Skip to main content

Emerging Trends in Oral Mucoadhesive Drug Delivery for Head and Neck Cancer

  • Chapter
  • First Online:
Early Detection and Treatment of Head & Neck Cancers

Abstract

Oral mucoadhesive drug delivery systems are pharmaceutical formulations designed to interact with the oral mucosal layer for release of an active compound at the site of absorption. The oral mucosa provides an ideal surface for non-invasive systemic drug delivery by offering rapid onset of action due to rich vascularization. Alternatively it can also be the target for on-site delivery with minimal systemic side effects. In particular, head and neck cancer patients currently benefit from mucoadhesive drug delivery systems designed for pain control and management of chemoradiotherapy-induced systemic and oral complications. Emerging therapies in ongoing clinical trials are investigating treatments for oral disorders and include novel and “smart” mucoadhesive biomaterials that go from liquid to solid, opening more options for drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen J, Ahmad R, Li W, Swain M, Li Q. Biomechanics of oral mucosa. J R Soc Interface. 2015;12:20150325. https://doi.org/10.1098/rsif.2015.0325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Harris D, Robinson JR. Drug delivery via the mucous membranes of the oral cavity. J Pharm Sci. 1992;81:1–10. https://doi.org/10.1002/jps.2600810102.

    Article  CAS  PubMed  Google Scholar 

  3. Squier CA. The permeability of oral mucosa. Crit Rev Oral Biol Med. 1991;2:13–32. https://doi.org/10.1177/10454411910020010301.

    Article  CAS  PubMed  Google Scholar 

  4. Prestin S, Rothschild SI, Betz CS, Kraft M. Measurement of epithelial thickness within the oral cavity using optical coherence tomography. Head Neck. 2012;34:1777–81. https://doi.org/10.1002/hed.22007.

    Article  PubMed  Google Scholar 

  5. Redler P, Lustig ES. Control of epithelial development in normal and pathological connective tissue from oral mucosa. Dev Biol. 1970;22:84–95. https://doi.org/10.1016/0012-1606(70)90007-2.

    Article  CAS  PubMed  Google Scholar 

  6. Luke DA. Cell proliferation in epithelium of murine oral mucosa in vivo and in vitro. An autoradiographic study using tritiated thymidine. Virchows Arch B Cell Pathol. 1979;29:343–9. https://doi.org/10.1007/BF02899365.

    Article  CAS  PubMed  Google Scholar 

  7. Jonek T, Gruszeczka B. Histological study of changes in the epithelium of the oral mucosa caused by estrogens in castrated mice. Czas Stomatol. 1976;29:767–72. http://www.ncbi.nlm.nih.gov/pubmed/1067954.

    CAS  PubMed  Google Scholar 

  8. Adams D. The mucus barrier and absorption through the oral mucosa. J Dent Res. 1975;54 Spec No:B19–26. https://doi.org/10.1177/00220345750540021601.

    Article  Google Scholar 

  9. Dale BA, Stern IB, Clagett JA. Initial characterization of the proteins of keratinized epithelium of rat oral mucosa. Arch Oral Biol. 1977;22:75–82. https://doi.org/10.1016/0003-9969(77)90081-4.

    Article  CAS  PubMed  Google Scholar 

  10. Watanabe I. Ultrastructure of the basal membrane of the mucosa of the hard palate of rats. Quintessencia. 1981;8:57–65. http://www.ncbi.nlm.nih.gov/pubmed/6954560.

    CAS  PubMed  Google Scholar 

  11. Ricci V, Gasparini G. The structure of the basal membrane of the nasal mucosa in man, under the electron microscope. Boll Soc Ital Biol Sper. 1960;36:932–4. http://www.ncbi.nlm.nih.gov/pubmed/13741218.

    CAS  PubMed  Google Scholar 

  12. Chan FL, Inoue S. Lamina lucida of basement membrane: an artefact. Microsc Res Tech. 1994;28:48–59. https://doi.org/10.1002/jemt.1070280106.

    Article  CAS  PubMed  Google Scholar 

  13. Adachi E, Hopkinson I, Hayashi T. Basement-membrane stromal relationships: interactions between collagen fibrils and the lamina densa. Int Rev Cytol. 1997;173:73–156. https://doi.org/10.1016/s0074-7696(08)62476-6.

    Article  CAS  PubMed  Google Scholar 

  14. Weijs TJ, Goense L, van Rossum PSN, Meijer GJ, van Lier ALHMW, Wessels FJ, Braat MNG, Lips IM, Ruurda JP, Cuesta MA, van Hillegersberg R, Bleys RLAW. The peri-esophageal connective tissue layers and related compartments: visualization by histology and magnetic resonance imaging. J Anat. 2017;230:262–71. https://doi.org/10.1111/joa.12552.

    Article  CAS  PubMed  Google Scholar 

  15. Sauer F, Oswald L, Ariza de Schellenberger A, Tzschätzsch H, Schrank F, Fischer T, Braun J, Mierke CT, Valiullin R, Sack I, Käs JA. Collagen networks determine viscoelastic properties of connective tissues yet do not hinder diffusion of the aqueous solvent. Soft Matter. 2019;15:3055–64. https://doi.org/10.1039/c8sm02264j.

    Article  CAS  PubMed  Google Scholar 

  16. Mourão PA. Proteoglycans, glycosaminoglycans and sulfated polysaccharides from connective tissues. Mem Inst Oswaldo Cruz. 1991;86(Suppl 3):13–22. https://doi.org/10.1590/s0074-02761991000700003.

    Article  PubMed  Google Scholar 

  17. Muir H. Chemistry and metabolism of connective tissue glycosaminoglycans (mucopolysaccharides). Int Rev Connect Tissue Res. 1964;2:101–54. https://doi.org/10.1016/B978-1-4831-6751-0.50009-4.

    Article  CAS  PubMed  Google Scholar 

  18. Roblegg E, Coughran A, Sirjani D. Saliva: an all-rounder of our body. Eur J Pharm Biopharm. 2019;142:133–41. https://doi.org/10.1016/j.ejpb.2019.06.016.

    Article  CAS  PubMed  Google Scholar 

  19. Teubl BJ, Stojkovic B, Docter D, Pritz E, Leitinger G, Poberaj I, Prassl R, Stauber RH, Fröhlich E, Khinast JG, Roblegg E. The effect of saliva on the fate of nanoparticles. Clin Oral Investig. 2018;22:929–40. https://doi.org/10.1007/s00784-017-2172-5.

    Article  PubMed  Google Scholar 

  20. Bansil R, Stanley E, LaMont JT. Mucin biophysics. Annu Rev Physiol. 1995;57:635–57. https://doi.org/10.1146/annurev.ph.57.030195.003223.

    Article  CAS  PubMed  Google Scholar 

  21. Kho H-S. Oral epithelial MUC1 and oral health. Oral Dis. 2018;24:19–21. https://doi.org/10.1111/odi.12713.

    Article  PubMed  Google Scholar 

  22. Frenkel ES, Ribbeck K. Salivary mucins in host defense and disease prevention. J Oral Microbiol. 2015;7:29759. https://doi.org/10.3402/jom.v7.29759.

    Article  CAS  PubMed  Google Scholar 

  23. Agarwal S, Aggarwal S. Mucoadhesive polymeric platform for drug delivery; a comprehensive review. Curr Drug Deliv. 2015;12:139–56. https://doi.org/10.2174/1567201811666140924124722.

    Article  CAS  PubMed  Google Scholar 

  24. Fröhlich E, Roblegg E. Mucus as barrier for drug delivery by nanoparticles. J Nanosci Nanotechnol. 2014;14:126–36. https://doi.org/10.1166/jnn.2014.9015.

    Article  CAS  PubMed  Google Scholar 

  25. Smart JD. The basics and underlying mechanisms of mucoadhesion. Adv Drug Deliv Rev. 2005;57:1556–68. https://doi.org/10.1016/j.addr.2005.07.001.

    Article  CAS  PubMed  Google Scholar 

  26. Andrews GP, Laverty TP, Jones DS. Mucoadhesive polymeric platforms for controlled drug delivery. Eur J Pharm Biopharm. 2009;71:505–18. https://doi.org/10.1016/j.ejpb.2008.09.028.

    Article  CAS  PubMed  Google Scholar 

  27. Fu Y, Kao WJ. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin Drug Deliv. 2010;7:429–44. https://doi.org/10.1517/17425241003602259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee JW, Park JH, Robinson JR. Bioadhesive-based dosage forms: the next generation. J Pharm Sci. 2000;89:850–66. https://doi.org/10.1002/1520-6017(200007)89:7<850::AID-JPS2>3.0.CO;2-G.

    Article  CAS  PubMed  Google Scholar 

  29. Guardado-Alvarez TM, Devi LS, Vabre J-M, Pecorelli TA, Schwartz BJ, Durand J-O, Mongin O, Blanchard-Desce M, Zink JI. Photo-redox activated drug delivery systems operating under two photon excitation in the near-IR. Nanoscale. 2014;6:4652–8. https://doi.org/10.1039/c3nr06155h.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dodou D, Breedveld P, Wieringa PA. Mucoadhesives in the gastrointestinal tract: revisiting the literature for novel applications. Eur J Pharm Biopharm. 2005;60:1–16. https://doi.org/10.1016/j.ejpb.2005.01.007.

    Article  CAS  PubMed  Google Scholar 

  31. McGinty S, Pontrelli G. A general model of coupled drug release and tissue absorption for drug delivery devices. J Control Release. 2015;217:327–36. https://doi.org/10.1016/j.jconrel.2015.09.025.

    Article  CAS  PubMed  Google Scholar 

  32. Smart JD. Theories of mucoadhesion. In: Mucoadhesive mater drug delivery systems. Chichester: Wiley; 2014. p. 159–74. https://doi.org/10.1002/9781118794203.ch07.

    Chapter  Google Scholar 

  33. Ugwoke MI, Agu RU, Verbeke N, Kinget R. Nasal mucoadhesive drug delivery: background, applications, trends and future perspectives. Adv Drug Deliv Rev. 2005;57:1640–65. https://doi.org/10.1016/j.addr.2005.07.009.

    Article  CAS  PubMed  Google Scholar 

  34. Cheng Y, Jiao X, Zhao L, Liu Y, Wang F, Wen Y, Zhang X. Wetting transition in nanochannels for biomimetic free-blocking on-demand drug transport. J Mater Chem B. 2018;6:6269–77. https://doi.org/10.1039/C8TB01838C.

    Article  CAS  PubMed  Google Scholar 

  35. Ebrahimi M. Standardization and regulation of biomaterials. In: Handbook biomater. biocompat.: Elsevier; United Kingdom 2020. p. 251–65. https://dokumen.pub/handbook-of-biomaterials-biocompatibility-woodhead-publishing-series-in-biomaterials-1nbsped-0081029675-9780081029671.html.

  36. Hua S. Advances in nanoparticulate drug delivery approaches for sublingual and buccal administration. Front Pharmacol. 2019;10:1328. https://doi.org/10.3389/fphar.2019.01328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Morales JO, Brayden DJ. Buccal delivery of small molecules and biologics: of mucoadhesive polymers, films, and nanoparticles. Curr Opin Pharmacol. 2017;36:22–8. https://doi.org/10.1016/j.coph.2017.07.011.

    Article  CAS  PubMed  Google Scholar 

  38. Hua S, de Matos MBC, Metselaar JM, Storm G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front Pharmacol. 2018;9:790. https://doi.org/10.3389/fphar.2018.00790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang GGZ, Law D, Schmitt EA, Qiu Y. Phase transformation considerations during process development and manufacture of solid oral dosage forms. Adv Drug Deliv Rev. 2004;56:371–90. https://doi.org/10.1016/j.addr.2003.10.009.

    Article  CAS  PubMed  Google Scholar 

  40. Nokhodchi A, Raja S, Patel P, Asare-Addo K. The role of oral controlled release matrix tablets in drug delivery systems. Bioimpacts. 2012;2:175–87. https://doi.org/10.5681/bi.2012.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vivien-Castioni N, Gurny R, Baehni P, Kaltsatos V. Salivary fluoride concentrations following applications of bioadhesive tablets and mouthrinses. Eur J Pharm Biopharm. 2000;49:27–33. https://doi.org/10.1016/s0939-6411(99)00041-7.

    Article  CAS  PubMed  Google Scholar 

  42. Timur SS, Yüksel S, Akca G, Şenel S. Localized drug delivery with mono and bilayered mucoadhesive films and wafers for oral mucosal infections. Int J Pharm. 2019;559:102–12. https://doi.org/10.1016/j.ijpharm.2019.01.029.

    Article  CAS  PubMed  Google Scholar 

  43. Kockisch S, Rees GD, Young SA, Tsibouklis J, Smart JD. Polymeric microspheres for drug delivery to the oral cavity: an in vitro evaluation of mucoadhesive potential. J Pharm Sci. 2003;92:1614–23. https://doi.org/10.1002/jps.10423.

    Article  CAS  PubMed  Google Scholar 

  44. Boddupalli BM, Mohammed ZNK, Nath RA, Banji D. Mucoadhesive drug delivery system: an overview. J Adv Pharm Technol Res. 2010;1:381–7. https://doi.org/10.4103/0110-5558.76436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Karki S, Kim H, Na S-J, Shin D, Jo K, Lee J. Thin films as an emerging platform for drug delivery. Asian J Pharm Sci. 2016;11:559–74. https://doi.org/10.1016/j.ajps.2016.05.004.

    Article  Google Scholar 

  46. Aslani A, Rostami F. Medicated chewing gum, a novel drug delivery system. J Res Med Sci. 2015;20:403–11. http://www.ncbi.nlm.nih.gov/pubmed/26109999.

    PubMed  PubMed Central  Google Scholar 

  47. Fini A, Bergamante V, Ceschel GC. Mucoadhesive gels designed for the controlled release of chlorhexidine in the oral cavity. Pharmaceutics. 2011;3:665–79. https://doi.org/10.3390/pharmaceutics3040665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. ClinicalTrials.gov U.S. National Library of Medicine, dexamethasone to treat oral lichen planus, 2008. https://clinicaltrials.gov/ct2/show/NCT00111072.

  49. ClinicalTrials.gov U.S. National Library of Medicine, study of the safety of BEMA™ fentanyl use for breakthrough pain in cancer subjects on chronic opioid therapy, 2012. https://clinicaltrials.gov/ct2/show/NCT00293020.

  50. Giralt J, Tao Y, Kortmann R-D, Zasadny X, Contreras-Martinez J, Ceruse P, de la Vega FA, Lalla RV, Ozsahin EM, Pajkos G, Mazar A, Attali P, Bossi P, Vasseur B, Sonis S, Henke M, Bensadoun R-J. Randomized phase 2 trial of a novel clonidine mucoadhesive buccal tablet for the amelioration of oral mucositis in patients treated with concomitant chemoradiation therapy for head and neck cancer. Int J Radiat Oncol Biol Phys. 2020;106:320–8. https://doi.org/10.1016/j.ijrobp.2019.10.023.

    Article  CAS  PubMed  Google Scholar 

  51. ClinicalTrials.gov U.S. National Library of Medicine, efficacy and safety study of clonidine Lauriad® to treat oral mucositis, 2017. https://clinicaltrials.gov/ct2/show/NCT01385748.

  52. ClinicalTrials.gov U.S. National Library of Medicine, a study to evaluate the efficacy of MuGard for the amelioration of oral mucositis in head and neck cancer patients (MuGard), 2013. https://clinicaltrials.gov/ct2/show/NCT01283906.

  53. Allison RR, Ambrad AA, Arshoun Y, Carmel RJ, Ciuba DF, Feldman E, Finkelstein SE, Gandhavadi R, Heron DE, Lane SC, Longo JM, Meakin C, Papadopoulos D, Pruitt DE, Steinbrenner LM, Taylor MA, Wisbeck WM, Yuh GE, Nowotnik DP, Sonis ST. Multi-institutional, randomized, double-blind, placebo-controlled trial to assess the efficacy of a mucoadhesive hydrogel (MuGard) in mitigating oral mucositis symptoms in patients being treated with chemoradiation therapy for cancers of the head and neck. Cancer. 2014;120:1433–40. https://doi.org/10.1002/cncr.28553.

    Article  PubMed  PubMed Central  Google Scholar 

  54. ClinicalTrials.gov U.S. National Library of Medicine, clinical effect of phenytoin mucoadhesive paste on wound healing after oral biopsy, 2012. https://clinicaltrials.gov/ct2/show/NCT01680042.

  55. Ghalayani P, Emami H, Pakravan F, Nasr Isfahani M. Comparison of triamcinolone acetonide mucoadhesive film with licorice mucoadhesive film on radiotherapy-induced oral mucositis: a randomized double-blinded clinical trial. Asia Pac J Clin Oncol. 2017;13:e48–56. https://doi.org/10.1111/ajco.12295.

    Article  PubMed  Google Scholar 

  56. ClinicalTrials.gov U.S. National Library of Medicine, comparing triamcinolone acetonide mucoadhesive films with licorice mucoadhesive films, 2014. https://clinicaltrials.gov/ct2/show/NCT02075749.

  57. ClinicalTrials.gov U.S. National Library of Medicine, comparison of triamcinolone acetonide mucoadhesive film and licorice mucoadhesive film effect on lichen planus, 2015. https://www.clinicaltrials.gov/ct2/show/NCT02453503.

  58. ClinicalTrials.gov U.S. National Library of Medicine, efficacy and safety of forrad® for the management of radiation-induced mucositis in patients with nasopharyngeal carcinoma receiving IMRT, (2016). https://clinicaltrials.gov/ct2/show/NCT02735317.

  59. ClinicalTrials.gov U.S. National Library of Medicine, efficacy of curcumin in oral submucous fibrosis (ECOSMF), 2018. https://clinicaltrials.gov/ct2/show/NCT03511261.

  60. Hazarey VK, Sakrikar AR, Ganvir SM. Efficacy of curcumin in the treatment for oral submucous fibrosis – a randomized clinical trial. J Oral Maxillofac Pathol. 2015;19:145–52. https://doi.org/10.4103/0973-029X.164524.

  61. ClinicalTrials.gov U.S. National Library of Medicine, efficacy of a dietary supplement (Aqualief®) in xerostomic patients (Aqualief), 2018. https://clinicaltrials.gov/ct2/show/NCT03612414.

  62. ClinicalTrials.gov U.S. National Library of Medicine, dexamethasone solution for the treatment of oral lichen planus, 2018. https://clinicaltrials.gov/ct2/show/NCT02850601.

  63. ClinicalTrials.gov U.S. National Library of Medicine, Intra-oral treatment of OLP with Rivelin®-CLO patches, 2020. https://clinicaltrials.gov/ct2/show/NCT03592342.

  64. ClinicalTrials.gov U.S. National Library of Medicine, effects of Aqualief® in patients with xerostomia as consequence of radiotherapy for head and neck cancer, 2020. https://clinicaltrials.gov/ct2/show/NCT03601962.

  65. Braga FTMM, Santos ACF, Bueno PCP, Silveira RCCP, Santos CB, Bastos JK, Carvalho EC. Use of Chamomilla recutita in the prevention and treatment of oral mucositis in patients undergoing hematopoietic stem cell transplantation: a randomized, controlled, phase II clinical trial. Cancer Nurs. 2015;38:322–9. https://doi.org/10.1097/NCC.0000000000000194.

    Article  PubMed  Google Scholar 

  66. ClinicalTrials.gov U.S. National Library of Medicine, Topical chamomile in preventing chemotherapy-induced oral mucositis, 2020. https://clinicaltrials.gov/ct2/show/NCT04317183.

  67. ClinicalTrials.gov U.S. National Library of Medicine, Carnosine supplementation on quantity/quality of oral salivae (PHoral), 2020. https://www.clinicaltrials.gov/ct2/show/NCT04295525.

  68. Menon K, Mousa A, de Courten B. Effects of supplementation with carnosine and other histidine-containing dipeptides on chronic disease risk factors and outcomes: protocol for a systematic review of randomised controlled trials. BMJ Open. 2018;8:e020623. https://doi.org/10.1136/bmjopen-2017-020623.

    Article  PubMed  PubMed Central  Google Scholar 

  69. ClinicalTrials.gov U.S. National Library of Medicine, MucoLox formulation to mitigate mucositis symptoms in head/neck cancer, 2020. https://clinicaltrials.gov/ct2/show/NCT03461354.

  70. Bhagavan HN, Chopra RK. Plasma coenzyme Q10 response to oral ingestion of coenzyme Q10 formulations. Mitochondrion. 2007;7(Suppl):S78–88. https://doi.org/10.1016/j.mito.2007.03.003.

    Article  CAS  PubMed  Google Scholar 

  71. ClinicalTrials.gov U.S. National Library of Medicine, Clinical and biochemical assessment of the effect of topical use of coenzyme Q10 versus topical corticosteroid in management of symptomatic oral lichen planus: randomized controlled clinical trial, 2019. https://clinicaltrials.gov/ct2/show/NCT04091698.

  72. Wen H, Jung H, Li X. Drug delivery approaches in addressing clinical pharmacology-related issues: opportunities and challenges. AAPS J. 2015;17:1327–40. https://doi.org/10.1208/s12248-015-9814-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Edsman K, Hägerström H. Pharmaceutical applications of mucoadhesion for the non-oral routes. J Pharm Pharmacol. 2005;57:3–22. https://doi.org/10.1211/0022357055227.

    Article  CAS  PubMed  Google Scholar 

  74. Sudhakar Y, Kuotsu K, Bandyopadhyay AK. Buccal bioadhesive drug delivery–a promising option for orally less efficient drugs. J Control Release. 2006;114:15–40. https://doi.org/10.1016/j.jconrel.2006.04.012.

    Article  CAS  PubMed  Google Scholar 

  75. Steward A, Bayley DL, Howes C. The effect of enhancers on the buccal absorption of hybrid (BDBB) α-interferon. Int J Pharm. 1994;104:145–9. https://doi.org/10.1016/0378-5173(94)90189-9.

    Article  CAS  Google Scholar 

  76. Himanshi T, Sachdeva R. Transdermal drug delivery system: a review. Int J Pharm Sci Res. 2016; https://doi.org/10.13040/IJPSR.0975-8232.7(6).2274-90.

  77. Das NG, Das SK. Development of mucoadhesive dosage forms of buprenorphine for sublingual drug delivery. Drug Deliv. 2004;11:89–95. https://doi.org/10.1080/10717540490280688.

    Article  CAS  PubMed  Google Scholar 

  78. Kováčik A, Kopečná M, Vávrová K. Permeation enhancers in transdermal drug delivery: benefits and limitations. Expert Opin Drug Deliv. 2020;17:145–55. https://doi.org/10.1080/17425247.2020.1713087.

    Article  CAS  PubMed  Google Scholar 

  79. Maher S, Brayden D, Casettari L, Illum L. Application of permeation enhancers in oral delivery of macromolecules: an update. Pharmaceutics. 2019;11:41. https://doi.org/10.3390/pharmaceutics11010041.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Chris Gralapp, certified medical illustrator, who provided the human mouth images for Figs. 9.1a and 9.4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Luke Santa Maria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Massa, S., Fouad, A., Ebrahimi, M., Maria, P.L.S. (2021). Emerging Trends in Oral Mucoadhesive Drug Delivery for Head and Neck Cancer. In: El Assal, R., Gaudilliere, D., Connelly, S.T. (eds) Early Detection and Treatment of Head & Neck Cancers. Springer, Cham. https://doi.org/10.1007/978-3-030-69852-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69852-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69851-5

  • Online ISBN: 978-3-030-69852-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics