Skip to main content

Natural Polymers-Based Biocomposites: State of Art, New Challenges, and Opportunities

  • Chapter
  • First Online:
Book cover Polymeric and Natural Composites

Part of the book series: Advances in Material Research and Technology ((AMRT))

Abstract

In the present scenario, in the development of the novel drug delivery system, the role of the natural polymer will be more preferential as compared to the other derivative. The biocompatible and biodegradable nature of the natural polymer is the aim of current research. Along with that natural polymer can be worked as a site-directed ligand that can specifically bind with the cell receptor and target the diseased cell/tissues. The role of different carbohydrates and protein-based natural polymers were incorporated in this chapter along with their physical, chemical, and biological properties. The role of these natural polymers in the pharmaceutical and biomedical applications also are incorporated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Visakh PM, Mathew AP, Thomas S (2013) Natural polymers: their blends, composites and nanocomposites: state of art, new challenges and opportunities. 18:1–20

    Google Scholar 

  2. Tong X, Pan W, Su T, Zhang M, Dong W, Qi X (2020) Recent advances in natural polymer-based drug delivery systems. React Funct Polym 148:104501

    Google Scholar 

  3. Nur M, Vasiljevic T (2017) Can natural polymers assist in delivering insulin orally? Int J Biol Macromol 103:889–901

    Article  Google Scholar 

  4. George A, Shah PA, Shrivastav PS (2019) Natural biodegradable polymers based nano-formulations for drug delivery: a review. Int J Pharm 561:244–264

    Article  Google Scholar 

  5. Ngwuluka NC, Ochekpe NA, Aruoma OI (2014) Naturapolyceutics: the science of utilizing natural polymers for drug delivery. Polymers 6(5):1312–1332

    Google Scholar 

  6. Mittal A, Garg S, Kohli D, Maiti M, Jana AK, Bajpai S (2016) Effect of cross linking of PVA/starch and reinforcement of modified barley husk on the properties of composite films. Carbohyd Polym 151:926–938

    Article  Google Scholar 

  7. García-Astrain C, González K, Gurrea T, Guaresti O, Algar I, Eceiza A et al (2016) Maleimide-grafted cellulose nanocrystals as cross-linkers for bionanocomposite hydrogels. Carbohyd Polym 149:94–101

    Article  Google Scholar 

  8. Koliada M, Ishchenko O, Plavan V, Bessarabov V (2018) Characterisation of electrospun fibers made of PVA or PVAc and collagen derivative. Fibres Text

    Google Scholar 

  9. Pestov A, Bratskaya S (2016) Chitosan and its derivatives as highly efficient polymer ligands. Molecules 21(3):330

    Article  Google Scholar 

  10. Sabra S, Abdelmoneem M, Abdelwakil M, Mabrouk MT, Anwar D, Mohamed R et al (2017) Self-assembled nanocarriers based on amphiphilic natural polymers for anti-cancer drug delivery applications. Curr Pharm Des 23(35):5213–5229

    Google Scholar 

  11. Raveendran S, Rochani AK, Maekawa T, Kumar DS (2017) Smart carriers and nanohealers: a nanomedical insight on natural polymers. Materials 10(8):929

    Article  Google Scholar 

  12. Katas H, Moden NZ, Lim CS, Celesistinus T, Chan JY, Ganasan P et al (2018) Biosynthesis and potential applications of silver and gold nanoparticles and their chitosan-based nanocomposites in nanomedicine. J Nanotechnol

    Google Scholar 

  13. Shariatinia Z (2019) Pharmaceutical applications of chitosan. Adv Coll Interface Sci 263:131–194

    Article  Google Scholar 

  14. Shokri J, Adibkia K (2013) Application of cellulose and cellulose derivatives in pharmaceutical industries. In: Cellulose-medical, pharmaceutical and electronic applications, 29 August 2013. IntechOpen

    Google Scholar 

  15. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126

    Article  Google Scholar 

  16. Szekalska M, Puciłowska A, Szymańska E, Ciosek P, Winnicka K (2016) Alginate: current use and future perspectives in pharmaceutical and biomedical applications. Int J Polym Sci

    Google Scholar 

  17. Mallik AK, Shahruzzaman M, Zaman A, Biswas S, Ahmed T, Sakib MN, Haque P, Rahman MM (2019) Fabrication of polysaccharide-based materials using ionic liquids and scope for biomedical use. In: Functional polysaccharides for biomedical applications, 1 January 2019. Woodhead Publishing, pp 131–171

    Google Scholar 

  18. Mudgil D, Barak S, Khatkar BS (2014) Guar gum: processing, properties and food applications—a review. J Food Sci Technol 51(3):409–418

    Article  Google Scholar 

  19. Sriamornsak P (2003) Chemistry of pectin and its pharmaceutical uses: a review. Silpakorn Univ Int J 3(1–2):206–228

    Google Scholar 

  20. Srivastava P, Malviya R (2011) Sources of pectin, extraction and its applications in pharmaceutical industry—an overview. 2(1):10–18

    Google Scholar 

  21. Huang G, Huang H (2018) Application of hyaluronic acid as carriers in drug delivery. Drug Deliv 25(1):766–772

    Article  MathSciNet  Google Scholar 

  22. Kalsoom Khan A, Saba AU, Nawazish S, Akhtar F, Rashid R, Mir S, Nasir B, Iqbal F, Afzal S, Pervaiz F, Murtaza G (2017) Carrageenan based bionanocomposites as drug delivery tool with special emphasis on the influence of ferromagnetic nanoparticles. Oxidative Med Cell Longevity 2017

    Google Scholar 

  23. Zhang Z, Ortiz O, Goyal R, Kohn J Chapter 23-biodegradable polymers A2-Lanza. In: Langer R, Vacanti J (eds) Robert in principles of tissue engineering

    Google Scholar 

  24. Lee CH, Singla A, Lee Y (2001) Biomedical applications of collagen. Int J Pharm 221(1–2):1–22

    Article  Google Scholar 

  25. Sleep D (2015) Albumin and its application in drug delivery. Expert Opin Drug Deliv 12(5):793–812

    Article  Google Scholar 

  26. Shitole M, Dugam S, Tade R, Nangare S (2020) Pharmaceutical applications of silk sericin. In: Annales pharmaceutiques francaises, 20 June 2020. Elsevier Masson

    Google Scholar 

  27. Islam S, Bhuiyan MR, Islam MN (2017) Chitin and chitosan: structure, properties and applications in biomedical engineering. J Polym Environ 25(3):854–866

    Article  Google Scholar 

  28. Park BK, Kim MM (2010) Applications of chitin and its derivatives in biological medicine. Int J Mol Sci 11(12):5152–5164

    Article  Google Scholar 

  29. Sung YK, Kim SW (2020) Recent advances in polymeric drug delivery systems. Biomater Res 24(1):1–12

    Article  Google Scholar 

  30. Massoudinejad M, Rasoulzadeh H, Ghaderpoori M (2019) Magnetic chitosan nanocomposite: fabrication, properties, and optimization for adsorptive removal of crystal violet from aqueous solutions. Carbohyd Polym 206:844–853

    Article  Google Scholar 

  31. Hu X, Goud KY, Kumar VS, Catanante G, Li Z, Zhu Z et al (2018) Disposable electrochemical aptasensor based on carbon nanotubes-V2O5-chitosan nanocomposite for detection of ciprofloxacin. Sens Actuators B Chem 268:278–286

    Article  Google Scholar 

  32. Cardoso MJ, Costa RR, Mano JF (2016) Marine origin polysaccharides in drug delivery systems. Marine Drugs 14(2):34

    Article  Google Scholar 

  33. Lopes M, Abrahim B, Veiga F, Seiça R, Cabral LM, Arnaud P et al (2017) Preparation methods and applications behind alginate-based particles. Exp Opin Drug Deliv 14(6):769–782

    Article  Google Scholar 

  34. Auriemma G, Cerciello A, Sansone F, Pinto A, Morello S, Aquino RP (2018) Polysaccharides based gastroretentive system to sustain piroxicam release: development and in vivo prolonged anti-inflammatory effect. Int J Biol Macromol 120:2303–2312

    Article  Google Scholar 

  35. Ilgin P, Ozay H, Ozay O (2020) Synthesis and characterization of pH responsive alginate based-hydrogels as oral drug delivery carrier. J Polym Res 27(9):1–11

    Article  Google Scholar 

  36. Du H, Liu W, Zhang M, Si C, Zhang X, Li B (2019) Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohyd Polym 209:130–144

    Article  Google Scholar 

  37. Shao C, Wang M, Meng L, Chang H, Wang B, Xu F et al (2018) Mussel-inspired cellulose nanocomposite tough hydrogels with synergistic self-healing, adhesive, and strain-sensitive properties. Chem Mater 30(9):3110–3121

    Article  Google Scholar 

  38. Shi X, Wang Y, Sun H, Chen Y, Zhang X, Xu J et al (2019) Heparin-reduced graphene oxide nanocomposites for curcumin delivery: in vitro, in vivo and molecular dynamics simulation study. Biomater Sci 7(3):1011–1027

    Article  Google Scholar 

  39. Ataei B, Khorasani MT, Karimi M, Daliri-Joupari M Plasma modification of heparinised CNT/PU nanocomposite and measuring of mechanical, calcification and platelet adhesion properties for application in heart valve. Plast Rubber Compos 2020:1–11

    Google Scholar 

  40. Makvandi P, Ali GW, Della Sala F, Abdel-Fattah WI, Borzacchiello A (2020) Hyaluronic acid/corn silk extract based injectable nanocomposite: a biomimetic antibacterial scaffold for bone tissue regeneration. Mater Sci Eng C 107:110195.

    Google Scholar 

  41. Gupta RC, Lall R, Srivastava A, Sinha A (2019) Hyaluronic acid: molecular mechanisms and therapeutic trajectory. Frontiers Vet Sci 6:192

    Article  Google Scholar 

  42. Pandey A, Kulkarni S, Vincent AP, Nannuri SH, George SD, Mutalik S. Hyaluronic acid-drug conjugate modified core-shell MOFs as pH responsive nanoplatform for multimodal therapy of glioblastoma. Int J Pharm 119735

    Google Scholar 

  43. Faccendini A, Ruggeri M, Miele D, Rossi S, Bonferoni MC, Aguzzi C, Grisoli P, Viseras C, Vigani B, Sandri G, Ferrari F (2020) Norfloxacin-loaded electrospun scaffolds: montmorillonite nanocomposite versus free drug. Pharmaceutics 12(4):325

    Google Scholar 

  44. Gao L, Zhang L, Zhu X, Chen J, Zhao M, Li S, Yu C, Hu L, Qiao H, Guo Z (2020) Hyaluronic acid functionalized gold nanorods combined with copper-based therapeutic agents for chemo-photothermal cancer therapy. J Mater Chem B

    Google Scholar 

  45. Rhim JW, Wang LF (2014) Preparation and characterization of carrageenan-based nanocomposite films reinforced with clay mineral and silver nanoparticles. Appl Clay Sci 1(97):174–181

    Article  Google Scholar 

  46. Tavakoli S, Kharaziha M, Nemati S, Kalateh A (2020) Nanocomposite hydrogel based on carrageenan-coated starch/cellulose nanofibers as a hemorrhage control material. Carbohydr Polym 117013

    Google Scholar 

  47. Polat TG, Duman O, Tunç S (2020) Preparation and characterization of environmentally friendly agar/κ-carrageenan/montmorillonite nanocomposite hydrogels. Colloids Surf A Physicochem Eng Aspects 124987

    Google Scholar 

  48. Wang SY, Meng YJ, Li J, Liu JP, Liu ZQ, Li DQ (2020) A novel and simple oral colon-specific drug delivery system based on the pectin/modified nano-carbon sphere nanocomposite gel films. Int J Biol Macromol

    Google Scholar 

  49. Ezati P, Rhim JW (2020) pH-responsive pectin-based multifunctional films incorporated with curcumin and sulfur nanoparticles. Carbohydr Polym 230:115638

    Google Scholar 

  50. Mellinas C, Ramos M, Jiménez A, Garrigós MC (2020) Recent trends in the use of pectin from agro-waste residues as a natural-based biopolymer for food packaging applications. Materials 13(3):673

    Google Scholar 

  51. Palem RR, Shimoga G, Rao KK, Lee SH, Kang TJ (2020) Guar gum graft polymer-based silver nanocomposite hydrogels: synthesis, characterization and its biomedical applications. J Polym Res 27(3):1–20

    Article  Google Scholar 

  52. Pathania D, Katwal R, Sharma G, Naushad M, Khan MR, Ala’a H. Novel guar gum/Al2O3 nanocomposite as an effective photocatalyst for the degradation of malachite green dye. Int J Biol Macromol 87:366–74

    Google Scholar 

  53. DeFrates K, Markiewicz T, Gallo P, Rack A, Weyhmiller A, Jarmusik B, Hu X (2018) Protein polymer-based nanoparticles: fabrication and medical applications. Int J Mol Sci 19(6):1717

    Article  Google Scholar 

  54. Tarhini M, Greige-Gerges H, Elaissari A (2017) Protein-based nanoparticles: from preparation to encapsulation of active molecules. Int J Pharm 522(1–2):172–197

    Article  Google Scholar 

  55. Jao D, Xue Y, Medina J, Hu X (2017) Protein-based drug-delivery materials. Materials 10(5):517

    Google Scholar 

  56. Lai LF, Guo HX (2011) Preparation of new 5-fluorouracil-loaded zein nanoparticles for liver targeting. Int J Pharm 404(1–2):317–323

    Article  Google Scholar 

  57. Lee S, Alwahab NS, Moazzam ZM (2013) Zein-based oral drug delivery system targeting activated macrophages. Int J Pharm 454(1):388–393

    Article  Google Scholar 

  58. Luo Y, Teng Z, Wang Q (2012) Development of zein nanoparticles coated with carboxymethyl chitosan for encapsulation and controlled release of vitamin D3. J Agric Food Chem 60(3):836–843

    Google Scholar 

  59. Xu H, Jiang Q, Reddy N, Yang Y (2011) Hollow nanoparticles from zein for potential medical applications. J Mater Chem 21(45):18227–18235

    Article  Google Scholar 

  60. Gautam L, Sharma R, Shrivastava P, Vyas S, Vyas SP (2020) Development and characterization of biocompatible mannose functionalized mesospheres: an effective chemotherapeutic approach for lung cancer targeting. AAPS PharmSciTech 21(5):1–3

    Google Scholar 

  61. Das PR, Nanda RM, Behara A, Nayak PL (2011) Gelatin blended with nanoparticle cloisite30B (MMT) for control drug delivery of anticancer drug paclitaxel. Int Res J Biochem Bioinform 1:35–42

    Google Scholar 

  62. Zwiorek K, Kloeckner J, Wagner E, Coester C (2004) Gelatin nanoparticles as a new and simple gene delivery system. J Pharm Pharm Sci 7(4):22–28

    Google Scholar 

  63. Sionkowska A (2011) Current research on the blends of natural and synthetic polymers as new biomaterials. Prog Polym Sci 36(9):1254–1276

    Article  Google Scholar 

  64. Thanikaivelan P, Narayanan NT, Pradhan BK, Ajayan PM (2012) Collagen based magnetic nanocomposites for oil removal applications. Sci Rep 20(2):230

    Google Scholar 

  65. Zhang S, Huang D, Lin H, Xiao Y, Zhang X (2020) Cellulose nanocrystal reinforced collagen-based nanocomposite hydrogel with self-healing and stress-relaxation properties for cell delivery. Biomacromol 21(6):2400–2408

    Google Scholar 

  66. Li C, Wang X, Song H, Deng S, Li W, Li J, Sun J (2020) Current multifunctional albumin-based nanoplatforms for cancer multi-mode therapy. Asian J Pharm Sci 15(1):1–2

    Article  Google Scholar 

  67. Xu K, Zhao Z, Zhang J, Xue W, Tong H, Liu H, Zhang W (2020) Albumin-stabilized manganese-based nanocomposites with sensitive tumor microenvironment responsivity and their application for efficient SiRNA delivery in brain tumors. J Mater Chem B 8(7):1507–1515

    Google Scholar 

  68. Zhao W, Chen L, Wang Z, Huang Y, Jia N (2018) An albumin-based gold nanocomposites as potential dual mode CT/MRI contrast agent. J Nanopart Res 20(2):40

    Article  Google Scholar 

  69. Vepari C, Kaplan DL (2007) Silk as a biomaterial. Prog Polym Sci 32(8–9):991–1007

    Article  Google Scholar 

  70. Kishimoto Y, Ito F, Usami H, Togawa E, Tsukada M, Morikawa H, Yamanaka S (2013) Nanocomposite of silk fibroin nanofiber and montmorillonite: fabrication and morphology. Int J Biol Macromol 1(57):124–128

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Indian Council of Medical Research (ICMR, New Delhi), India (Grant Number: For Laxmikant Gautam 45/16/2018-Nan/BMS, dated 11/05/2018, Anamika Jain 45/38/2018-PHA/BMS, dated 24/07/2018) and Department of Science and Technology (DST, New Delhi), India (Grant Number: For Priya Shrivastava DST/INSPIRE Fellowship 2017/ IF170447, dated 01/16/2018).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gautam, L., Jain, A., Shrivastava, P., Vyas, S., Vyas, S.P. (2022). Natural Polymers-Based Biocomposites: State of Art, New Challenges, and Opportunities. In: Hasnain, M.S., Nayak, A.K., Alkahtani, S. (eds) Polymeric and Natural Composites. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-70266-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70266-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70265-6

  • Online ISBN: 978-3-030-70266-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics