermann J (2018) Experimental analysis of fast reactions in gas-liquid flows. Ph.D. thesis, TU Hamburg-Hamburg

    Google Scholar 

  19. Muzaferija S, Peric M (1997) Computation of free-surface flows using the finite-volume method and moving grids. Numer Heat Transfer, Part B 32:369–384

    Article  Google Scholar 

  20. Tukovic Z, Jasak H (2012) A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow. Comp Fluids 55:70–84

    Article  MathSciNet  Google Scholar 

  21. Pesci C (2019) Computational analysis of fluid interfaces influenced by soluble surfactant. Ph.D. thesis, Technical University of Darmstadt

    Google Scholar 

  22. Pesci C, Weiner A, Marschall H, Bothe D (2018) Computational analysis of a single rising bubble influenced by soluble surfactant. J Fluid Mech 856:709–763

    Article  MathSciNet  Google Scholar 

  23. Weiner A, Bothe D (2017) Advanced subgrid-scale modeling for convection-dominated species transport at fluid interfaces with application to mass transfer from rising bubbles. J Comput Phys 347(1):261–289

    Article  MathSciNet  Google Scholar 

  24. Tomiyama A, Katakoa I, Zun I, Sakaguchi T (1998) Drag coefficients of single bubbles under normal and micro gravity conditions. JSME Int J, Ser B 41(2):472–479

    Article  Google Scholar 

  25. Hosoda S, Abe S, Hosokawa S, Tomiyama A (2014) Mass transfer from a bubble in a vertical pipe. Int J Heat Mass Transfer 69:215–222

    Article  Google Scholar 

  26. Hughmark GA (1967) Holdup and mass transfer in bubble columns. Ind Eng Chem Process Des Dev 6(2):218–220

    Article  Google Scholar 

  27. Fan LS, Tsuchiya K (1990) Bubble wake dynamics in liquids and liquid-solid suspensions. Butterworth-Heinemann, Stoneham

    Google Scholar 

  28. Yabe K, Kunii D (1978) Dispersion of molecules diffusing from a gas bubble into a liquid. Int Chem Eng 18:666–671

    Google Scholar 

  29. Levy H, Forsdyke AG (1928) The steady motion and stability of a helical vortex. Proc R Soc Lond A 120:670–690

    Article  Google Scholar 

  30. Lindt JT (1972) On the periodic nature of the drag of a rising bubble. Chem Eng Sci 27:1775–1781

    Article  Google Scholar 

  31. Huang J, Saito T (2017) Discussion about the differences in mass transfer, bubble motion and surrounding liquid motion between a contaminated system and a clean system based on consideration of three-dimensional wake structure obtained from LIF visualization. Chem Eng Sci 170:105–115

    Article  Google Scholar 

  32. Weiner A, Timmermann J, Pesci C, Crewe J, Hoffmann M, Schlüter M, Bothe D (2019) Experimental and numerical investigations of reactive species transport around a small rising bubble. Chem Eng Sci X 1:

    Google Scholar 

  33. von Kameke A, Kexel F, Rüttinger S, Colombi R, Kastens S, Schlüter M (2019) 3D-reconstruction of O2 bubble wake concentration. In: Proceedings of the 13th international symposium on particle image velocimetry, Munich

    Google Scholar 

  34. Higbie R (1935) Rate of absorption of a pure gas into still liquid during short periods of exposure. Trans Am Inst Chem Eng 31:365

    Google Scholar 

  35. Danckwerts PV (1958) The effect of incomplete mixing on homogeneous reactions. Chem Eng Sci 8(1–2):93–102

    Article  Google Scholar 

  36. Zwietering TN (1959) The degree of mixing in continuous flow systems. Chem Eng Sci 11(1):1–15

    Article  Google Scholar 

  37. Gast S (2021) Experimentelle und numerische Studie einer Gas-Flüssigreaktionskinetik in homogener flüssiger Phase und ihrer Mischungsmaskierung in reaktiven Blasenströmungen am Beispiel der Toluoloxidation, Ph.D. thesis, University of Stuttgart (to be published)

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—priority program SPP1740 “Reactive Bubbly Flows” (237189010) for the projects KR 1639/22-1/2 (256647858), HE 5480/10-1/2 (256729061), KL 624/18-1/2 (256760414), SCHI 377/13-1/2 (256663228), RI 2512/1-1, SI 587/11-1/2 (256771036), HL-67/1-1 (256646572), BO 1879/13-2 (237189010), MA 2738/1/2 (256677419), SCHL 617/13-2 (256614085), NI 932/9-1/2 (256634524).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Böhm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Böhm, L. et al. (2021). Chemical Reactions at Freely Ascending Single Bubbles. In: Schlüter, M., Bothe, D., Herres-Pawlis, S., Nieken, U. (eds) Reactive Bubbly Flows. Fluid Mechanics and Its Applications, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-030-72361-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72361-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72360-6

  • Online ISBN: 978-3-030-72361-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics