Skip to main content

Clinical Epidemiology of Cholangiocarcinoma

  • Chapter
  • First Online:
Diagnosis and Management of Cholangiocarcinoma
  • 1010 Accesses

Abstract

Cholangiocarcinoma (CCA) is a relatively rare cancer but is becoming increasingly important due to its rising incidence globally. The incidence of CCA substantially varies by geographic area, with high disease burden in East Asian countries and relatively low incidence in Western countries. Conditions strongly contributing to the risk of CCA include choledochal cyst, hepatolithiasis, primary sclerosing cholangitis, and liver fluke infection. Recent epidemiologic data have shown that chronic liver diseases (cirrhosis, chronic viral hepatitis B/C infection, and non-alcoholic fatty liver disease) and metabolic conditions (diabetes, metabolic syndrome) may also increase the risk of CCA development. Occupational exposure to certain toxins and chemicals is also significantly associated with CCA risk. Surveillance of CCA in specific groups of patients has been shown to improve survival. A role for aspirin in the prevention of CCA has also been suggested. The present chapter will review these and other epidemiological aspects of CCA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

95%CI:

95% confidence interval

ABCC2 :

ATP binding cassette subfamily C member 2

ARPKD:

Autosomal recessive polycystic kidney disease

BAP1 :

BRCA1-associated protein 1

BER:

Base excision repair

BiLIN:

Biliary intraepithelial neoplasia

CCA:

Cholangiocarcinoma

COX-2 :

Cyclooxygenase-2

CT:

Computerized tomography

CUP:

Cancers of unknown primary origin

dCCA:

Distal CCA

eCCA:

Extrahepatic CCA

EGFR :

Epidermal growth factor receptor

GSTM1 :

Glutathione S-transferase Mu 1

GSTO1 :

Glutathione S-transferase omega-1

GSTT1 :

Glutathione S-transferase theta 1

HBV:

Hepatitis B virus

HCC:

Hepatocellular carcinoma

HCV:

Hepatitis C virus

hOGG1 :

Human homolog of the 8-oxoguanine glycosylase 1

IARC:

International Agency for Research on Cancer

iCCA:

Intrahepatic CCA

ICD:

International Classification of Diseases

IL-6:

Interleukin-6

iNOS:

Inducible nitric oxide synthase

IR:

Incidence ratio

MetS:

Metabolic syndrome

MRCP:

Magnetic resonance cholangiopancreatography

MRI:

Magnetic resonance imaging

MRP2 :

Multidrug resistance-associated protein 2

MTHFR :

Methylenetetrahydrofolate reductase

MUTYH, MYH :

MutY homolog

NAFLD/NASH:

Nonalcoholic fatty liver disease/nonalcoholic steatohepatitis

NAT1 :

N-acetyltransferase 1

NAT2 :

N-acetyltransferase 2

NKG2D:

Natural killer cell receptor group 2 member D

NOCCA:

Nordic Occupational Cancer Study

OR:

Odds ratio

pCCA:

Hilar/perihilar CCA

PSC:

Primary sclerosing cholangitis

SEER:

Surveillance, Epidemiology, and End Results

SIRs:

Standardized incidence ratios

SNPs:

Single nucleotide polymorphisms

STAT3 :

Signal transducer and activator of transcription 3

TNF:

Tumor necrosis factor

TSER :

Thymidylate synthase enhancer region

WHO:

World Health Organization

XRCC1 :

X-ray repair cross-complementing protein 1

References

  1. Marcano-Bonilla L, Mohamed EA, Mounajjed T, Roberts LR. Biliary tract cancers: epidemiology, molecular pathogenesis and genetic risk associations. Chin Clin Oncol. 2016;5(5):61. https://doi.org/10.21037/cco.2016.10.09.

    Article  PubMed  Google Scholar 

  2. Nakeeb A, Pitt HA, Sohn TA, Coleman J, Abrams RA, Piantadosi S, et al. Cholangiocarcinoma. A spectrum of intrahepatic, perihilar, and distal tumors. Ann Surg. 1996;224(4):463–73; discussion 73–5. https://doi.org/10.1097/00000658-199610000-00005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Khan SA, Tavolari S, Brandi G. Cholangiocarcinoma: epidemiology and risk factors. Liver Int. 2019;39(Suppl 1):19–31. https://doi.org/10.1111/liv.14095.

    Article  PubMed  Google Scholar 

  4. Mukkamalla SKR, Naseri HM, Kim BM, Katz SC, Armenio VA. Trends in incidence and factors affecting survival of patients with cholangiocarcinoma in the United States. J Natl Compr Cancer Netw. 2018;16(4):370–6. https://doi.org/10.6004/jnccn.2017.7056.

    Article  Google Scholar 

  5. Banales JM, Cardinale V, Carpino G, Marzioni M, Andersen JB, Invernizzi P, et al. Expert consensus document: cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat Rev Gastroenterol Hepatol. 2016;13(5):261–80. https://doi.org/10.1038/nrgastro.2016.51.

    Article  PubMed  Google Scholar 

  6. Florio AA, Ferlay J, Znaor A, Ruggieri D, Alvarez CS, Laversanne M, et al. Global trends in intrahepatic and extrahepatic cholangiocarcinoma incidence from 1993 to 2012. Cancer. 2020;126(11):2666–78. https://doi.org/10.1002/cncr.32803.

    Article  PubMed  Google Scholar 

  7. Pinter M, Hucke F, Zielonke N, Waldhor T, Trauner M, Peck-Radosavljevic M, et al. Incidence and mortality trends for biliary tract cancers in Austria. Liver Int. 2014;34(7):1102–8. https://doi.org/10.1111/liv.12325.

    Article  PubMed  Google Scholar 

  8. Saha SK, Zhu AX, Fuchs CS, Brooks GA. Forty-year trends in cholangiocarcinoma incidence in the U.S.: intrahepatic disease on the rise. Oncologist. 2016;21(5):594–9. https://doi.org/10.1634/theoncologist.2015-0446.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jepsen P, Vilstrup H, Tarone RE, Friis S, Sorensen HT. Incidence rates of intra- and extrahepatic cholangiocarcinomas in Denmark from 1978 through 2002. J Natl Cancer Inst. 2007;99(11):895–7. https://doi.org/10.1093/jnci/djk201.

    Article  PubMed  Google Scholar 

  10. Lepage C, Cottet V, Chauvenet M, Phelip JM, Bedenne L, Faivre J, et al. Trends in the incidence and management of biliary tract cancer: a French population-based study. J Hepatol. 2011;54(2):306–10. https://doi.org/10.1016/j.jhep.2010.06.039.

    Article  PubMed  Google Scholar 

  11. Chaiteerakij R, Pan-Ngum W, Poovorawan K, Soonthornworasiri N, Treeprasertsuk S, Phaosawasdi K. Characteristics and outcomes of cholangiocarcinoma by region in Thailand: a nationwide study. World J Gastroenterol. 2017;23(39):7160–7. https://doi.org/10.3748/wjg.v23.i39.7160.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Choi JG, Ghoz HM, Peeraphatdit T, Baichoo E, Addissie BD, Harmsen WS, et al. Aspirin use and the risk of cholangiocarcinoma. Hepatology. 2016;64(3):785–96. https://doi.org/10.1002/hep.28529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tabibian JH, Tabibian N, Aguet JC. Choledochal cyst complications presenting as duodenal obstruction in an 82-year-old patient with gallbladder agenesis. Dig Dis Sci. 2009;54(1):184–7. https://doi.org/10.1007/s10620-008-0317-8.

    Article  CAS  PubMed  Google Scholar 

  14. Fung BM, Lindor KD, Tabibian JH. Cancer risk in primary sclerosing cholangitis: epidemiology, prevention, and surveillance strategies. World J Gastroenterol. 2019;25(6):659–71. https://doi.org/10.3748/wjg.v25.i6.659.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wiseman K, Buczkowski AK, Chung SW, Francoeur J, Schaeffer D, Scudamore CH. Epidemiology, presentation, diagnosis, and outcomes of choledochal cysts in adults in an urban environment. Am J Surg. 2005;189(5):527–31; discussion 31. https://doi.org/10.1016/j.amjsurg.2005.01.025.

    Article  PubMed  Google Scholar 

  16. Sato M, Ishida H, Konno K, Naganuma H, Ishida J, Hirata M, et al. Choledochal cyst due to anomalous pancreatobiliary junction in the adult: sonographic findings. Abdom Imaging. 2001;26(4):395–400. https://doi.org/10.1007/s002610000184.

    Article  CAS  PubMed  Google Scholar 

  17. Todani T, Watanabe Y, Narusue M, Tabuchi K, Okajima K. Congenital bile duct cysts: classification, operative procedures, and review of thirty-seven cases including cancer arising from choledochal cyst. Am J Surg. 1977;134(2):263–9. https://doi.org/10.1016/0002-9610(77)90359-2.

    Article  CAS  PubMed  Google Scholar 

  18. Soares KC, Arnaoutakis DJ, Kamel I, Rastegar N, Anders R, Maithel S, et al. Choledochal cysts: presentation, clinical differentiation, and management. J Am Coll Surg. 2014;219(6):1167–80. https://doi.org/10.1016/j.jamcollsurg.2014.04.023.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ronnekleiv-Kelly SM, Soares KC, Ejaz A, Pawlik TM. Management of choledochal cysts. Curr Opin Gastroenterol. 2016;32(3):225–31. https://doi.org/10.1097/MOG.0000000000000256.

    Article  PubMed  Google Scholar 

  20. Desmet VJ. What is congenital hepatic fibrosis? Histopathology. 1992;20(6):465–77. https://doi.org/10.1111/j.1365-2559.1992.tb01031.x.

    Article  CAS  PubMed  Google Scholar 

  21. Soares KC, Kim Y, Spolverato G, Maithel S, Bauer TW, Marques H, et al. Presentation and clinical outcomes of choledochal cysts in children and adults: a multi-institutional analysis. JAMA Surg. 2015;150(6):577–84. https://doi.org/10.1001/jamasurg.2015.0226.

    Article  PubMed  Google Scholar 

  22. Edil BH, Cameron JL, Reddy S, Lum Y, Lipsett PA, Nathan H, et al. Choledochal cyst disease in children and adults: a 30-year single-institution experience. J Am Coll Surg. 2008;206(5):1000–5; discussion 5–8. https://doi.org/10.1016/j.jamcollsurg.2007.12.045.

    Article  PubMed  Google Scholar 

  23. Katabi N, Pillarisetty VG, DeMatteo R, Klimstra DS. Choledochal cysts: a clinicopathologic study of 36 cases with emphasis on the morphologic and the immunohistochemical features of premalignant and malignant alterations. Hum Pathol. 2014;45(10):2107–14. https://doi.org/10.1016/j.humpath.2014.06.016.

    Article  CAS  PubMed  Google Scholar 

  24. Madadi-Sanjani O, Wirth TC, Kuebler JF, Petersen C, Ure BM. Choledochal cyst and malignancy: a plea for lifelong follow-up. Eur J Pediatr Surg. 2019;29(2):143–9. https://doi.org/10.1055/s-0037-1615275.

    Article  PubMed  Google Scholar 

  25. Soreide K, Soreide JA. Bile duct cyst as precursor to biliary tract cancer. Ann Surg Oncol. 2007;14(3):1200–11. https://doi.org/10.1245/s10434-006-9294-3.

    Article  PubMed  Google Scholar 

  26. Clements O, Eliahoo J, Kim JU, Taylor-Robinson SD, Khan SA. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma: a systematic review and meta-analysis. J Hepatol. 2020;72(1):95–103. https://doi.org/10.1016/j.jhep.2019.09.007.

    Article  PubMed  Google Scholar 

  27. Petrick JL, Yang B, Altekruse SF, Van Dyke AL, Koshiol J, Graubard BI, et al. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma in the United States: a population-based study in SEER-Medicare. PLoS One. 2017;12(10):e0186643. https://doi.org/10.1371/journal.pone.0186643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Todani T, Tabuchi K, Watanabe Y, Kobayashi T. Carcinoma arising in the wall of congenital bile duct cysts. Cancer. 1979;44(3):1134–41. https://doi.org/10.1002/1097-0142(197909)44:3<1134::aid-cncr2820440350>3.0.co;2-t.

    Article  CAS  PubMed  Google Scholar 

  29. Watanabe Y, Toki A, Todani T. Bile duct cancer developed after cyst excision for choledochal cyst. J Hepato-Biliary-Pancreat Surg. 1999;6(3):207–12. https://doi.org/10.1007/s005340050108.

    Article  CAS  Google Scholar 

  30. Kim HJ, Kim JS, Joo MK, Lee BJ, Kim JH, Yeon JE, et al. Hepatolithiasis and intrahepatic cholangiocarcinoma: a review. World J Gastroenterol. 2015;21(48):13418–31. https://doi.org/10.3748/wjg.v21.i48.13418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee TY, Lee SS, Jung SW, Jeon SH, Yun SC, Oh HC, et al. Hepatitis B virus infection and intrahepatic cholangiocarcinoma in Korea: a case-control study. Am J Gastroenterol. 2008;103(7):1716–20. https://doi.org/10.1111/j.1572-0241.2008.01796.x.

    Article  PubMed  Google Scholar 

  32. Donato F, Gelatti U, Tagger A, Favret M, Ribero ML, Callea F, et al. Intrahepatic cholangiocarcinoma and hepatitis C and B virus infection, alcohol intake, and hepatolithiasis: a case-control study in Italy. Cancer Causes Control. 2001;12(10):959–64. https://doi.org/10.1023/a:1013747228572.

    Article  CAS  PubMed  Google Scholar 

  33. Nakanuma Y, Terada T, Tanaka Y, Ohta G. Are hepatolithiasis and cholangiocarcinoma aetiologically related? A morphological study of 12 cases of hepatolithiasis associated with cholangiocarcinoma. Virchows Arch A Pathol Anat Histopathol. 1985;406(1):45–58. https://doi.org/10.1007/BF00710556.

    Article  CAS  PubMed  Google Scholar 

  34. Rizvi S, Gores GJ. Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology. 2013;145(6):1215–29. https://doi.org/10.1053/j.gastro.2013.10.013.

    Article  CAS  PubMed  Google Scholar 

  35. Schmidt MA, Marcano-Bonilla L, Roberts LR. Gallbladder cancer: epidemiology and genetic risk associations. Chin Clin Oncol. 2019;8(4):31. https://doi.org/10.21037/cco.2019.08.13.

    Article  PubMed  Google Scholar 

  36. Patel T. Cholangiocarcinoma. Nat Clin Pract Gastroenterol Hepatol. 2006;3(1):33–42. https://doi.org/10.1038/ncpgasthep0389.

    Article  PubMed  Google Scholar 

  37. O’Hara SP, Tabibian JH, Splinter PL, LaRusso NF. The dynamic biliary epithelia: molecules, pathways, and disease. J Hepatol. 2013;58(3):575–82. https://doi.org/10.1016/j.jhep.2012.10.011.

    Article  PubMed  Google Scholar 

  38. O’Hara SP, Gradilone SA, Masyuk TV, Tabibian JH, LaRusso NF. MicroRNAs in cholangiopathies. Curr Pathobiol Rep. 2014;2(3):133–42. https://doi.org/10.1007/s40139-014-0048-9.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fung BM, Tabibian JH. Cholangiocarcinoma in patients with primary sclerosing cholangitis. Curr Opin Gastroenterol. 2020;36(2):77–84. https://doi.org/10.1097/MOG.0000000000000616.

    Article  PubMed  Google Scholar 

  40. Rosen CB, Nagorney DM. Cholangiocarcinoma complicating primary sclerosing cholangitis. Semin Liver Dis. 1991;11(1):26–30. https://doi.org/10.1055/s-2008-1040419.

    Article  CAS  PubMed  Google Scholar 

  41. Jesudian AB, Jacobson IM. Screening and diagnosis of cholangiocarcinoma in patients with primary sclerosing cholangitis. Rev Gastroenterol Disord. 2009;9(2):E41–7.

    PubMed  Google Scholar 

  42. Burak K, Angulo P, Pasha TM, Egan K, Petz J, Lindor KD. Incidence and risk factors for cholangiocarcinoma in primary sclerosing cholangitis. Am J Gastroenterol. 2004;99(3):523–6. https://doi.org/10.1111/j.1572-0241.2004.04067.x.

    Article  PubMed  Google Scholar 

  43. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Biological agents. Volume 100 B. A review of human carcinogens. IARC Monogr Eval Carcinog Risks Hum. 2012;100(Pt B):1–441.

    PubMed Central  Google Scholar 

  44. Fang YY, Chen YD, Li XM, Wu J, Zhang QM, Ruan CW. Current prevalence of Clonorchis sinensis infection in endemic areas of China. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi. 2008;26(2):99–103. 9

    PubMed  Google Scholar 

  45. Jongsuksuntigul P, Imsomboon T. Opisthorchiasis control in Thailand. Acta Trop. 2003;88(3):229–32. https://doi.org/10.1016/j.actatropica.2003.01.002.

    Article  CAS  PubMed  Google Scholar 

  46. Xia J, Jiang SC, Peng HJ. Association between liver fluke infection and hepatobiliary pathological changes: a systematic review and meta-analysis. PLoS One. 2015;10(7):e0132673. https://doi.org/10.1371/journal.pone.0132673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sithithaworn P, Haswell-Elkins M. Epidemiology of Opisthorchis viverrini. Acta Trop. 2003;88(3):187–94. https://doi.org/10.1016/j.actatropica.2003.02.001.

    Article  PubMed  Google Scholar 

  48. Attwood HD, Chou ST. The longevity of Clonorchis sinensis. Pathology. 1978;10(2):153–6. https://doi.org/10.3109/00313027809063494.

    Article  CAS  PubMed  Google Scholar 

  49. Sripa B, Kaewkes S, Sithithaworn P, Mairiang E, Laha T, Smout M, et al. Liver fluke induces cholangiocarcinoma. PLoS Med. 2007;4(7):e201. https://doi.org/10.1371/journal.pmed.0040201.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Thuwajit C, Thuwajit P, Kaewkes S, Sripa B, Uchida K, Miwa M, et al. Increased cell proliferation of mouse fibroblast NIH-3T3 in vitro induced by excretory/secretory product(s) from Opisthorchis viverrini. Parasitology. 2004;129(Pt 4):455–64. https://doi.org/10.1017/s0031182004005815.

    Article  CAS  PubMed  Google Scholar 

  51. Kim EM, Kim JS, Choi MH, Hong ST, Bae YM. Effects of excretory/secretory products from Clonorchis sinensis and the carcinogen dimethylnitrosamine on the proliferation and cell cycle modulation of human epithelial HEK293T cells. Korean J Parasitol. 2008;46(3):127–32. https://doi.org/10.3347/kjp.2008.46.3.127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pinlaor S, Yongvanit P, Hiraku Y, Ma N, Semba R, Oikawa S, et al. 8-nitroguanine formation in the liver of hamsters infected with Opisthorchis viverrini. Biochem Biophys Res Commun. 2003;309(3):567–71. https://doi.org/10.1016/j.bbrc.2003.08.039.

    Article  CAS  PubMed  Google Scholar 

  53. Chang JS, Tsai CR, Chen LT. Medical risk factors associated with cholangiocarcinoma in Taiwan: a population-based case-control study. PLoS One. 2013;8(7):e69981. https://doi.org/10.1371/journal.pone.0069981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Razumilava N, Gores GJ. Cholangiocarcinoma. Lancet. 2014;383(9935):2168–79. https://doi.org/10.1016/S0140-6736(13)61903-0.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zarei M, Shasaeefar A, Kazemi K, Dehghani M, Malekhosseini SA, Geramizadeh B. Biliary intraepithelial neoplasia in non-biliary cirrhosis-report from 100 explanted livers: a single center experience. Clin Pathol. 2019;12:2632010X19876934. https://doi.org/10.1177/2632010X19876934.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Torbenson M, Yeh MM, Abraham SC. Bile duct dysplasia in the setting of chronic hepatitis C and alcohol cirrhosis. Am J Surg Pathol. 2007;31(9):1410–3. https://doi.org/10.1097/PAS.0b013e318053d122.

    Article  PubMed  Google Scholar 

  57. Wu TT, Levy M, Correa AM, Rosen CB, Abraham SC. Biliary intraepithelial neoplasia in patients without chronic biliary disease: analysis of liver explants with alcoholic cirrhosis, hepatitis C infection, and noncirrhotic liver diseases. Cancer. 2009;115(19):4564–75. https://doi.org/10.1002/cncr.24471.

    Article  PubMed  Google Scholar 

  58. Ralphs S, Khan SA. The role of the hepatitis viruses in cholangiocarcinoma. J Viral Hepat. 2013;20(5):297–305. https://doi.org/10.1111/jvh.12093.

    Article  CAS  PubMed  Google Scholar 

  59. Younossi ZM, Otgonsuren M, Henry L, Venkatesan C, Mishra A, Erario M, et al. Association of nonalcoholic fatty liver disease (NAFLD) with hepatocellular carcinoma (HCC) in the United States from 2004 to 2009. Hepatology. 2015;62(6):1723–30. https://doi.org/10.1002/hep.28123.

    Article  CAS  PubMed  Google Scholar 

  60. Plaz Torres MC, Bodini G, Furnari M, Marabotto E, Zentilin P, Strazzabosco M, et al. Surveillance for hepatocellular carcinoma in patients with non-alcoholic fatty liver disease: universal or selective? Cancers (Basel). 2020;12(6). https://doi.org/10.3390/cancers12061422.

  61. Liu SS, Ma XF, Zhao J, Du SX, Zhang J, Dong MZ, et al. Association between nonalcoholic fatty liver disease and extrahepatic cancers: a systematic review and meta-analysis. Lipids Health Dis. 2020;19(1):118. https://doi.org/10.1186/s12944-020-01288-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wongjarupong N, Assavapongpaiboon B, Susantitaphong P, Cheungpasitporn W, Treeprasertsuk S, Rerknimitr R, et al. Non-alcoholic fatty liver disease as a risk factor for cholangiocarcinoma: a systematic review and meta-analysis. BMC Gastroenterol. 2017;17:149. https://doi.org/10.1186/s12876-017-0696-4.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Corrao S, Natoli G, Argano C. Nonalcoholic fatty liver disease is associated with intrahepatic cholangiocarcinoma and not with extrahepatic form: definitive evidence from meta-analysis and trial sequential analysis. Eur J Gastroenterol Hepatol. 2020. https://doi.org/10.1097/meg.0000000000001684.

  64. Wehbe H, Henson R, Meng F, Mize-Berge J, Patel T. Interleukin-6 contributes to growth in cholangiocarcinoma cells by aberrant promoter methylation and gene expression. Cancer Res. 2006;66(21):10517–24. https://doi.org/10.1158/0008-5472.CAN-06-2130.

    Article  CAS  PubMed  Google Scholar 

  65. Trussoni CE, Tabibian JH, Splinter PL, O’Hara SP. Lipopolysaccharide (LPS)-induced biliary epithelial cell NRas activation requires epidermal growth factor receptor (EGFR). PLoS One. 2015;10(4):e0125793. https://doi.org/10.1371/journal.pone.0125793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jaiswal M, LaRusso NF, Shapiro RA, Billiar TR, Gores GJ. Nitric oxide-mediated inhibition of DNA repair potentiates oxidative DNA damage in cholangiocytes. Gastroenterology. 2001;120(1):190–9. https://doi.org/10.1053/gast.2001.20875.

    Article  CAS  PubMed  Google Scholar 

  67. Ishimura N, Bronk SF, Gores GJ. Inducible nitric oxide synthase upregulates cyclooxygenase-2 in mouse cholangiocytes promoting cell growth. Am J Physiol Gastrointest Liver Physiol. 2004;287(1):G88–95. https://doi.org/10.1152/ajpgi.00539.2003.

    Article  CAS  PubMed  Google Scholar 

  68. Petrick JL, Thistle JE, Zeleniuch-Jacquotte A, Zhang X, Wactawski-Wende J, Van Dyke AL, et al. Body mass index, diabetes and intrahepatic cholangiocarcinoma risk: the liver cancer pooling project and meta-analysis. Am J Gastroenterol. 2018;113(10):1494–505. https://doi.org/10.1038/s41395-018-0207-4.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Vigneri R, Goldfine ID, Frittitta L. Insulin, insulin receptors, and cancer. J Endocrinol Investig. 2016;39(12):1365–76. https://doi.org/10.1007/s40618-016-0508-7.

    Article  CAS  Google Scholar 

  70. Cai HH, Sun YM, Bai JF, Shi Y, Zhao HL, Miao Y. Relationship between the GH-IGFs axis and the proliferation of bile duct cancer cell line QBC939 in vitro. Hepatob Pancreat Dis Int. 2008;7(1):76–81.

    CAS  Google Scholar 

  71. Dutta D, Ghosh S, Pandit K, Mukhopadhyay P, Chowdhury S. Leptin and cancer: pathogenesis and modulation. Indian J Endocrinol Metab. 2012;16(Suppl 3):S596–600. https://doi.org/10.4103/2230-8210.105577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fava G, Alpini G, Rychlicki C, Saccomanno S, DeMorrow S, Trozzi L, et al. Leptin enhances cholangiocarcinoma cell growth. Cancer Res. 2008;68(16):6752–61. https://doi.org/10.1158/0008-5472.CAN-07-6682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K, et al. Body fatness and cancer – viewpoint of the IARC Working Group. N Engl J Med. 2016;375(8):794–8. https://doi.org/10.1056/NEJMsr1606602.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Li LQ, Gan Y, Li WZ, Wu CM, Lu ZX. Overweight, obesity and the risk of gallbladder and extrahepatic bile duct cancers: a meta-analysis of observational studies. Obesity. 2016;24(8):1786–802. https://doi.org/10.1002/oby.21505.

    Article  CAS  PubMed  Google Scholar 

  75. Esposito K, Chiodini P, Colao A, Lenzi A, Giugliano D. Metabolic syndrome and risk of cancer: a systematic review and meta-analysis. Diabetes Care. 2012;35(11):2402–11. https://doi.org/10.2337/dc12-0336.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Welzel TM, Graubard BI, Zeuzem S, El-Serag HB, Davila JA, McGlynn KA. Metabolic syndrome increases the risk of primary liver cancer in the United States: a study in the SEER-Medicare Database. Hepatology. 2011;54(2):463–71. https://doi.org/10.1002/hep.24397.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Chaiteerakij R, Yang JD, Harmsen WS, Slettedahl SW, Mettler TA, Fredericksen ZS, et al. Risk factors for intrahepatic cholangiocarcinoma: association between metformin use and reduced cancer risk. Hepatology. 2013;57(2):648–55. https://doi.org/10.1002/hep.26092.

    Article  CAS  PubMed  Google Scholar 

  78. Xiong JP, Lu X, Xu WY, Bai Y, Huang HC, Bian J, et al. Metabolic syndrome and the risk of cholangiocarcinoma: a hospital-based case-control study in China. Cancer Manag Res. 2018;10:3849–55. https://doi.org/10.2147/Cmar.S175628.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Roberts CK, Sindhu KK. Oxidative stress and metabolic syndrome. Life Sci. 2009;84(21–22):705–12. https://doi.org/10.1016/j.lfs.2009.02.026.

    Article  CAS  PubMed  Google Scholar 

  80. Kim J, Tanabe K, Yokoyama N, Zempo H, Kuno S. Association between physical activity and metabolic syndrome in middle-aged Japanese: a cross-sectional study. BMC Public Health. 2011;11:624. https://doi.org/10.1186/1471-2458-11-624.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kunzmann AT, Coleman HG, Huang WY, Kitahara CM, Cantwell MM, Berndt SI. Dietary fiber intake and risk of colorectal cancer and incident and recurrent adenoma in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Am J Clin Nutr. 2015;102(4):881–90. https://doi.org/10.3945/ajcn.115.113282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. LoConte NK, Brewster AM, Kaur JS, Merrill JK, Alberg AJ. Alcohol and cancer: a statement of the American Society of Clinical Oncology. J Clin Oncol. 2018;36(1):83–93. https://doi.org/10.1200/Jco.2017.76.1155.

    Article  CAS  PubMed  Google Scholar 

  83. Palmer WC, Patel T. Are common factors involved in the pathogenesis of primary liver cancers? A meta-analysis of risk factors for intrahepatic cholangiocarcinoma. J Hepatol. 2012;57(1):69–76. https://doi.org/10.1016/j.jhep.2012.02.022.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ye XH, Huai JP, Ding J, Chen YP, Sun XC. Smoking, alcohol consumption, and the risk of extrahepatic cholangiocarcinoma: a meta-analysis. World J Gastroenterol. 2013;19(46):8780–8. https://doi.org/10.3748/wjg.v19.i46.8780.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Seitz HK, Becker P. Alcohol metabolism and cancer risk. Alcohol Res Health. 2007;30(1):38–41, 4–7.

    PubMed  PubMed Central  Google Scholar 

  86. Jacob L, Freyn M, Kalder M, Dinas K, Kostev K. Impact of tobacco smoking on the risk of developing 25 different cancers in the UK: a retrospective study of 422,010 patients followed for up to 30 years. Oncotarget. 2018;9(25):17420–9. https://doi.org/10.18632/oncotarget.24724.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Flavell DJ, Lucas SB. Promotion of N-nitrosodimethylamine-initiated bile duct carcinogenesis in the hamster by the human liver fluke, Opisthorchis viverrini. Carcinogenesis. 1983;4(7):927–30. https://doi.org/10.1093/carcin/4.7.927.

    Article  CAS  PubMed  Google Scholar 

  88. Abbatt JD. History of the use and toxicity of thorotrast. Environ Res. 1979;18(1):6–12.

    Article  CAS  Google Scholar 

  89. Mori T, Kido C, Fukutomi K, Kato Y, Hatakeyama S, Machinami R, et al. Summary of entire Japanese thorotrast follow-up study: updated 1998. Radiat Res. 1999;152(6 Suppl):S84–7.

    Article  CAS  Google Scholar 

  90. Levy DW, Rindsberg S, Friedman AC, Fishman EK, Ros PR, Radecki PD, et al. Thorotrast-induced hepatosplenic neoplasia: CT identification. AJR Am J Roentgenol. 1986;146(5):997–1004. https://doi.org/10.2214/ajr.146.5.997.

    Article  CAS  PubMed  Google Scholar 

  91. Liu D, Momoi H, Li L, Ishikawa Y, Fukumoto M. Microsatellite instability in thorotrast-induced human intrahepatic cholangiocarcinoma. Int J Cancer. 2002;102(4):366–71. https://doi.org/10.1002/ijc.10726.

    Article  CAS  PubMed  Google Scholar 

  92. Kamikawa T, Amenomori M, Itoh T, Momoi H, Hiai H, Machinami R, et al. Analysis of genetic changes in intrahepatic cholangiocarcinoma induced by thorotrast. Radiat Res. 1999;152(6 Suppl):S118–24.

    Article  CAS  Google Scholar 

  93. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Arsenic, metals, fibres, and dusts. IARC Monogr Eval Carcinog Risks Hum. 2012;100(Pt C):11–465.

    PubMed Central  Google Scholar 

  94. Uguen M, Dewitte JD, Marcorelles P, Lodde B, Pougnet R, Saliou P, et al. Asbestos-related lung cancers: a retrospective clinical and pathological study. Mol Clin Oncol. 2017;7(1):135–9. https://doi.org/10.3892/mco.2017.1277.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Farioli A, Straif K, Brandi G, Curti S, Kjaerheim K, Martinsen JI, et al. Occupational exposure to asbestos and risk of cholangiocarcinoma: a population-based case-control study in four Nordic countries. Occup Environ Med. 2018;75(3):191–8. https://doi.org/10.1136/oemed-2017-104603.

    Article  PubMed  Google Scholar 

  96. Brandi G, Di Girolamo S, Farioli A, de Rosa F, Curti S, Pinna AD, et al. Asbestos: a hidden player behind the cholangiocarcinoma increase? Findings from a case-control analysis. Cancer Causes Control. 2013;24(5):911–8. https://doi.org/10.1007/s10552-013-0167-3.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Brandi G, Tavolari S. Asbestos and intrahepatic cholangiocarcinoma. Cells. 2020;9(2). https://doi.org/10.3390/cells9020421.

  98. Szendroi M, Nemeth L, Vajta G. Asbestos bodies in a bile duct cancer after occupational exposure. Environ Res. 1983;30(2):270–80. https://doi.org/10.1016/0013-9351(83)90213-x.

    Article  CAS  PubMed  Google Scholar 

  99. Ospina D, Villegas VE, Rodriguez-Leguizamon G, Rondon-Lagos M. Analyzing biological and molecular characteristics and genomic damage induced by exposure to asbestos. Cancer Manag Res. 2019;11:4997–5012. https://doi.org/10.2147/CMAR.S205723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kumagai S, Kurumatani N, Arimoto A, Ichihara G. Cholangiocarcinoma among offset colour proof-printing workers exposed to 1,2-dichloropropane and/or dichloromethane. Occup Environ Med. 2013;70(7):508–10. https://doi.org/10.1136/oemed-2012-101246.

    Article  CAS  PubMed  Google Scholar 

  101. Vlaanderen J, Straif K, Martinsen JI, Kauppinen T, Pukkala E, Sparen P, et al. Cholangiocarcinoma among workers in the printing industry: using the NOCCA database to elucidate the generalisability of a cluster report from Japan. Occup Environ Med. 2013;70(12):828–30. https://doi.org/10.1136/oemed-2013-101500.

    Article  PubMed  Google Scholar 

  102. Ali AH, Tabibian JH, Nasser-Ghodsi N, Lennon RJ, DeLeon T, Borad MJ, et al. Surveillance for hepatobiliary cancers in patients with primary sclerosing cholangitis. Hepatology. 2018;67(6):2338–51. https://doi.org/10.1002/hep.29730.

    Article  CAS  PubMed  Google Scholar 

  103. Siripongsakun S, Vidhyarkorn S, Charuswattanakul S, Mekraksakit P, Sungkasubun P, Yodkhunnathum N, et al. Ultrasound surveillance for cholangiocarcinoma in an endemic area: a prove of survival benefits. J Gastroenterol Hepatol. 2018;33(7):1383–8. https://doi.org/10.1111/jgh.14074.

    Article  CAS  PubMed  Google Scholar 

  104. Lapumnuaypol K, Tiu A, Thongprayoon C, Wijarnpreecha K, Ungprasert P, Mao MA, et al. Effects of aspirin and non-steroidal anti-inflammatory drugs on the risk of cholangiocarcinoma: a meta-analysis. QJM. 2019;112(6):421–7. https://doi.org/10.1093/qjmed/hcz039.

    Article  CAS  PubMed  Google Scholar 

  105. Boonmasawai S, Akarasereenont P, Techatraisak K, Thaworn A, Chotewuttakorn S, Palo T. Effects of selective COX-inhibitors and classical NSAIDs on endothelial cell proliferation and migration induced by human cholangiocarcinoma cell culture. J Med Assoc Thail. 2009;92(11):1508–15.

    Google Scholar 

  106. Elwood PC, Gallagher AM, Duthie GG, Mur LA, Morgan G. Aspirin, salicylates, and cancer. Lancet. 2009;373(9671):1301–9. https://doi.org/10.1016/S0140-6736(09)60243-9.

    Article  CAS  PubMed  Google Scholar 

  107. Wandee J, Prawan A, Senggunprai L, Kongpetch S, Kukongviriyapan V. Metformin sensitizes cholangiocarcinoma cell to cisplatin-induced cytotoxicity through oxidative stress mediated mitochondrial pathway. Life Sci. 2019;217:155–63. https://doi.org/10.1016/j.lfs.2018.12.007.

    Article  CAS  PubMed  Google Scholar 

  108. Saengboonmee C, Seubwai W, Cha’on U, Sawanyawisuth K, Wongkham S, Wongkham C. Metformin exerts antiproliferative and anti-metastatic effects against cholangiocarcinoma cells by targeting STAT3 and NF-kB. Anticancer Res. 2017;37(1):115–23. https://doi.org/10.21873/anticanres.11296.

    Article  CAS  PubMed  Google Scholar 

  109. Hu RW, Carey EJ, Lindor KD, Tabibian JH. Curcumin in hepatobiliary disease: pharmacotherapeutic properties and emerging potential clinical applications. Ann Hepatol. 2017;16(6):835–41. https://doi.org/10.5604/01.3001.0010.5273.

    Article  CAS  PubMed  Google Scholar 

  110. Jattujan P, Pinlaor S, Charoensuk L, Arunyanart C, Welbat JU, Chaijaroonkhanarak W. Curcumin prevents bile canalicular alterations in the liver of hamsters infected with Opisthorchis viverrini. Korean J Parasitol. 2013;51(6):695–701. https://doi.org/10.3347/kjp.2013.51.6.695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Pinlaor S, Prakobwong S, Hiraku Y, Pinlaor P, Laothong U, Yongvanit P. Reduction of periductal fibrosis in liver fluke-infected hamsters after long-term curcumin treatment. Eur J Pharmacol. 2010;638(1–3):134–41. https://doi.org/10.1016/j.ejphar.2010.04.018.

    Article  CAS  PubMed  Google Scholar 

  112. Prakobwong S, Khoontawad J, Yongvanit P, Pairojkul C, Hiraku Y, Sithithaworn P, et al. Curcumin decreases cholangiocarcinogenesis in hamsters by suppressing inflammation-mediated molecular events related to multistep carcinogenesis. Int J Cancer. 2011;129(1):88–100. https://doi.org/10.1002/ijc.25656.

    Article  CAS  PubMed  Google Scholar 

  113. Wahlstrom B, Blennow G. A study on the fate of curcumin in the rat. Acta Pharmacol Toxicol (Copenh). 1978;43(2):86–92. https://doi.org/10.1111/j.1600-0773.1978.tb02240.x.

    Article  CAS  Google Scholar 

  114. Liu W, Zhai Y, Heng X, Che FY, Chen W, Sun D, et al. Oral bioavailability of curcumin: problems and advancements. J Drug Target. 2016;24(8):694–702. https://doi.org/10.3109/1061186X.2016.1157883.

    Article  CAS  PubMed  Google Scholar 

  115. Marahatta SB, Punyarit P, Bhudisawasdi V, Paupairoj A, Wongkham S, Petmitr S. Polymorphism of glutathione S-transferase omega gene and risk of cancer. Cancer Lett. 2006;236(2):276–81. https://doi.org/10.1016/j.canlet.2005.05.020.

    Article  CAS  PubMed  Google Scholar 

  116. Chaiteerakij R, Juran BD, Aboelsoud MM, Harmsen WS, Moser CD, Giama NH, et al. Association between variants in inflammation and cancer-associated genes and risk and survival of cholangiocarcinoma. Cancer Med. 2015;4(10):1599–602. https://doi.org/10.1002/cam4.501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Honjo S, Srivatanakul P, Sriplung H, Kikukawa H, Hanai S, Uchida K, et al. Genetic and environmental determinants of risk for cholangiocarcinoma via Opisthorchis viverrini in a densely infested area in Nakhon Phanom, northeast Thailand. Int J Cancer. 2005;117(5):854–60. https://doi.org/10.1002/ijc.21146.

    Article  CAS  PubMed  Google Scholar 

  118. Songserm N, Promthet S, Sithithaworn P, Pientong C, Ekalaksananan T, Chopjitt P, et al. MTHFR polymorphisms and Opisthorchis viverrini infection: a relationship with increased susceptibility to cholangiocarcinoma in Thailand. Asian Pac J Cancer Prev. 2011;12(5):1341–5.

    PubMed  Google Scholar 

  119. Ko KH, Kim NK, Yim DJ, Hong SP, Park PW, Rim KS, et al. Polymorphisms of 5,10-methylenetetrahydrofolate reductase (MTHFR C677T) and thymidylate synthase enhancer region (TSER) as a risk factor of cholangiocarcinoma in a Korean population. Anticancer Res. 2006;26(6B):4229–33.

    CAS  PubMed  Google Scholar 

  120. Prawan A, Kukongviriyapan V, Tassaneeyakul W, Pairojkul C, Bhudhisawasdi V. Association between genetic polymorphisms of CYP1A2, arylamine N-acetyltransferase 1 and 2 and susceptibility to cholangiocarcinoma. Eur J Cancer Prev. 2005;14(3):245–50.

    Article  CAS  Google Scholar 

  121. You SH, Wang X, Huang S, Wang M, Ji GZ, Xia JR, et al. MYH rs3219476 and rs3219472 polymorphisms and risk of cholangiocarcinoma. Mol Med Rep. 2013;7(1):347–51. https://doi.org/10.3892/mmr.2012.1175.

    Article  CAS  PubMed  Google Scholar 

  122. Zeng L, You G, Tanaka H, Srivatanakul P, Ohta E, Viwatthanasittiphong C, et al. Combined effects of polymorphisms of DNA-repair protein genes and metabolic enzyme genes on the risk of cholangiocarcinoma. Jpn J Clin Oncol. 2013;43(12):1190–4. https://doi.org/10.1093/jjco/hyt138.

    Article  PubMed  Google Scholar 

  123. Huang WY, Gao YT, Rashid A, Sakoda LC, Deng J, Shen MC, et al. Selected base excision repair gene polymorphisms and susceptibility to biliary tract cancer and biliary stones: a population-based case-control study in China. Carcinogenesis. 2008;29(1):100–5. https://doi.org/10.1093/carcin/bgm247.

    Article  CAS  PubMed  Google Scholar 

  124. Melum E, Karlsen TH, Schrumpf E, Bergquist A, Thorsby E, Boberg KM, et al. Cholangiocarcinoma in primary sclerosing cholangitis is associated with NKG2D polymorphisms. Hepatology. 2008;47(1):90–6. https://doi.org/10.1002/hep.21964.

    Article  CAS  PubMed  Google Scholar 

  125. Wadsworth CA, Dixon PH, Taylor-Robinson S, Kim JU, Zabron AA, Wong JH, et al. Polymorphisms in natural killer cell receptor protein 2D (NKG2D) as a risk factor for cholangiocarcinoma. J Clin Exp Hepatol. 2019;9(2):171–5. https://doi.org/10.1016/j.jceh.2018.06.521.

    Article  PubMed  Google Scholar 

  126. Hoblinger A, Grunhage F, Sauerbruch T, Lammert F. Association of the c.3972C>T variant of the multidrug resistance-associated protein 2 Gene (MRP2/ABCC2) with susceptibility to bile duct cancer. Digestion. 2009;80(1):36–9. https://doi.org/10.1159/000212990.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roongruedee Chaiteerakij .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaiteerakij, R. (2021). Clinical Epidemiology of Cholangiocarcinoma. In: Tabibian, J.H. (eds) Diagnosis and Management of Cholangiocarcinoma. Springer, Cham. https://doi.org/10.1007/978-3-030-70936-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70936-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70935-8

  • Online ISBN: 978-3-030-70936-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics