Skip to main content

Nanostructure Material-Based Sensors for Environmental Applications

  • Chapter
  • First Online:
  • 914 Accesses

Abstract

Sensors and sensing systems are paving way for the Internet of things (IoT). Interconnectivity of sensors is aiding the capture of information on a real-time basis, thus aiding the decision support system. Specifically, in agricultural, industrial, food, commercial, military, biological, and many other sectors, sensors are playing an important role. Present-day sensors are built on micro-sized sensing particles and are also cost-effective. One major advantage of a micro-sized sensor is the availability of high surface area and a good surface-to-volume ratio. They also are capable of detecting lower concentration molecules at the PPM/PPB level. Different types of nanomaterials are being studied mainly for reusability and low-temperature sensing. 1D and zero-dimensional nanostructures are mainly used along with different nanomaterials like metal oxides, conducting polymers, ceramics, semiconductors, optical materials, etc. Different types of sensors are being used for different applications like gas sensors, pressure sensors, humidity sensors, environmental sensors for monitoring, biosensors, etc. All these sensors are synthesized by various methods, both wet chemical methods and physical methods. The present chapter deals with all the abovementioned facts with a brief comparison of the performance criteria.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tissa, A.P.J., Illangasekare, H., & Han, Q. (2018). Environmental underground sensing and monitoring.

    Google Scholar 

  2. Vogi F., Dable B., Cramer J., Books K. (2009), Recent advances in Chemometrics for Smart sensors, Analyst, 129, 492–502.

    Google Scholar 

  3. Lim, T. C., & Ramakrishna, S. (2006). A conceptual review of nanosensors. Zeitschrift für Naturforschung A—A Journal of Physical Sciences, 61, 402–412. https://doi.org/10.1515/zna-2006-7-815.

    Article  CAS  Google Scholar 

  4. Fraden, J., & King, J. G. (1998). Handbook of modern sensors: Physics, designs, and applications (2nd ed.).

    Google Scholar 

  5. Abdel-Karim, R., Reda, Y., & Abdel-Fattah, A. (2020). Review—Nanostructured materials-based nanosensors. Journal of the Electrochemical Society, 167, 037554. https://doi.org/10.1149/1945-7111/ab67aa.

    Article  CAS  Google Scholar 

  6. Bogue, R., & Bogue, R. (2008). Nanosensors: A review of recent progress. Sensor Review, 28, 12–17. https://doi.org/10.1108/02602280810849965.

    Article  Google Scholar 

  7. Lupan, O., Pauporté, T., & Viana, B. (2010). Low-voltage UV-electroluminescence from ZnO-nanowire array/p-GaN light-emitting diodes. Advanced Materials, 22, 3298–3302. https://doi.org/10.1002/adma.201000611.

    Article  CAS  Google Scholar 

  8. Šutka, A., & Gross, K. A. (2016). Spinel ferrite oxide semiconductor gas sensors. Sensors and Actuators B: Chemical, 222, 95–105. https://doi.org/10.1016/j.snb.2015.08.027.

    Article  CAS  Google Scholar 

  9. Abdel-Karim, R., Reda, Y., & Abdel-Fattah, A. (2020). Review—Nanostructured materials-based nanosensors. Journal of the Electrochemical Society, 167, 37554. https://doi.org/10.1149/1945-7111/ab67aa.

    Article  CAS  Google Scholar 

  10. Springer. (2020). Nanosensor technologies for environmental monitoring. Retrieved from https://link.springer.com/bookseries/15921%0Ahttp://link.springer.com/10.1007/978-3-030-45116-5.

  11. Expanding the Vision of Sensor Materials. (1995). https://doi.org/10.17226/4782.

  12. Gomez, I. J., Arnaiz, B., Cacioppo, M., Arcudi, F., & Prato, M. (2018). Nitrogen-doped Carbon Nanodots for bioimaging and delivery of paclitaxel. Journal of Materials Chemistry B, 6. https://doi.org/10.1039/x0xx00000x.

  13. Semwal, V., & Gupta, B. D. (2019). Highly sensitive surface plasmon resonance based fiber optic pH sensor utilizing rGO-Pani nanocomposite prepared by in situ method. Sensors and Actuators B: Chemical, 283, 632–642. https://doi.org/10.1016/j.snb.2018.12.070.

    Article  CAS  Google Scholar 

  14. Bezzon, V. D. N., Montanheiro, T. L. A., De Menezes, B. R. C., Ribas, R. G., Righetti, V. A. N., Rodrigues, K. F., & Thim, G. P. (2019). Carbon nanostructure-based sensors: A brief review on recent advances. Advances in Materials Science and Engineering, 2019. https://doi.org/10.1155/2019/4293073.

  15. Schneider, K., & Maziarz, W. (2018). V2O5 thin films as nitrogen dioxide sensors †. Sensors, 18. https://doi.org/10.3390/s18124177.

  16. Harold H. Szu, F. Jack Agee (2009), Independent Component Analyses, Wavelets, Neural Networks, Biosystems, and Nanoengineering VII, Proceedings of SPIE, volume 7343, 734301

    Google Scholar 

  17. Tripathy, N., & Kim, D.-H. (2018). Metal oxide modified ZnO nanomaterials for biosensor applications. Nano Convergence, 5, 27. https://doi.org/10.1186/s40580-018-0159-9.

    Article  CAS  Google Scholar 

  18. Zhang, B., & Gao, P. X. (2019). Metal oxide nanoarrays for chemical sensing: A review of fabrication methods, sensing modes, and their inter-correlations. Frontiers in Materials, 6. https://doi.org/10.3389/fmats.2019.00055.

  19. Elosua, C., Arregui, F. J., Del Villar, I., Ruiz-Zamarreño, C., Corres, J. M., Bariain, C., Goicoechea, J., Hernaez, M., Rivero, P. J., Socorro, A. B., Urrutia, A., Sanchez, P., Zubiate, P., Lopez-Torres, D., De Acha, N., Ascorbe, J., Ozcariz, A., & Matias, I. R. (2017). Micro and nanostructured materials for the development of optical fibre sensors. Sensors, 17. https://doi.org/10.3390/s17102312.

  20. Ahmed, W., Subramani, K., & Elhissi, A. (2019). Introduction to nanotechnology. Nanobiomaterials in Clinical Dentistry, 3–18.

    Google Scholar 

  21. Tieu, T., Alba, M., Elnathan, R., Cifuentes-Rius, A., & Voelcker, N. H. (2019). Advances in porous silicon-based nanomaterials for diagnostic and therapeutic applications. Advances in Therapy, 2, 1800095. https://doi.org/10.1002/adtp.201800095.

    Article  Google Scholar 

  22. Di Zhang, H., Tang, C. C., Long, Y. Z., Zhang, J. C., Huang, R., Li, J. J., & Gu, C. Z. (2014). High-sensitivity gas sensors based on arranged polyaniline/PMMA composite fibers. Sensors and Actuators A: Physical, 219, 123–127. https://doi.org/10.1016/j.sna.2014.09.005.

    Article  CAS  Google Scholar 

  23. Wang, G., Morrin, A., Li, M., Liu, N., & Luo, X. (2018). Nanomaterial-doped conducting polymers for electrochemical sensors and biosensors. Journal of Materials Chemistry B, 6, 4173–4190. https://doi.org/10.1039/c8tb00817e.

    Article  CAS  Google Scholar 

  24. Chauhan, P. (2016). Nanomaterials for sensing applications. Journal of Nanomedicine Research, 3, 1–8. https://doi.org/10.15406/jnmr.2016.03.00067.

    Article  Google Scholar 

  25. Rout, C. S., Hegde, M., Govindaraj, A., & Rao, C. N. R. (2007). Ammonia sensors based on metal oxide nanostructures. Nanotechnology, 18. https://doi.org/10.1088/0957-4484/18/20/205504.

  26. Baptista, F. R., Belhout, S. A., Giordani, S., & Quinn, S. J. (2015). Recent developments in carbon nanomaterial sensors. Chemical Society Reviews, 44, 4433–4453. https://doi.org/10.1039/c4cs00379a.

    Article  CAS  Google Scholar 

  27. Lee, J., Lee, S.-H., Bak, S.-Y., Kim, Y., Woo, K., Lee, S., Lim, Y., & Yi, M. (2019). Improved sensitivity of α-Fe2O3 nanoparticle-decorated ZnO Nanowire Gas Sensor for CO. Sensors (Basel), 19. https://doi.org/10.3390/s19081903.

  28. Heddle, J. G. (2008). Protein cages, rings and tubes: Useful components of future nanodevices? Nanotechnology, Science and Applications, 1, 67–78.

    Article  CAS  Google Scholar 

  29. Riu, J., Maroto, A., & Rius, F. X. (2006). Nanosensors in environmental analysis. Talanta, 69, 288–301. https://doi.org/10.1016/j.talanta.2005.09.045.

    Article  CAS  Google Scholar 

  30. Seo, J. W., Magrez, A., Milas, M., Lee, K., Lukovac, V., & Forró, L. (2007). Catalytically grown carbon nanotubes: From synthesis to toxicity. Journal of Physics D: Applied Physics, 40, R109–R120. https://doi.org/10.1088/0022-3727/40/6/r01.

    Article  CAS  Google Scholar 

  31. Li, Y., Mann, D., Rolandi, M., Kim, W., Ural, A., Hung, S., Javey, A., Cao, J., Wang, D., Yenilmez, E., Wang, Q., Gibbons, J. F., Nishi, Y., & Dai, H. (2004). Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method. Nano Letters, 4, 317–321. https://doi.org/10.1021/nl035097c.

    Article  CAS  Google Scholar 

  32. Anon. (1992). No Title. Nat. Publ. Gr.

    Google Scholar 

  33. Rahman, G., Najaf, Z., Mehmood, A., Bilal, S., ul Haq Ali Shah, A., Mian, S. A., & Ali, G. (2019). An overview of the recent progress in the synthesis and applications of carbon nanotubes. C, 5. https://doi.org/10.3390/c5010003.

  34. Kolmakov, A., & Moskovits, M. (2004). Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annual Review of Materials Research, 34, 151–180. https://doi.org/10.1146/annurev.matsci.34.040203.112141.

    Article  CAS  Google Scholar 

  35. Journet, C., & Bernier, P. (1998). Production of carbon nanotubes. Applied Physics A: Materials Science & Processing, 67, 1–9. https://doi.org/10.1007/s003390050731.

    Article  CAS  Google Scholar 

  36. Kasperski, A., Weibel, A., Datas, L., De Grave, E., Peigney, A., & Laurent, C. (2015). Large-diameter single-wall carbon nanotubes formed alongside small-diameter double-walled carbon nanotubes. Journal of Physical Chemistry C, 119, 1524–1535. https://doi.org/10.1021/jp509080e.

    Article  CAS  Google Scholar 

  37. Yah, C. S., Simate, G. S., Moothi, K., Maphutha, K. S., & Iyuke, S. E. (2011). Synthesis of large carbon nanotubes from ferrocene: The chemical vapour deposition technique. Trends in Applied Sciences Research, 6, 1270–1279.

    Article  CAS  Google Scholar 

  38. Ismail, R. A., Mohsin, M. H., Ali, A. K., Hassoon, K. I., & Erten-Ela, S. (2020). Preparation and characterization of carbon nanotubes by pulsed laser ablation in water for optoelectronic application. Physica E: Low-Dimensional Systems and Nanostructures, 119, 113997. https://doi.org/10.1016/j.physe.2020.113997.

    Article  CAS  Google Scholar 

  39. Guo, T., Nikolaev, P., Rinzler, A. G., Tombnek, D., Colbert, D. T., & Smalley, R. E. (1995). Self-assembly of tubular fullerenes. 10694–10697.

    Google Scholar 

  40. Ando, Y., & Iijima, S. (1993). Preparation of carbon nanotubes by arc-discharge evaporation. Japanese Journal of Applied Physics, 32. https://doi.org/10.1143/JJAP.32.L107.

  41. Gore, J. P., & Sane, A. (2011). Flame synthesis of carbon nanotubes. In S. Yellampalli (Ed.), Carbon nanotubes. Rijeka: IntechOpen. https://doi.org/10.5772/21012.

    Chapter  Google Scholar 

  42. Ahmad Aqel, Kholoud M. M. Abou El-Nour, Reda A. A. Ammar, Abdulrahman Al-Warthan (2012), Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation, 2004, Arabian Journal of Chemistry 5(1),1–23.

    Google Scholar 

  43. Anon, O. F., & Poole, C. P., Jr. (2003). Introduction to nanotechnology. Hoboken: Wiley.

    Google Scholar 

  44. Zahoor, M., Ahmad, M., Karim, S., Waheed, K., Ali, G., Hussain, S., Hussain, S., & Nisar, A. (2018). Tungsten oxide multifunctional nanostructures: Enhanced environmental and sensing applications. Materials Chemistry and Physics, 221. https://doi.org/10.1016/j.matchemphys.2018.09.034.

  45. Alexiadou, M., Kandyla, M., Mousdis, G., & Kompitsas, M. (2017). Pulsed laser deposition of ZnO thin films decorated with Au and Pd nanoparticles with enhanced acetone sensing performance. Applied Physics A, 123, 262.

    Article  Google Scholar 

  46. Maduraiveeran, D. G., & Jin, W. (2017). Nanomaterials based electrochemical sensor and biosensor platforms for environmental applications. Trends in Environmental Analytical Chemistry, 13, 10–23. https://doi.org/10.1016/j.teac.2017.02.001.

    Article  CAS  Google Scholar 

  47. Pokropivny, V., Lõhmus, R., Nova, I., Pokropivny, A., & Vlassov, S. (2007). Introduction in nanomaterials and nanotechnology.

    Google Scholar 

  48. Wei, Y., Yi, G., Xu, Y., Zhou, L., Wang, X., Cao, J., Sun, G., Chen, Z., Hari, B., & Zhang, Z. (2017). Synthesis, characterization, and gas-sensing properties of Ag/SnO2/rGO composite by a hydrothermal method. Journal of Materials Science: Materials in Electronics, 28, 17049–17057. https://doi.org/10.1007/s10854-017-7630-y.

    Article  CAS  Google Scholar 

  49. Tharsika, T., Haseeb, A. S. M. A., Akbar, S. A., Sabri, M. F. M., & Hoong, W. Y. (2014). Enhanced ethanol gas sensing properties of SnO2-Core/ZnO-shell nanostructures. Sensors, 14, 14586–14600. https://doi.org/10.3390/s140814586.

    Article  CAS  Google Scholar 

  50. Li, K., Diaz, D. C., He, Y., Campbell, J. C., Tsai, C., Li, K., Diaz, D. C., He, Y., & Campbell, J. C. (1995). Electroluminescence from porous silicon with conducting polymer film contacts. Electroluminescence film contacts from porous silicon with conducting polymer. Applied Physics Letters, 2394, 1992–1995. https://doi.org/10.1063/1.111625.

    Article  Google Scholar 

  51. Pramanik, S., Das, G., & Karak, N. (2013). Facile preparation of polyaniline nanofibers modified bentonite nanohybrid for gas sensor application. RSC Advances, 3, 4574–4581. https://doi.org/10.1039/C3RA22557G.

    Article  CAS  Google Scholar 

  52. Lee, J. Y., Nguyen, T. L., Park, J. H., & Kim, B.-K. (2016). Electrochemical detection of hydrazine using poly(dopamine)-modified electrodes. Sensors, 16. https://doi.org/10.3390/s16050647.

  53. Navale, S. T., Khuspe, G. D., Chougule, M. A., & Patil, V. B. (2014). Camphor sulfonic acid doped PPy/α-Fe2O3 hybrid nanocomposites as NO2 sensors. RSC Advances, 4, 27998–28004. https://doi.org/10.1039/C4RA02924K.

    Article  CAS  Google Scholar 

  54. Wang, H., Zhang, Y., Ma, H., Ren, X., Wang, Y., Zhang, Y., & Wei, Q. (2016). Electrochemical DNA probe for Hg(2+) detection based on a triple-helix DNA and Multistage Signal Amplification Strategy. Biosensors and Bioelectronics, 86, 907–912. https://doi.org/10.1016/j.bios.2016.07.098.

    Article  CAS  Google Scholar 

  55. Abdul-wahab, S. A., Al-alawi, S. M., & El-zawahry, A. (2002). Patterns of SO 2 emissions: A refinery case study. Environmental Modelling & Software, 17, 563–570.

    Article  Google Scholar 

  56. Jiménez-Cadena, G., Riu, J., & Rius, F. X. (2007). Gas sensors based on nanostructured materials. The Analyst, 132, 1083–1099. https://doi.org/10.1039/B704562J.

    Article  Google Scholar 

  57. Comini, E. (2006). Metal oxide nano-crystals for gas sensing. Analytica Chimica Acta, 568, 28–40. https://doi.org/10.1016/j.aca.2005.10.069.

    Article  CAS  Google Scholar 

  58. Wang, Q., Liu, F., Lin, J., & Lu, G. (2016). Gas-sensing properties of In-Sn oxides composites synthesized by hydrothermal method. Sensors and Actuators B: Chemical, 234, 130–136. https://doi.org/10.1016/j.snb.2016.04.042.

    Article  CAS  Google Scholar 

  59. Verma, M. K., & Gupta, V. (2012). A highly sensitive SnO 2-CuO multilayered sensor structure for detection of H 2S gas. Sensors and Actuators B: Chemical, 166–167, 378–385. https://doi.org/10.1016/j.snb.2012.02.076.

    Article  CAS  Google Scholar 

  60. Basyooni, M. A., Shaban, M., & El Sayed, A. M. (2017). Enhanced gas sensing properties of spin-coated Na-doped ZnO nanostructured films. Scientific Reports, 7, 41716. https://doi.org/10.1038/srep41716.

    Article  CAS  Google Scholar 

  61. Wu, J., Tao, K., Miao, J., & Norford, L. K. (2018). Three-dimensional hierarchical and superhydrophobic graphene gas sensor with good immunity to humidity. In 2018 IEEE Micro Electro Mech. Syst. (pp. 901–904). https://doi.org/10.1109/MEMSYS.2018.8346702.

  62. Keshtkar, S., Rashidi, A., Kooti, M., Askarieh, M., Pourhashem, S., Ghasemy, E., & Izadi, N. (2018). A novel highly sensitive and selective H2S gas sensor at low temperatures based on SnO2 quantum dots-C60 nanohybrid: Experimental and theory study. Talanta, 188, 531–539. https://doi.org/10.1016/j.talanta.2018.05.099.

    Article  CAS  Google Scholar 

  63. Algadri, N. A., Hassan, Z., Ibrahim, K., & AL-Diabat, A. M. (2018). A high-sensitivity hydrogen gas sensor based on carbon nanotubes fabricated on glass substrate. Journal of Electronic Materials, 47, 6671–6680. https://doi.org/10.1007/s11664-018-6537-6.

    Article  CAS  Google Scholar 

  64. Zhao, W., Yang, C., Zou, D., Sun, Z., & Ji, G. (2017). Possibility of gas sensor based on C20 molecular devices. Physics Letters A, 381, 1825–1830. https://doi.org/10.1016/j.physleta.2017.03.038.

    Article  CAS  Google Scholar 

  65. Rahimi, R., Kamalinahad, S., & Solimannejad, M. (2018). Adsorption of rare gases on the C20nanocage: A theoretical investigation. Materials Research Express, 5, 35006. https://doi.org/10.1088/2053-1591/aab0e3.

    Article  CAS  Google Scholar 

  66. Hamouche, H., Makhlouf, S., Chaouchi, A., & Laghrouche, M. (2018). Humidity sensor based on keratin bio polymer film. Sensors and Actuators A: Physical, 282, 132–141. https://doi.org/10.1016/j.sna.2018.09.025.

    Article  CAS  Google Scholar 

  67. Dubourg, G., Segkos, A., Katona, J., Radovic, M., Savic, S., Niarchos, G., Tsamis, C., & Crnojević-Bengin, V. (2017). Fabrication and characterization of flexible and miniaturized humidity sensors using screen-printed TiO2 nanoparticles as sensitive layer. Sensors, 17, 1854. https://doi.org/10.3390/s17081854.

    Article  CAS  Google Scholar 

  68. Leng, X., Luo, D., Xu, Z., & Wang, F. (2018). Modified graphene oxide/Nafion composite humidity sensor and its linear response to the relative humidity. Sensors and Actuators B: Chemical, 257, 372–381. https://doi.org/10.1016/j.snb.2017.10.174.

    Article  CAS  Google Scholar 

  69. Ding, X., Chen, X., Chen, X., & Zhao, X. (2018). A QCM humidity sensor based on fullerene/graphene oxide nanocomposites with high quality factor. Sensors and Actuators B: Chemical, 266. https://doi.org/10.1016/j.snb.2018.03.143.

  70. Rodahl, M., Höök, F., & Kasemo, B. (1996). QCM operation in liquids: An explanation of measured variations in frequency and Q factor with liquid conductivity. Analytical Chemistry, 68, 2219–2227. https://doi.org/10.1021/ac951203m.

    Article  CAS  Google Scholar 

  71. Hens, S., Cunningham, G., McGuire, G., & Shenderova, O. (2011). Nanodiamond-assisted dispersion of carbon nanotubes and hybrid nanocarbon-based composites. Nanoscience and Nanotechnology Letters, 3, 75–82. https://doi.org/10.1166/nnl.2011.1123.

    Article  CAS  Google Scholar 

  72. Li, X., Chen, X., Yao, Y., Li, N., Chen, X., & Bi, X. (2013). Multi-walled carbon nanotubes/graphene oxide composites for humidity sensing. IEEE Sensors Journal, 13, 4749–4756. https://doi.org/10.1109/JSEN.2013.2273615.

    Article  CAS  Google Scholar 

  73. Saha, D., & Das, S. (2018). Development of fullerene modified metal oxide thick films for moisture sensing application. Materials Today: Proceedings, 5, 9817–9825. https://doi.org/10.1016/j.matpr.2017.10.172.

    Article  CAS  Google Scholar 

  74. Drummond, T. G., Hill, M. G., & Barton, J. K. (2003). Electrochemical DNA sensors. Nature Biotechnology, 21, 1192–1199. https://doi.org/10.1038/nbt873.

    Article  CAS  Google Scholar 

  75. Lei, W., Si, W., Xu, Y., Gu, Z., & Hao, Q. (2014). Conducting polymer composites with graphene for use in chemical sensors and biosensors. Microchimica Acta, 181, 707–722. https://doi.org/10.1007/s00604-014-1160-6.

    Article  CAS  Google Scholar 

  76. Ahmad, Z., Shah, A., Siddiq, M., & Kraatz, H.-B. (2014). Polymeric micelles as drug delivery vehicles. RSC Advances, 4, 17028–17038. https://doi.org/10.1039/C3RA47370H.

    Article  CAS  Google Scholar 

  77. Dai, H., Wang, N., Wang, D., Ma, H., & Lin, M. (2016). An electrochemical sensor based on phytic acid functionalized polypyrrole/graphene oxide nanocomposites for simultaneous determination of Cd(II) and Pb(II). Chemical Engineering Journal, 299, 150–155. https://doi.org/10.1016/j.cej.2016.04.083.

    Article  CAS  Google Scholar 

  78. Deng, L., Zhou, Z., Li, J., Li, T., & Dong, S. (2011). Fluorescent silver nanoclusters in hybridized DNA duplexes for the turn-on detection of Hg2+ ions. Chemical Communications, 47, 11065–11067. https://doi.org/10.1039/C1CC14012D.

    Article  CAS  Google Scholar 

  79. Farias, J. S., Zanin, H., Caldas, A. S., dos Santos, C. C., Damos, F. S., & de Cássia Silva Luz, R. (2017). Functionalized multiwalled carbon nanotube electrochemical sensor for determination of anticancer drug flutamide. Journal of Electronic Materials, 46, 5619–5628. https://doi.org/10.1007/s11664-017-5630-6.

    Article  CAS  Google Scholar 

  80. Jeong, H., Nguyen, D. M., Lee, M. S., Kim, H. G., Ko, S. C., & Kwac, L. K. (2018). N-doped graphene-carbon nanotube hybrid networks attaching with gold nanoparticles for glucose non-enzymatic sensor. Materials Science and Engineering: C, 90, 38–45. https://doi.org/10.1016/j.msec.2018.04.039.

    Article  CAS  Google Scholar 

  81. Liu, Y., Kannegulla, A., Wu, B., & Cheng, L.-J. (2018). Quantum dot fullerene-based molecular beacon nanosensors for rapid, highly sensitive nucleic acid detection. ACS Applied Materials & Interfaces, 10, 18524–18531. https://doi.org/10.1021/acsami.8b03552.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Rangappa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srikanth, V., Shastri, M., Sindhu Sree, M., Navya Rani, M., Shivaramu, P.D., Rangappa, D. (2021). Nanostructure Material-Based Sensors for Environmental Applications. In: Balakumar, S., Keller, V., Shankar, M. (eds) Nanostructured Materials for Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-72076-6_22

Download citation

Publish with us

Policies and ethics