Skip to main content

Molecular Genetics in the Next Generation Sequencing Era

  • Chapter
  • First Online:
Mitochondrial Diseases
  • 748 Accesses

Abstract

The increasingly pervasive adoption of Next Generation Sequencing (NGS) technologies is causing a revolution in biomedical research and, particularly, is transforming health care. This flood of data has had an enormous impact on the discovery biomarkers for diagnosis, prognosis and treatment recommendation. However, the enormous generation of data produced by NGS needs of new methodologies and new strategies to deal with them and to properly interpreting the derived findings. Actually, it has soon be apparent that the concept of biomarker has a limited utility in pathologies or scenarios other than highly penetrant inherited diseases. Approaches to interpret the genetic variation in complex diseases need to take into account the complex system nature of the relationships of the proteins that conforms the mechanism of the disease. Systems biology offers a framework to understand the extensive human genetic heterogeneity revealed by genomic sequencing in the context of complex the network of functional, regulatory and physical interactions Consequently, modeling and computational data analysis will play an increasingly important role in drug discovery along with new emerging applications of Artificial Intelligence in medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://tcga-data.nci.nih.gov/docs/publications/tcga/

  2. 2.

    http://exac.broadinstitute.org/

  3. 3.

    http://www.bbc.com/news/health-25216135

  4. 4.

    http://news.sciencemag.org/biology/2015/01/white-house-fleshes-out-obama-s-215-million-plan-precision-medicine

  5. 5.

    https://ec.europa.eu/digital-single-market/en/news/eu-countries-will-cooperate-linking-genomic-databases-across-borders

  6. 6.

    https://www.ensembl.org/info/genome/variation/prediction/predicted_data.html

References

  • Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491(7422):56–65. https://doi.org/10.1038/nature11632

    Article  CAS  PubMed  Google Scholar 

  • Aleman A, Garcia-Garcia F, Medina I, Dopazo J (2014a) A web tool for the design and management of panels of genes for targeted enrichment and massive sequencing for clinical applications. Nucleic Acid Res 42(Web Server Issue):W83–W87. https://doi.org/10.1093/nar/gku472

  • Aleman A, Garcia-Garcia F, Salavert F, Medina I, Dopazo J (2014b) A web-based interactive framework to assist in the prioritization of disease candidate genes in whole-exome sequencing studies. Nucleic Acid Res 42(Web Server Issue):W88–W93. https://doi.org/10.1093/nar/gku407

  • Amadoz A, Sebastian-Leon P, Vidal E, Salavert F, Dopazo J (2015) Using activation status of signaling pathways as mechanism-based biomarkers to predict drug sensitivity. Sci Rep 5:18494. https://doi.org/10.1038/srep18494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amadoz A, Hidalgo M, Cubuk C, Carbonell-Caballero J, Dopazo J (2018) A comparison of mechanistic signaling pathway activity analysis methods. Brief Bioinform 20(5):1655–1668. https://doi.org/10.1093/bib/bby040

  • Angermueller C, Pärnamaa T, Parts L, Stegle O (2016) Deep learning for computational biology. Mol Syst Biol 12(7):878

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25(1):25–29. https://doi.org/10.1038/75556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auffray C, Chen Z, Hood L (2009) Systems medicine: the future of medical genomics and healthcare. Genome Med 1(1):2. https://doi.org/10.1186/gm2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA, Shendure J (2011) Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet 12(11):745–755. https://doi.org/10.1038/nrg3031

    Article  CAS  PubMed  Google Scholar 

  • Barabasi AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12(1):56–68. https://doi.org/10.1038/nrg2918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaulieu Chandree L, Majewski J, Schwartzentruber J, Samuels Mark E, Fernandez Bridget A, Bernier Francois P, Brudno M, Knoppers B, Marcadier J, Dyment D, Adam S, Bulman Dennis E, Jones Steve JM, Avard D, Nguyen Minh T, Rousseau F, Marshall C, Wintle Richard F, Shen Y, Scherer Stephen W, Friedman Jan M, Michaud Jacques L, Boycott Kym M (2014) FORGE Canada consortium: outcomes of a 2-year national rare-disease gene-discovery project. Am J Hum Genet 94(6):809–817. https://doi.org/10.1016/j.ajhg.2014.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bick D, Fraser PC, Gutzeit MF, Harris JM, Hambuch TM, Helbling DC, Jacob HJ, Kersten JN, Leuthner SR, May T (2017) Successful application of whole genome sequencing in a medical genetics clinic. J Pediatr Genet 6(02):061–076

    CAS  Google Scholar 

  • Bleda M, Tarraga J, de Maria A, Salavert F, Garcia-Alonso L, Celma M, Martin A, Dopazo J, Medina I (2012) CellBase, a comprehensive collection of RESTful web services for retrieving relevant biological information from heterogeneous sources. Nucleic Acids Res 40(Web Server Issue):W609–W614. https://doi.org/10.1093/nar/gks575

  • Boycott KM, Vanstone MR, Bulman DE, MacKenzie AE (2013) Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat Rev Genet 14(10):681–691

    Article  CAS  PubMed  Google Scholar 

  • Boycott KM, Rath A, Chong JX, Hartley T, Alkuraya FS, Baynam G, Brookes AJ, Brudno M, Carracedo A, den Dunnen JT, Dyke SOM, Estivill X, Goldblatt J, Gonthier C, Groft SC, Gut I, Hamosh A, Hieter P, Höhn S, Hurles ME, Kaufmann P, Knoppers BM, Krischer JP, Macek J, Milan, Matthijs G, Olry A, Parker S, Paschall J, Philippakis AA, Rehm HL, Robinson PN, Sham P-C, Stefanov R, Taruscio D, Unni D, Vanstone MR, Zhang F, Brunner H, Bamshad MJ, Lochmüller H (2017) International cooperation to enable the diagnosis of all rare genetic diseases. Am J Hum Genet 100(5):695–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boycott KM, Hartley T, Biesecker LG, Gibbs RA, Innes AM, Riess O, Belmont J, Dunwoodie SL, Jojic N, Lassmann T, Mackay D, Temple K, Visel A, Baynam G (2019) A diagnosis for all rare genetic diseases: the horizon and the next frontiers. Cell 177(1):32–37

    Article  CAS  PubMed  Google Scholar 

  • Carbonell J, Alloza E, Arce P, Borrego S, Santoyo J, Ruiz-Ferrer M, Medina I, Jimenez-Almazan J, Mendez-Vidal C, Gonzalez-Del Pozo M, Vela A, Bhattacharya SS, Antinolo G, Dopazo J (2012) A map of human microRNA variation uncovers unexpectedly high levels of variability. Genome Med 4(8):62. https://doi.org/10.1186/gm363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chacón-Solano E, León C, Díaz F, García-García F, García M, Escámez M, Guerrero-Aspizua S, Conti C, Mencía Á, Martínez-Santamaría L (2019) Fibroblasts activation and abnormal extracellular matrix remodelling as common hallmarks in three cancer-prone genodermatoses. J Br J Dermatol 181(3):512–522. https://doi.org/10.1111/bjd.17698

  • Clark MM, Stark Z, Farnaes L, Tan TY, White SM, Dimmock D, Kingsmore SF (2018) Meta-analysis of the diagnostic and clinical utility of genome and exome sequencing and chromosomal microarray in children with suspected genetic diseases. NPJ Genom Med 3:1–10

    Google Scholar 

  • Clarke J, Wu H-C, Jayasinghe L, Patel A, Reid S, Bayley H (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4(4):265

    Article  CAS  PubMed  Google Scholar 

  • Cooper GM, Shendure J (2011) Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data. Nat Rev Genet 12(9):628–640. https://doi.org/10.1038/nrg3046

    Article  CAS  PubMed  Google Scholar 

  • Cubuk C, Hidalgo MR, Amadoz A, Pujana MA, Mateo F, Herranz C, Carbonell-Caballero J, Dopazo J (2018a) Gene expression integration into pathway modules reveals a pan-cancer metabolic landscape. Cancer Res 78(21):6059–6072

    Article  CAS  PubMed  Google Scholar 

  • Cubuk C, Hidalgo MR, Amadoz A, Rian K, Salavert F, Pujana MA, Mateo F, Herranz C, Caballero JC, Dopazo J (2018b) Differential metabolic activity and discovery of therapeutic targets using summarized metabolic pathway models. bioRxiv:367334

    Google Scholar 

  • Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A, Batzoglou S (2010) Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLoS Comput Biol 6(12):e1001025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Desvignes J-P, Bartoli M, Delague V, Krahn M, Miltgen M, Béroud C, Salgado D (2018) VarAFT: a variant annotation and filtration system for human next generation sequencing data. Nucleic Acids Res 46(W1):W545–W553. https://doi.org/10.1093/nar/gky471

  • Dopazo J (2014) Genomics and transcriptomics in drug discovery. Drug Discov Today 19(2):126–132. https://doi.org/10.1016/j.drudis.2013.06.003

    Article  CAS  PubMed  Google Scholar 

  • Dopazo J, Amadoz A, Bleda M, Garcia-Alonso L, Aleman A, Garcia-Garcia F, Rodriguez JA, Daub JT, Muntane G, Rueda A, Vela-Boza A, Lopez-Domingo FJ, Florido JP, Arce P, Ruiz-Ferrer M, Mendez-Vidal C, Arnold TE, Spleiss O, Alvarez-Tejado M, Navarro A, Bhattacharya SS, Borrego S, Santoyo-Lopez J, Antinolo G (2016) 267 Spanish exomes reveal population-specific differences in disease-related genetic variation. Mol Biol Evol. https://doi.org/10.1093/molbev/msw005

  • Durbin RM, Abecasis GR, Altshuler DL, Auton A, Brooks LD, Gibbs RA, Hurles ME, McVean GA (2010) A map of human genome variation from population-scale sequencing. Nature 467(7319):1061–1073. https://doi.org/10.1038/nature09534

    Article  CAS  PubMed  Google Scholar 

  • Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B (2009) Real-time DNA sequencing from single polymerase molecules. Science 323(5910):133–138

    Article  CAS  PubMed  Google Scholar 

  • Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, Haw R, Jassal B, Korninger F, May B (2017) The reactome pathway knowledgebase. Nucleic Acids Res 46(D1):D649–D655

    Article  PubMed Central  CAS  Google Scholar 

  • Ferreira PG, Muñoz-Aguirre M, Reverter F, Godinho CPS, Sousa A, Amadoz A, Sodaei R, Hidalgo MR, Pervouchine D, Carbonell-Caballero J (2018) The effects of death and post-mortem cold ischemia on human tissue transcriptomes. Nat Commun 9(1):490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fey D, Halasz M, Dreidax D, Kennedy SP, Hastings JF, Rauch N, Munoz AG, Pilkington R, Fischer M, Westermann F, Kolch W, Kholodenko BN, Croucher DR (2015) Signaling pathway models as biomarkers: patient-specific simulations of JNK activity predict the survival of neuroblastoma patients. Sci Signal 8(408):ra130. https://doi.org/10.1126/scisignal.aab0990

  • Fonseca NA, Rung J, Brazma A, Marioni JC (2012) Tools for mapping high-throughput sequencing data. Bioinformatics 28(24):3169–3177. https://doi.org/10.1093/bioinformatics/bts605

    Article  CAS  PubMed  Google Scholar 

  • Fryburg DA, Song DH, Laifenfeld D, de Graaf D (2014) Systems diagnostics: anticipating the next generation of diagnostic tests based on mechanistic insight into disease. Drug Discov Today 19(2):108–112. https://doi.org/10.1016/j.drudis.2013.07.006

    Article  PubMed  Google Scholar 

  • Garber M, Grabherr MG, Guttman M, Trapnell C (2011) Computational methods for transcriptome annotation and quantification using RNA-seq. Nat Methods 8(6):469–477. https://doi.org/10.1038/nmeth.1613

    Article  CAS  PubMed  Google Scholar 

  • Garraway LA, Lander ES (2013) Lessons from the cancer genome. Cell 153(1):17–37. https://doi.org/10.1016/j.cell.2013.03.002

    Article  CAS  PubMed  Google Scholar 

  • Gómez-López G, Dopazo J, Cigudosa JC, Valencia A, Al-Shahrour F (2017) Precision medicine needs pioneering clinical bioinformaticians. Brief Bioinform 20(3):752–766. https://doi.org/10.1093/bib/bbx144

  • Goodwin S, McPherson JD, McCombie WR (2016a) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17(6):333

    Article  CAS  PubMed  Google Scholar 

  • Goodwin S, McPherson JD, McCombie WR (2016b) Coming of age: ten years of next-generation sequencing technologies. Nat Review Genet 17(6):333

    Article  CAS  Google Scholar 

  • Gustafsson M, Nestor CE, Zhang H, Barabási A-L, Baranzini S, Brunak S, Chung KF, Federoff HJ, Gavin A-C, Meehan RR, Picotti P, Pujana MÁ, Rajewsky N, Smith KGC, Sterk PJ, Villoslada P, Benson M (2014) Modules, networks and systems medicine for understanding disease and aiding diagnosis. Genome Med 6(10):82. https://doi.org/10.1186/s13073-014-0082-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Hidalgo MR, Cubuk C, Amadoz A, Salavert F, Carbonell-Caballero J, Dopazo J (2017) High throughput estimation of functional cell activities reveals disease mechanisms and predicts relevant clinical outcomes. Oncotarget 8(3):5160–5178. https://doi.org/10.18632/oncotarget.14107

    Article  PubMed  Google Scholar 

  • Hidalgo MR, Amadoz A, Çubuk C, Carbonell-Caballero J, Dopazo J (2018) Models of cell signaling uncover molecular mechanisms of high-risk neuroblastoma and predict disease outcome. Biol Direct 13(1):16. https://doi.org/10.1186/s13062-018-0219-4

  • Holub P, Kohlmayer F, Prasser F, Mayrhofer MT, Schlünder I, Martin GM, Casati S, Koumakis L, Wutte A, Kozera Ł, Strapagiel D, Anton G, Zanetti G, Sezerman OU, Mendy M, Valík D, Lavitrano M, Dagher G, Zatloukal K, van Ommen GB, Litton J-E (2018) Enhancing reuse of data and biological material in medical research: from FAIR to FAIR-health. Biopreserv Biobank 16(2):97–105

    Article  PubMed  PubMed Central  Google Scholar 

  • Hood L, Heath JR, Phelps ME, Lin B (2004) Systems biology and new technologies enable predictive and preventative medicine. Science 306(5696):640–643. https://doi.org/10.1126/science.1104635

    Article  CAS  PubMed  Google Scholar 

  • Jiao Y, Hidalgo MR, Cubuk C, Amadoz A, Carbonell-Caballero J, Vert J-P, Dopazo J (2017) Signaling pathway activities improve prognosis for breast cancer. bioRxiv:132357

    Google Scholar 

  • Kalia SS, Adelman K, Bale SJ, Chung WK, Eng C, Evans JP, Herman GE, Hufnagel SB, Klein TE, Korf BR, McKelvey KD, Ormond KE, Richards CS, Vlangos CN, Watson M, Martin CL, Miller DT (2017) Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2. 0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med 19(2):249

    Article  PubMed  Google Scholar 

  • Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2016) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45(D1):D353–D361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karczewski KJ, Weisburd B, Thomas B, Solomonson M, Ruderfer DM, Kavanagh D, Hamamsy T, Lek M, Samocha KE, Cummings BB, Birnbaum D, The Exome Aggregation Consortium, Daly MJ, DG MA (2016) The ExAC browser: displaying reference data information from over 60 000 exomes. Nucleic Acids Res 45(D1):D840–D845. https://doi.org/10.1093/nar/gkw971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kingsmore SF, Petrikin J, Willig LK, Guest E (2015) Emergency medical genomes: a breakthrough application of precision medicine. Genome Med 7(1):82

    Article  PubMed  PubMed Central  Google Scholar 

  • Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J (2014) A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 46(3):310–315. https://doi.org/10.1038/ng.2892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Köhler S, Schulz MH, Krawitz P, Bauer S, Dölken S, Ott CE, Mundlos C, Horn D, Mundlos S, Robinson PN (2009) Clinical diagnostics in human genetics with semantic similarity searches in ontologies. Am J Hum Genet 85(4):457–464. https://doi.org/10.1016/j.ajhg.2009.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Köhler S, Doelken SC, Mungall CJ, Bauer S, Firth HV, Bailleul-Forestier I, Black GCM, Brown DL, Brudno M, Campbell J, FitzPatrick DR, Eppig JT, Jackson AP, Freson K, Girdea M, Helbig I, Hurst JA, Jähn J, Jackson LG, Kelly AM, Ledbetter DH, Mansour S, Martin CL, Moss C, Mumford A, Ouwehand WH, Park S-M, Riggs ER, Scott RH, Sisodiya S, Vooren SV, Wapner RJ, Wilkie AOM, Wright CF, Vulto-van Silfhout AT, Nd L, de Vries BBA, Washingthon NL, Smith CL, Westerfield M, Schofield P, Ruef BJ, Gkoutos GV, Haendel M, Smedley D, Lewis SE, Robinson PN (2013) The human phenotype ontology project: linking molecular biology and disease through phenotype data. Nucleic Acids Res 42(D1):D966–D974. https://doi.org/10.1093/nar/gkt1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolch W, Kholodenko BN (2013) Systems medicine: opportunities and challenges for systems biology approaches. FEBS J 280(23):5937–5937

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4(7):1073–1081. https://doi.org/10.1038/nprot.2009.86

    Article  CAS  PubMed  Google Scholar 

  • Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM, Maglott DR (2014) ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res 42(1):D980–D985. https://doi.org/10.1093/nar/gkt1113

    Article  CAS  PubMed  Google Scholar 

  • Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, Gu B, Hart J, Hoffman D, Jang W (2017) ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res 46(D1):D1062–D1067

    Article  PubMed Central  CAS  Google Scholar 

  • Lazaridis KN, Mcallister TM, Babovic-Vuksanovic D, Beck SA, Borad MJ, Bryce AH, Chanan-Khan AA, Ferber MJ, Fonseca R, Johnson KJ (2014) Implementing individualized medicine into the medical practice. Am J Med Genet Part C Sem Med Genet 1:15–23. Wiley Online Library

    Google Scholar 

  • Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O’Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB, Tukiainen T, Birnbaum DP, Kosmicki JA, Duncan LE, Estrada K, Zhao F, Zou J, Pierce-Hoffman E, Berghout J, Cooper DN, Deflaux N, DePristo M, Do R, Flannick J, Fromer M, Gauthier L, Goldstein J, Gupta N, Howrigan D, Kiezun A, Kurki MI, Moonshine AL, Natarajan P, Orozco L, Peloso GM, Poplin R, Rivas MA, Ruano-Rubio V, Rose SA, Ruderfer DM, Shakir K, Stenson PD, Stevens C, Thomas BP, Tiao G, Tusie-Luna MT, Weisburd B, Won H-H, Yu D, Altshuler DM, Ardissino D, Boehnke M, Danesh J, Donnelly S, Elosua R, Florez JC, Gabriel SB, Getz G, Glatt SJ, Hultman CM, Kathiresan S, Laakso M, McCarroll S, McCarthy MI, McGovern D, McPherson R, Neale BM, Palotie A, Purcell SM, Saleheen D, Scharf JM, Sklar P, Sullivan PF, Tuomilehto J, Tsuang MT, Watkins HC, Wilson JG, Daly MJ, MacArthur DG, Exome Aggregation C (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285. https://doi.org/10.1038/nature19057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Chen W, Zhan X, Busonero F, Sanna S, Sidore C, Cucca F, Kang HM, Abecasis GR (2012) A likelihood-based framework for variant calling and de novo mutation detection in families. PLoS Genet 8(10):e1002944. https://doi.org/10.1371/journal.pgen.1002944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lionel AC, Costain G, Monfared N, Walker S, Reuter MS, Hosseini SM, Thiruvahindrapuram B, Merico D, Jobling R, Nalpathamkalam T, Pellecchia G, Sung WWL, Wang Z, Bikangaga P, Boelman C, Carter MT, Cordeiro D, Cytrynbaum C, Dell SD, Dhir P, Dowling JJ, Heon E, Hewson S, Hiraki L, Inbar-Feigenberg M, Klatt R, Kronick J, Laxer RM, Licht C, MacDonald H, Mercimek-Andrews S, Mendoza-Londono R, Piscione T, Schneider R, Schulze A, Silverman E, Siriwardena K, Snead OC, Sondheimer N, Sutherland J, Vincent A, Wasserman JD, Weksberg R, Shuman C, Carew C, Szego MJ, Hayeems RZ, Basran R, Stavropoulos DJ, Ray PN, Bowdin S, Meyn MS, Cohn RD, Scherer SW, Marshall CR (2017) Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test. Genet Med 20:435. https://doi.org/10.1038/gim.2017.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacArthur DG, Tyler-Smith C (2010) Loss-of-function variants in the genomes of healthy humans. Hum Mol Genet 19(R2):R125–R130. https://doi.org/10.1093/hmg/ddq365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TF, McCarroll SA, Visscher PM (2009) Finding the missing heritability of complex diseases. Nature 461(7265):747–753. https://doi.org/10.1038/nature08494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mardis ER (2017) DNA sequencing technologies: 2006–2016. Nat Protoc 12(2):213

    Article  CAS  PubMed  Google Scholar 

  • McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, Flicek P, Cunningham F (2016) The ensembl variant effect predictor. Genome Biol 17(1):122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McLaughlin HM, Ceyhan-Birsoy O, Christensen KD, Kohane IS, Krier J, Lane WJ, Lautenbach D, Lebo MS, Machini K, MacRae CA (2014) A systematic approach to the reporting of medically relevant findings from whole genome sequencing. BMC Med Genet 15(1):134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miller NA, Farrow EG, Gibson M, Willig LK, Twist G, Yoo B, Marrs T, Corder S, Krivohlavek L, Walter A, Petrikin JE, Saunders CJ, Thiffault I, Soden SE, Smith LD, Dinwiddie DL, Herd S, Cakici JA, Catreux S, Ruehle M, Kingsmore SF (2015) A 26-hour system of highly sensitive whole genome sequencing for emergency management of genetic diseases. Genome Med 7(1):100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Min S, Lee B, Yoon S (2017) Deep learning in bioinformatics. Brief Bioinform 18(5):851–869

    PubMed  Google Scholar 

  • Miotto R, Wang F, Wang S, Jiang X, Dudley JT (2017) Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform

    Google Scholar 

  • Moreau Y, Tranchevent LC (2012) Computational tools for prioritizing candidate genes: boosting disease gene discovery. Nat Rev Genet 13(8):523–536. https://doi.org/10.1038/nrg3253

    Article  CAS  PubMed  Google Scholar 

  • Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, Dent KM, Huff CD, Shannon PT, Jabs EW, Nickerson DA, Shendure J, Bamshad MJ (2010) Exome sequencing identifies the cause of a mendelian disorder. Nat Genet 42(1):30–35. https://doi.org/10.1038/ng.499

    Article  CAS  PubMed  Google Scholar 

  • Oti M, Brunner HG (2007) The modular nature of genetic diseases. Clin Genet 71(1):1–11. https://doi.org/10.1111/j.1399-0004.2006.00708.x

    Article  CAS  PubMed  Google Scholar 

  • Peng G, Fan Y, Palculict TB, Shen P, Ruteshouser EC, Chi AK, Davis RW, Huff V, Scharfe C, Wang W (2013) Rare variant detection using family-based sequencing analysis. Proc Natl Acad Sci U S A 110(10):3985–3990. https://doi.org/10.1073/pnas.1222158110

    Article  PubMed  PubMed Central  Google Scholar 

  • Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A (2010) Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res 20(1):110–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramensky V, Bork P, Sunyaev S (2002) Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30(17):3894–3900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Razzoli M, Frontini A, Gurney A, Mondini E, Cubuk C, Katz LS, Cero C, Bolan PJ, Dopazo J, Vidal-Puig A (2016) Stress-induced activation of brown adipose tissue prevents obesity in conditions of low adaptive thermogenesis. Mol Metab 5(1):19–33

    Article  CAS  PubMed  Google Scholar 

  • Rehm HL (2013) Disease-targeted sequencing: a cornerstone in the clinic. Nat Rev Genet 14(4):295–300. https://doi.org/10.1038/nrg3463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salavert F, Hidalgo MR, Amadoz A, Cubuk C, Medina I, Crespo D, Carbonell-Caballero J, Dopazo J (2016) Actionable pathways: interactive discovery of therapeutic targets using signaling pathway models. Nucleic Acids Res 44(W1):W212–W216. https://doi.org/10.1093/nar/gkw369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salmon LB, Orenstein N, Markus-Bustani K, Ruhrman-Shahar N, Kilim Y, Magal N, Hubshman MW, Bazak L (2018) Improved diagnostics by exome sequencing following raw data reevaluation by clinical geneticists involved in the medical care of the individuals tested. Genet Med 1

    Google Scholar 

  • Saunders CJ, Miller NA, Soden SE, Dinwiddie DL, Noll A, Alnadi NA, Andraws N, Patterson ML, Krivohlavek LA, Fellis J (2012) Rapid whole-genome sequencing for genetic disease diagnosis in neonatal intensive care units. Sci Transl Med 4(154):154ra135–154ra135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schadt EE, Linderman MD, Sorenson J, Lee L, Nolan GP (2010) Computational solutions to large-scale data management and analysis. Nat Rev Genet 11(9):647–657. https://doi.org/10.1038/nrg2857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheuner MT, Peredo J, Benkendorf J, Bowdish B, Feldman G, Fleisher L, Mulvihill JJ, Watson M, Herman GE, Evans J (2015) Reporting genomic secondary findings: ACMG members weigh in. Genet Med 17(1):27

    Article  PubMed  Google Scholar 

  • Sedlazeck FJ, Rescheneder P, Smolka M, Fang H, Nattestad M, von Haeseler A, Schatz MC (2018) Accurate detection of complex structural variations using single-molecule sequencing. Nat Methods 15(6):461–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shamseldin HE, Maddirevula S, Faqeih E, Ibrahim N, Hashem M, Shaheen R, Alkuraya FS (2017) Increasing the sensitivity of clinical exome sequencing through improved filtration strategy. Genet Med 19(5):593

    Article  PubMed  Google Scholar 

  • Smedley D, Jacobsen JOB, Jäger M, Köhler S, Holtgrewe M, Schubach M, Siragusa E, Zemojtel T, Buske OJ, Washington NL, Bone WP, Haendel MA, Robinson PN (2015) Next-generation diagnostics and disease-gene discovery with the Exomiser. Nat Protoc 10:2004. https://doi.org/10.1038/nprot.2015.124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stenson PD, Ball EV, Mort M, Phillips AD, Shaw K, Cooper DN (2012) The Human Gene Mutation Database (HGMD) and its exploitation in the fields of personalized genomics and molecular evolution. Curr Protoc Bioinform. Chapter 1:Unit1 13. https://doi.org/10.1002/0471250953.bi0113s39

  • Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, Efron MJ, Iyer R, Schatz MC, Sinha S, Robinson GE (2015) Big data: astronomical or genomical? PLoS Biol 13(7):e1002195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stessman HA, Bernier R, Eichler EE (2014) A genotype-first approach to defining the subtypes of a complex disease. Cell 156(5):872–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sulem P, Helgason H, Oddson A, Stefansson H, Gudjonsson SA, Zink F, Hjartarson E, Sigurdsson GT, Jonasdottir A, Jonasdottir A (2015) Identification of a large set of rare complete human knockouts. Nat Genet 47(5):448

    Article  CAS  PubMed  Google Scholar 

  • Sundaram L, Gao H, Padigepati SR, McRae JF, Li Y, Kosmicki JA, Fritzilas N, Hakenberg J, Dutta A, Shon J, Xu J, Batzoglou S, Li X, Farh KK-H (2018) Predicting the clinical impact of human mutation with deep neural networks. Nat Genet 50(8):1161–1170. https://doi.org/10.1038/s41588-018-0167-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swaminathan R, Huang Y, Astbury C, Fitzgerald-Butt S, Miller K, Cole J, Bartlett C, Lin S (2017) Clinical exome sequencing reports: current informatics practice and future opportunities. J Am Med Inform Assoc 24(6):1184–1191

    Article  PubMed  PubMed Central  Google Scholar 

  • The_Uniprot_Consortium (2014) Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res 42(1):D191–D198. https://doi.org/10.1093/nar/gkt1140

    Article  CAS  Google Scholar 

  • Topol EJ (2019) High-performance medicine: the convergence of human and artificial intelligence. Nat Med 25(1):44

    Article  CAS  PubMed  Google Scholar 

  • Turnbull C, Scott RH, Thomas E, Jones L, Murugaesu N, Pretty FB, Halai D, Baple E, Craig C, Hamblin A (2018) The 100000 genomes project: bringing whole genome sequencing to the NHS. BMJ [Br Med J] (Online) 361

    Google Scholar 

  • Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW (2013) Cancer genome landscapes. Science 339(6127):1546–1558. https://doi.org/10.1126/science.1235122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wainberg M, Merico D, Delong A, Frey BJ (2018) Deep learning in biomedicine. Nat Biotechnol 36(9):829

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164. https://doi.org/10.1093/nar/gkq603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watt S, Jiao W, Brown AMK, Petrocelli T, Tran B, Zhang T, McPherson JD, Kamel-Reid S, Bedard PL, Onetto N, Hudson TJ, Dancey J, Siu LL, Stein L, Ferretti V (2013) Clinical genomics information management software linking cancer genome sequence and clinical decisions. Genomics 102(3):140–147

    Article  CAS  PubMed  Google Scholar 

  • Wenger AM, Guturu H, Bernstein JA, Bejerano G (2017) Systematic reanalysis of clinical exome data yields additional diagnoses: implications for providers. Genet Med 19(2):209

    Article  PubMed  Google Scholar 

  • Wolkenhauer O, Auffray C, Brass O, Clairambault J, Deutsch A, Drasdo D, Gervasio F, Preziosi L, Maini P, Marciniak-Czochra A (2014) Enabling multiscale modeling in systems medicine. Genome Med 6(3):21

    Article  PubMed  PubMed Central  Google Scholar 

  • Xue Y, Chen Y, Ayub Q, Huang N, Ball EV, Mort M, Phillips AD, Shaw K, Stenson PD, Cooper DN, Tyler-Smith C (2012) Deleterious- and disease-allele prevalence in healthy individuals: insights from current predictions, mutation databases, and population-scale resequencing. Am J Hum Genet 91(6):1022–1032. https://doi.org/10.1016/j.ajhg.2012.10.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J (2012) A year of great leaps in genome research. Genome Med 4:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Zia M, Spurgeon P, Levesque A, Furlani T, Wang J (2019) GenESysV: a fast, intuitive and scalable genome exploration open source tool for variants generated from high-throughput sequencing projects. BMC Bioinform 20(1):61

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dopazo, J. (2021). Molecular Genetics in the Next Generation Sequencing Era. In: Navas, P., Salviati, L. (eds) Mitochondrial Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-70147-5_9

Download citation

Publish with us

Policies and ethics