Skip to main content

Sunlight-Mediated Plasmonic Photocatalysis: Mechanism and Material Prospects

  • Chapter
  • First Online:
Nanostructured Materials for Environmental Applications

Abstract

Environmental issues related to groundwater contamination need much attention for the benefit of the healthy future. In civilian and commercial sector, the elimination of toxic and hazardous chemical from the effluents without contaminating the water sources has become a major concern. The utilization of semiconductor for breaking the hazardous organic effluents by photocatalysis process has received great interest over the last 10 years by the scientific and engineering community. In the engineering aspects, much product development is in UV light-based photocatalysis by semiconductor materials. However, to solve the energy and environmental problems, a shift toward higher utilization of solar energy is needed for the development of visible light-driven photocatalysis. Plasmonic photocatalysis makes use of noble metal nanoparticles combined as composites or impregnated into semiconductor photocatalysis which contributes strong absorption of visible light and the excitation of active charge carriers. The mechanism of photocatalysis is totally depending on the band structure engineering of semiconductors and noble metals. Hence awareness is needed for theoretical understanding of band structure of the plasmonic photocatalysis materials. In this chapter, the mechanism of plasmonic photocatalysis, theoretical concepts, and possible nanostructured material to enhance the photocatalytic efficacy is elaborated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liou, K. N. (2002). An introduction to atmospheric radiation. Elsevier.

    Google Scholar 

  2. Sen, Z. (2008). Solar energy fundamentals and modeling techniques: atmosphere, environment, climate change and renewable energy. Springer Science & Business Media.

    Google Scholar 

  3. Stenflo, J. O. (2013). Solar magnetic fields: polarized radiation diagnostics. Springer Science & Business Media.

    Google Scholar 

  4. Linic, S., Christopher, P., & Ingram, D. B. (2011). Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Materials, 10(12), 911.

    Article  CAS  Google Scholar 

  5. Ravelli, D., Dondi, D., Fagnoni, M., & Albini, A. (2009). Photocatalysis. A multi-faceted concept for green chemistry. Chemical Society Reviews, 38(7), 1999–2011.

    Article  CAS  Google Scholar 

  6. Chong, M. N., Jin, B., Chow, C. W., & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: A review. Water Research, 44(10), 2997–3027.

    Google Scholar 

  7. Clavero, C. (2014). Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nature Photonics, 8(2), 95.

    Google Scholar 

  8. Kudo, A., & Miseki, Y. (2009). Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 38(1), 253–278.

    Article  CAS  Google Scholar 

  9. Malato, S., Fernández-Ibáñez, P., Maldonado, M. I., Blanco, J., & Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 147(1), 1–59.

    Article  CAS  Google Scholar 

  10. Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., et al. (2014). Understanding TiO2 photocatalysis: mechanisms and materials. Chemical Reviews, 114(19), 9919–9986.

    Article  CAS  Google Scholar 

  11. Wang, Z., Liu, Y., Huang, B., Dai, Y., Lou, Z., Wang, G., et al. (2014b). Progress on extending the light absorption spectra of photocatalysts. Physical Chemistry Chemical Physics, 16(7), 2758–2774.

    Article  CAS  Google Scholar 

  12. Fujishima, A., & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature, 238(5358), 37–38.

    Google Scholar 

  13. Kabra, K., Chaudhary, R., & Sawhney, R. L. (2004). Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: a review. Industrial and Engineering Chemistry Research, 43(24), 7683–7696.

    Article  CAS  Google Scholar 

  14. Yan, S., Lv, S., Li, Z., & Zou, Z. (2010). Organic–inorganic composite photocatalyst of gC3N4 and TaON with improved visible light photocatalytic activities. Journal of Dalton Transactions, 39(6), 1488–1491.

    Article  CAS  Google Scholar 

  15. Berglund, S. P., Flaherty, D. W., Hahn, N. T., Bard, A. J., & Mullins, C. B. (2011). Photoelectrochemical oxidation of water using nanostructured BiVO4 films. The Journal of Physical Chemistry C, 115(9), 3794–3802.

    Google Scholar 

  16. Hu, X., Li, G., & Yu, J. C. J. L. (2009). Design, fabrication, and modification of nanostructured semiconductor materials for environmental and energy applications. Langmuir, 26(5), 3031–3039.

    Google Scholar 

  17. Huang, Z.-F., Pan, L., Zou, J.-J., Zhang, X., & Wang, L. (2014). Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: a review on recent progress. Nanoscale, 6(23), 14044–14063.

    Article  CAS  Google Scholar 

  18. Wang, Y., Zhang, Z., Zhu, Y., Li, Z., Vajtai, R., Ci, L., et al. (2008). Nanostructured VO2 photocatalysts for hydrogen production. ACS Nano, 2(7), 1492–1496.

    Article  CAS  Google Scholar 

  19. Zhou, H., Qu, Y., Zeid, T., & Duan, X. (2012). Towards highly efficient photocatalysts using semiconductor nanoarchitectures. Energy & Environmental Science, 5(5), 6732–6743.

    Article  CAS  Google Scholar 

  20. Bhunia, K., Chandra, M., Khilari, S., Pradhan, D (2018). Bimetallic PtAu alloy nanoparticles-integrated g-C3N4 hybrid as an efficient photocatalyst for water-to-hydrogen conversion. ACS Applied Materials & Interfaces, 11(1), 478–488.

    Google Scholar 

  21. Chen, J., Wu, X. J., Yin, L., Li, B., Hong, X., Fan, Z., et al. (2015). One-pot synthesis of CdS nanocrystals hybridized with single-layer transition-metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution.Angewandte Chemie, 54(4), 1210–1214.

    Google Scholar 

  22. Lu, Y., Yu, H., Chen, S., Quan, X., & Zhao, H. (2012). Integrating plasmonic nanoparticles with TiO2 photonic crystal for enhancement of visible-light-driven photocatalysis. Journal of Environmental Science and Technology, 46(3), 1724–1730.

    Article  CAS  Google Scholar 

  23. Qu, X., Brame, J., Li, Q., & Alvarez, P. J. (2012). Nanotechnology for a safe and sustainable water supply: Enabling integrated water treatment and reuse. Accounts of Chemical Research, 46(3), 834–843.

    Article  Google Scholar 

  24. Brimblecombe, R., Swiegers, G. F., Dismukes, G. C., & Spiccia, L. (2008). Sustained water oxidation photocatalysis by a bioinspired manganese cluster. Angewandte Chemie, 47(38), 7335–7338.

    Google Scholar 

  25. Li, Q., Guo, B., Yu, J., Ran, J., Zhang, B., Yan, H., et al. (2011). Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. Journal of American Chemical Society, 133(28), 10878–10884.

    Article  CAS  Google Scholar 

  26. Pan, L., Shen, G. Q., Zhang, J. W., Wei, X. C., Wang, L., Zou, J., et al. (2015). TiO2–ZnO composite sphere decorated with ZnO clusters for effective charge isolation in photocatalysis. Industrial and Engineering Chemistry Research, 54(29), 7226–7232.

    Google Scholar 

  27. Yu, J., Hai, Y., & Cheng, B. (2011). Enhanced photocatalytic H2-production activity of TiO2 by Ni (OH)2 cluster modification. The Journal of Physical Chemistry C, 115(11), 4953–4958.

    Article  CAS  Google Scholar 

  28. Yusuf, S., & Jiao, F. (2012). Effect of the support on the photocatalytic water oxidation activity of cobalt oxide nanoclusters. ACS Catalysis, 2(12), 2753–2760.

    Article  CAS  Google Scholar 

  29. Zhao, K., Zhao, S., Qi, J., Yin, H., Gao, C., Khattak, A. M., et al. (2016). Cu2O clusters grown on TiO2 nanoplates as efficient photocatalysts for hydrogen generation. Inorganic Chemistry Frontiers, 3(4), 488–493.

    Article  CAS  Google Scholar 

  30. Han, C., Yang, M.Q., Weng, B., & Xu, Y.J. (2014). Improving the photocatalytic activity and anti-photocorrosion of semiconductor ZnO by coupling with versatile carbon. Physical Chemistry Chemical Physics, 16(32), 16891–16903.

    Google Scholar 

  31. Tang, H., Hessel, C. M., Wang, J., Yang, N., Yu, R., Zhao, H., et al. (2014). Two-dimensional carbon leading to new photoconversion processes. Chemical Society Reviews, 43(13), 4281–4299.

    Article  CAS  Google Scholar 

  32. Zhang, Y., Tang, Z. R., Fu, X., & Xu, Y. J. (2010). TiO2− graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2− graphene truly different from other TiO2− carbon composite materials? Journal of ACS Nano, 4(12), 7303–7314.

    Google Scholar 

  33. Khan, M. A., Akhtar, M. S., Woo, S. I., & Yang, O. B. (2008). Enhanced photoresponse under visible light in Pt ionized TiO2 nanotube for the photocatalytic splitting of water. Journal of Catalysis Communications, 10(1), 1–5.

    Google Scholar 

  34. Ni, M., Leung, M. K., Leung, D. Y., & Sumathy, K. (2007). A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews, 11(3), 401–425.

    Article  CAS  Google Scholar 

  35. Tang, J., Durrant, J. R., & Klug, D. R. (2008). Mechanism of photocatalytic water splitting in TiO2. Reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry. Journal of the American Chemical Society, 130(42), 13885–13891.

    Article  CAS  Google Scholar 

  36. Jia, L., Qiu, J., Du, L., Li, Z., Liu, H., & Ge, S. (2017). TiO2 nanorod arrays as a photocatalytic coating enhanced antifungal and antibacterial efficiency of Ti substrates. Nanomedicine (London), 12(7), 761–776.

    Google Scholar 

  37. Karimi, L., Yazdanshenas, M. E., Khajavi, R., Rashidi, A., & Mirjalili, M. (2014). Using graphene/TiO2 nanocomposite as a new route for preparation of electroconductive, self-cleaning, antibacterial and antifungal cotton fabric without toxicity. Journal of Cellulose, 21(5), 3813–3827.

    Article  CAS  Google Scholar 

  38. Wolfrum, E. J., Huang, J., Blake, D. M., Maness, P.-C., Huang, Z., Fiest, J., et al. (2002). Photocatalytic oxidation of bacteria, bacterial and fungal spores, and model biofilm components to carbon dioxide on titanium dioxide-coated surfaces. Environmental Science & Technology, 36(15), 3412–3419.

    Article  CAS  Google Scholar 

  39. Antonopoulou, M., & Konstantinou, I. (2015). TiO2 photocatalysis of 2-isopropyl-3-methoxy pyrazine taste and odor compound in aqueous phase: Kinetics, degradation pathways and toxicity evaluation.Catalysis today, 240, 22–29.

    Google Scholar 

  40. Comer, B. M., Medford, A. J., (2018). Analysis of photocatalytic nitrogen fixation on rutile TiO2 (110). ACS Sustainable Chemistry & Engineering, 6(4), 4648–4660.

    Google Scholar 

  41. Wang, S., Hai, X., Ding, X., Chang, K., Xiang, Y., Meng, X., et al. (2017). Light-switchable oxygen vacancies in ultrafine Bi5O7Br nanotubes for boosting solar-driven nitrogen fixation in pure water. Advanced Materials, 29(31), 1701774.

    Article  Google Scholar 

  42. Zhao, W., Zhang, J., Zhu, X., Zhang, M., Tang, J., Tan, M., et al. (2014). Enhanced nitrogen photofixation on Fe-doped TiO2 with highly exposed (1 0 1) facets in the presence of ethanol as scavenger. Applied Catalysis B: Environmental, 144, 468–477.

    Article  CAS  Google Scholar 

  43. Reisner, E., Powell, D. J., Cavazza, C., Fontecilla-Camps, J. C., & Armstrong, F. A. (2009). Visible light-driven H2 production by hydrogenases attached to dye-sensitized TiO2 nanoparticles. Journal of the American Chemical Society, 131(51), 18457–18466.

    Article  CAS  Google Scholar 

  44. Seger, B., Pedersen, T., Laursen, A. B., Vesborg, P. C., Hansen, O., & Chorkendorff, I. (2013). Using TiO2 as a conductive protective layer for photocathodic H2 evolution. Journal of the American Chemical Society, 135(3), 1057–1064.

    Article  CAS  Google Scholar 

  45. Li, J., Yan, L., Hu, W., Li, D., Zha, F., Lei, Z., et al. (2016). Facile fabrication of underwater superoleophobic TiO2 coated mesh for highly efficient oil/water separation. Colloids and Surfaces A: Physicochemical and Engineering ASPE, 489, 441–446.

    Article  CAS  Google Scholar 

  46. Wei, Q., Oribayo, O., Feng, X., Rempel, G. L., Pan, Q. J. I., & Research, E. C. (2018). Synthesis of polyurethane foams loaded with TiO2 nanoparticles and their modification for enhanced performance in oil spill cleanup. Industrial & Engineering Chemistry Research, 57(27), 8918–8926.

    Article  CAS  Google Scholar 

  47. Friedmann, D., Mendive, C., & Bahnemann, D. (2010). TiO2 for water treatment: parameters affecting the kinetics and mechanisms of photocatalysis.Applied Catalysis B: Environmental, 99(3–4), 398–406.

    Google Scholar 

  48. Hirakawa, T., Yawata, K., & Nosaka, Y. (2007). Photocatalytic reactivity for O2− and OH radical formation in anatase and rutile TiO2 suspension as the effect of H2O2 addition.Applied Catalysis A: General, 325(1), 105–111.

    Google Scholar 

  49. Kumar, S. G., & Devi, L. G. (2011). Review on modified TiO2 photocatalysis under UV/visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics. The Journal of Physical Chemistry A, 115(46), 13211–13241.

    Article  CAS  Google Scholar 

  50. Linsebigler, A. L., Lu, G., & Yates, J. T., (1995). Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical Reviews, 95(3), 735–758.

    Google Scholar 

  51. Nakamura, R., Tanaka, T., & Nakato, Y. J. T. (2004). Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes. The Journal of Physical Chemistry B, 108(30), 10617–10620.

    Article  CAS  Google Scholar 

  52. Tachikawa, T., Fujitsuka, M., & Majima, T. (2007). Mechanistic insight into the TiO2 photocatalytic reactions: Design of new photocatalysts. The Journal of Physical Chemistry C, 111(14), 5259–5275.

    Article  CAS  Google Scholar 

  53. Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental applications of semiconductor photocatalysis.Chemical reviews, 95(1), 69–96.

    Google Scholar 

  54. Kelly, K. L., Coronado, E., Zhao, L. L., & Schatz, G. C. (2003). The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. ACS Publications.

    Google Scholar 

  55. Mie, G. (1976). Contributions to the optics of turbid media, particularly of colloidal metal solutions. Annalen der Physik, 25(3), 377–445.

    Article  Google Scholar 

  56. Angelini, I., Artioli, G., Bellintani, P., Diella, V., Gemmi, M., Polla, A., et al. (2004). Chemical analyses of bronze age glasses from Frattesina di Rovigo, northern Italy. Journal of Archaeological Science, 31(8), 1175–1184.

    Google Scholar 

  57. Freestone, I., Meeks, N., Sax, M., & Higgitt, C. (2007). The Lycurgus cup—A roman nanotechnology. Gold bulletin, 40(4), 270–277.

    Google Scholar 

  58. Mody, V. V., Siwale, R., Singh, A., & Mody, H. R. (2010). Introduction to metallic nanoparticles. Journal of Pharmacy and Bioallied Sciences, 2(4), 282.

    Article  CAS  Google Scholar 

  59. Casanova-González, E., García-Bucio, A., Ruvalcaba-Sil, J. L., Santos-Vasquez, V., Esquivel, B., Roldán, M. L., et al. (2012). Silver nanoparticles for SERS identification of dyes.MRS Online Proceedings Library, 1374, 263–274.

    Google Scholar 

  60. García, M. A. (2011). Surface plasmons in metallic nanoparticles: fundamentals and applications. Journal of Physics D: Applied Physics, 44(28), 283001.

    Article  Google Scholar 

  61. Ding, D., Liu, K., He, S., Gao, C., & Yin, Y. (2014). Ligand-exchange assisted formation of Au/TiO2 schottky contact for visible-light photocatalysis. Nano letters, 14(11), 6731–6736.

    Google Scholar 

  62. Long, R., Mao, K., Gong, M., Zhou, S., Hu, J., Zhi, M., et al. (2014). Tunable oxygen activation for catalytic organic oxidation: Schottky junction versus plasmonic effects. Angewandte Chemie International Edition, 53(12), 3205–3209.

    Article  CAS  Google Scholar 

  63. Wang, H., Zhang, L., Chen, Z., Hu, J., Li, S., Wang, Z., et al. (2014a). Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chemical Society Reviews, 43(15), 5234–5244.

    Article  CAS  Google Scholar 

  64. Ashwin Kishore, M., & Ravindran, P. (2017). Tailoring the electronic band gap and band edge positions in the C2N Monolayer by P and As substitution for photocatalytic water splitting.The Journal of Physical Chemistry C, 121(40), 22216–22224.

    Google Scholar 

  65. Kishore, M. A., Sjåstad, A. O., & Ravindran, P. (2019). Influence of hydrogen and halogen adsorption on the photocatalytic water splitting activity of C2N monolayer: A first-principles study. Carbon, 141, 50–58.

    Article  Google Scholar 

  66. Le Bahers, T., Rérat, M., & Sautet, P. (2014). Semiconductors used in photovoltaic and photocatalytic devices: Assessing fundamental properties from DFT. Journal of Physical Chemistry C, 118(12), 5997–6008.

    Article  CAS  Google Scholar 

  67. Srinivasu, K., Modak, B., & Ghosh, S. K. (2014). Porous graphitic carbon nitride: A possible metal-free photocatalyst for water splitting. The Journal of Physical Chemistry C, 118(46), 26479–26484.

    Article  CAS  Google Scholar 

  68. Ahmad, S., Mahanti, S., Hoang, K., & Kanatzidis, M. G. (2006). Ab initio studies of the electronic structure of defects in PbTe. Physical Review B, 74(15), 155205.

    Google Scholar 

  69. Chen, S., Gong, X., Walsh, A., & Wei, S., (2009). Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and I-III-VI 2 compounds.Physical Review B, 79(16), 165211.

    Google Scholar 

  70. Liao, P., & Carter, E. A. (2013). New concepts and modeling strategies to design and evaluate photo-electro-catalysts based on transition metal oxides. Chemical Society Reviews, 42(6), 2401–2422.

    Article  CAS  Google Scholar 

  71. Zhao, Z., & Liu, Q. (2007). Mechanism of higher photocatalytic activity of anatase TiO2 doped with nitrogen under visible-light irradiation from density functional theory calculation. Journal of Physics D: Applied Physics, 41(2), 025105.

    Article  Google Scholar 

  72. Shi, A. J., Li, B. X., Wan, C. R., Leng, D. C., & Lei, E. Y. (2016). Hybrid density functional studies of C-anion-doped anatase TiO2. Chemical Physics Letters, 650, 19–28.

    Article  CAS  Google Scholar 

  73. Yang, K., Dai, Y., & Huang, B. (2007a). Study of the nitrogen concentration influence on N-doped TiO2 anatase from first-principles calculations. The Journal of Physical Chemistry C, 111(32), 12086–12090.

    Article  CAS  Google Scholar 

  74. Khan, M., Xu, J., Chen, N., & Cao, W. (2012). First principle calculations of the electronic and optical properties of pure and (Mo, N) co-doped anatase TiO2. Journal of Alloys and Compounds, 513, 539–545.

    Article  CAS  Google Scholar 

  75. Yang, K., Dai, Y., & Huang, B. (2007b). Understanding photocatalytic activity of S-and P-doped TiO2 under visible light from first-principles. The Journal of Physical Chemistry C, 111(51), 18985–18994.

    Article  CAS  Google Scholar 

  76. Kawahara, T., Konishi, Y., Tada, H., Tohge, N., Nishii, J., & Ito, S. J. (2002). A patterned TiO2 (anatase)/TiO2 (rutile) bilayer-type photocatalyst: Effect of the anatase/rutile junction on the photocatalytic activity. Angewandte Chemie International Edition, 41(15), 2811–2813.

    Article  CAS  Google Scholar 

  77. Lin, X., Xing, J., Wang, W., Shan, Z., Xu, F., & Huang, F. J. (2007). Photocatalytic activities of heterojunction semiconductors Bi2O3/BaTiO3: A strategy for the design of efficient combined photocatalysts. Journal of Physical Chemistry C, 111(49), 18288–18293.

    Article  CAS  Google Scholar 

  78. Geng, W., Liu, H., & Yao, X. (2013). Enhanced photocatalytic properties of titania–graphene nanocomposites: a density functional theory study. Journal of Physical Chemistry Chemical Physics, 15(16), 6025–6033.

    Article  CAS  Google Scholar 

  79. Huang, Q., Tian, S., Zeng, D., Wang, X., Song, W., Li, Y., et al. (2013). Enhanced photocatalytic activity of chemically bonded TiO2/graphene composites based on the effective interfacial charge transfer through the C–Ti bond. ACS Catalysis, 3(7), 1477–1485.

    Article  CAS  Google Scholar 

  80. Yang, N., Liu, Y., Wen, H., Tang, Z., Zhao, H., Li, Y., et al. (2013). Photocatalytic properties of graphdiyne and graphene modified TiO2: From theory to experiment. ACS Nano, 7(2), 1504–1512.

    Article  CAS  Google Scholar 

  81. Guo, M., & Du, J. (2012). First-principles study of electronic structures and optical properties of Cu, Ag, and Au-doped anatase TiO2.Physica B: Condensed Matter, 407(6), 1003–1007.

    Google Scholar 

  82. Xing-Gang, H., An-Dong, L., Mei-Dong, H., Bin, L., & Xiao-Ling, W. (2009). First-principles band calculations on electronic structures of Ag-doped rutile and anatase TiO2. Chinese Physics Letters, 26(7), 077106.

    Article  Google Scholar 

  83. Khan, M., Xu, J., Chen, N., Cao, W., Usman, Z., & Khan, D. F. (2013). Effect of Ag doping concentration on the electronic and optical properties of anatase TiO2: a DFT-based theoretical study. Research on Chemical Intermediates, 39(4), 1633–1644.

    Article  CAS  Google Scholar 

  84. Wang, Z., Yang, C., Lin, T., Yin, H., Chen, P., Wan, D., et al. (2013). H-doped black titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance. Advanced Functional Materials, 23(43), 5444–5450.

    Article  CAS  Google Scholar 

  85. Yang, L., Peng, Y., Yang, Y., Liu, J., Li, Z., Ma, Y., et al. (2018). Green and sensitive flexible semiconductor SERS substrates: Hydrogenated black TiO2 nanowires. ACS Applied Nano Materials, 1(9), 4516–4527.

    Article  CAS  Google Scholar 

  86. Ma, X., Dai, Y., Yu, L., & Huang, B. J. (2014). Noble-metal-free plasmonic photocatalyst: Hydrogen doped semiconductors. Scientific Reports, 4, 3986.

    Article  Google Scholar 

  87. Zhang, X., Chen, Y. L., Liu, R.-S., & Tsai, D. P. (2013). Plasmonic photocatalysis. Reports on Progress in Physics, 76(4), 046401.

    Article  Google Scholar 

  88. Gao, Y., Lee, W., Trehan, R., Kershaw, R., Dwight, K., & Wold, A. (1991). Improvement of photocatalytic activity of titanium (IV) oxide by dispersion of Au on TiO2. Journal of Materials Research Bulletin, 26(12), 1247–1254.

    Article  CAS  Google Scholar 

  89. Sclafani, A., Palmisano, L., & Davi, E. (1991). Photocatalytic degradaton of phenol in aqueous polycrystalline TiO2 dispersions: the influence of Fe3+, Fe2+ and Ag+ on the reaction rate. Journal of Photochemistry and Photobiology A: Chemistry, 56(1), 113–123.

    Article  CAS  Google Scholar 

  90. Christopher, P., Xin, H., & Linic, S. (2011). Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures.Nature chemistry, 3(6), 467.

    Google Scholar 

  91. Ma, X.-C., Dai, Y., Yu, L., & Huang, B.-B. (2016). Energy transfer in plasmonic photocatalytic composites. Light, Science & Applications, 5(2), e16017.

    Article  CAS  Google Scholar 

  92. Awazu, K., Fujimaki, M., Rockstuhl, C., Tominaga, J., Murakami, H., Ohki, Y., et al. (2008). A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. Journal of the American Chemical Society, 130(5), 1676–1680.

    Article  CAS  Google Scholar 

  93. Kakuta, N., Goto, N., Ohkita, H., & Mizushima, T. (1999). Silver bromide as a photocatalyst for hydrogen generation from CH3OH/H2O solution. The Journal of Physical Chemistry B, 103(29), 5917–5919.

    Article  CAS  Google Scholar 

  94. Huang, H., Li, X., Kang, Z., Liu, Y., Li, H., He, X., et al. (2010). Tuning metal@ metal salt photocatalytic abilities by different charged anions. Dalton Transactions, 39(44), 10593–10597.

    Google Scholar 

  95. Panayotov, D. A., & Morris, J. R. (2016). Surface chemistry of Au/TiO2: Thermally and photolytically activated reactions. Surface Science Reports, 71(1), 77–271.

    Article  CAS  Google Scholar 

  96. Wang, P., Huang, B., Dai, Y., & Whangbo, M.-H. J. P. C. C. P. (2012). Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. Physical Chemistry Chemical Physics, 14(28), 9813–9825.

    Article  CAS  Google Scholar 

  97. Wu, M., Chen, W. J., Shen, Y. H., Huang, F. Z., Li, C. H., & Li, S. K. (2014). In situ growth of matchlike ZnO/Au plasmonic heterostructure for enhanced photoelectrochemical water splitting. ACS Applied Materials & Interfaces, 6(17), 15052–15060.

    Article  CAS  Google Scholar 

  98. Herrmann, J. M., Disdier, J., & Pichat, P. (1986). Photoassisted platinum deposition on TiO2 powder using various platinum complexes.The Journal of Physical Chemistry, 90(22), 6028–6034.

    Google Scholar 

  99. Ishitani, O., Inoue, C., Suzuki, Y., & Ibusuki, T. J. (1993). Photocatalytic reduction of carbon dioxide to methane and acetic acid by an aqueous suspension of metal-deposited TiO2. Journal of Physical Chemistry C, 72(3), 269–271.

    CAS  Google Scholar 

  100. Tasbihi, M., Kočí, K., Edelmannová, M., Troppova, I., Reli, M., Schomaecker, R., et al. (2018). Pt/TiO2 photocatalysts deposited on commercial support for photocatalytic reduction of CO2. Journal of Photochemistry and Photobiology A: Chemistry, 366, 72–80.

    Article  CAS  Google Scholar 

  101. Bhunia, S. K., Jana, N. R, (2014). Reduced graphene oxide-silver nanoparticle composite as visible light photocatalyst for degradation of colorless endocrine disruptors. ACS Applied Materials & Interfaces, 6(22), 20085–20092.

    Google Scholar 

  102. Zhang, H., Fan, X., Quan, X., Chen, S., & Yu, H. (2011). Graphene sheets grafted Ag@ AgCl hybrid with enhanced plasmonic photocatalytic activity under visible light. Environmental Science and Technology, 45(13), 5731–5736.

    Article  CAS  Google Scholar 

  103. Zhu, M., Chen, P., & Liu, M. (2011). Graphene oxide enwrapped Ag/AgX (X= Br, Cl) nanocomposite as a highly efficient visible-light plasmonic photocatalyst. ACS Nano, 5(6), 4529–4536.

    Article  CAS  Google Scholar 

  104. Zhu, M., Chen, P., & Liu, M. (2012). Ag/AgBr/graphene oxide nanocomposite synthesized via oil/water and water/oil microemulsions: a comparison of sunlight energized plasmonic photocatalytic activity. Langmuir, 28(7), 3385–3390.

    Article  CAS  Google Scholar 

  105. Ye, M., Wang, R., Shao, Y., Tian, C., Zheng, Z., Gu, X., et al. (2018). Silver nanoparticles/graphitic carbon nitride nanosheets for improved visible-light-driven photocatalytic performance. Journal of Photochemistry and Photobiology A: Chemistry, 351, 145–153.

    Article  CAS  Google Scholar 

  106. Zhou, T., Xu, Y., Xu, H., Wang, H., Da, Z., Huang, S., et al. (2014). In situ oxidation synthesis of visible-light-driven plasmonic photocatalyst Ag/AgCl/g-C3N4 and its activity. Ceramics International: Part A, 40(7), 9293–9301.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

One of the authors, D. Durgalakshmi, acknowledges Department of Science and Technology, India, for providing DST-INPIRE Faculty Fellowship.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhinasekaran, D., Kishore, M.R.A., Jagannathan, M. (2021). Sunlight-Mediated Plasmonic Photocatalysis: Mechanism and Material Prospects. In: Balakumar, S., Keller, V., Shankar, M. (eds) Nanostructured Materials for Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-72076-6_5

Download citation

Publish with us

Policies and ethics