Skip to main content

The Bright and Dark Sides of Wheat

  • Chapter
  • First Online:

Abstract

Wheat is a worldwide staple food for centuries. However, several debates and questions about the effect of wheat intake versus human health started to emerge in the last decades. Wheat is one of the main sources of carbohydrates and bioactive compounds, indicating the great importance of wheat nutrients and micronutrients as a crucial part of human daily diet. This is the “bright side” of the wheat. On the other hand, the raising claims toward the association between wheat consumption and several health issues urged to investigate if there is a “dark side” of wheat that could be considered a real threat for human wellbeing. Evidence sustained that wheat is involved in protein allergenicity in the case of genetically predisposed subjects, whereas wheat and overweight are still under investigation. Wheat intake impact on human health is a multivariable situation that should be studied case by case.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Peleg Z, Fahima T, Korol AB, Abbo S, Saranga Y. Genetic analysis of wheat domestication and evolution under domestication. J Exp Bot [Internet]. 2011;62:5051–61. Oxford University Press [cited 2018 Dec 20]. Available from: https://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/err206.

  2. Boukid F, Folloni S, Sforza S, Vittadini E, Prandi B. Current trends in ancient grains-based foodstuffs: insights into nutritional aspects and technological applications. Compr Rev Food Sci Food Saf [Internet]. 2018;17:123–36. Wiley/Blackwell (10.1111) [cited 2018 Nov 7]. Available from: http://doi.wiley.com/10.1111/1541-4337.12315.

  3. Charmet G, Storlie E, Oury FX, Laurent V, Beghin D, Chevarin L, et al. Genome-wide prediction of three important traits in bread wheat. Mol Breed [Internet]. 2014;34:1843–52. Springer; [cited 2018 Dec 20]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26316839.

  4. Shewry PR, Hey S. Do “ancient” wheat species differ from modern bread wheat in their contents of bioactive components? J Cereal Sci. 2015;65:236–43.

    Article  CAS  Google Scholar 

  5. Shewry PR, Ward JL. Exploiting genetic variation to improve wheat composition for the prevention of chronic diseases. Food Energy Secur [Internet]. 2012;1:47–60 [cited 2018 Nov 7]. Available from: http://doi.wiley.com/10.1002/fes3.2.

  6. Aune D, Keum N, Giovannucci E, Fadnes LT, Boffetta P, Greenwood DC, et al. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response meta-analysis of prospective studies. BMJ [Internet]. 2016;i2716 [cited 2018 Nov 7]. Available from: http://www.bmj.com/lookup/doi/10.1136/bmj.i2716.

  7. Augustin LSA, Kendall CWC, Jenkins DJA, Willett WC, Astrup A, Barclay AW, et al. Glycemic index, glycemic load and glycemic response: an international scientific consensus summit from the international carbohydrate quality consortium (ICQC). Nutr Metab Cardiovasc Dis. 2015;25:795–815.

    Article  CAS  PubMed  Google Scholar 

  8. Judson PL, Al Sawah E, Marchion DC, Xiong Y, Bicaku E, Zgheib NB, et al. Characterizing the efficacy of fermented wheat germ extract against ovarian cancer and defining the genomic basis of its activity. Int J Gynecol Cancer [Internet]. 2012;22:960–7 [cited 2018 Mar 4]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22740002.

  9. Mueller T, Jordan K, Voigt W. Promising cytotoxic activity profile of fermented wheat germ extract (Avemar®) in human cancer cell lines. J Exp Clin Cancer Res [Internet]. 2011 [cited 2018 Mar 4];30:42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21496306.

  10. Ikuomola DS, Otutu OL, Oluniran DD. Quality assessment of cookies produced from wheat flour and malted barley (Hordeum vulgare) bran blends. Cogent Food Agric. 2017;3.

    Google Scholar 

  11. Catassi C, Bai J, Bonaz B, Bouma G, Calabrò A, Carroccio A, et al. Non-celiac gluten sensitivity: the new frontier of gluten related disorders. Nutrients [Internet]. 2013;5:3839–53 [cited 2018 Nov 9]. Available from: http://www.mdpi.com/2072-6643/5/10/3839.

  12. Goff HD, Repin N, Fabek H, El Khoury D, Gidley MJ. Dietary fibre for glycaemia control: towards a mechanistic understanding. Bioact Carbohydr Diet Fibre. 2018;14:39–53.

    Article  CAS  Google Scholar 

  13. Mussatto SI, Dragone G, Roberto IC. Brewers’ spent grain: generation, characteristics and potential applications. J Cereal Sci. 2006;43:1–14.

    Article  CAS  Google Scholar 

  14. Qiu S, Yadav MP, Yin L. Characterization and functionalities study of hemicellulose and cellulose components isolated from sorghum bran, bagasse and biomass. Food Chem. 2017;230:225–33.

    Article  CAS  PubMed  Google Scholar 

  15. Birt DF, Boylston T, Hendrich S, Jane J-L, Hollis J, Li L, et al. Resistant starch: promise for improving human health. Adv Nutr [Internet]. 2013;4:587–601 [cited 2018 Nov 5]. Available from: https://academic.oup.com/advances/article/4/6/587/4595564.

  16. Zamora-Gasga VM, Bello-Pérez LA, Ortíz-Basurto RI, Tovar J, Sáyago-Ayerdi SG. Granola bars prepared with Agave tequilana ingredients: chemical composition and in vitro starch hydrolysis. LWT-Food Sci Technol [Internet]. 2014;56:309–14 [cited 2019 Jan 4]. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0023643813004878.

  17. Slavin J. Fiber and prebiotics: mechanisms and health benefits. Nutrients [Internet]. 2013;5:1417–35 [cited 2019 Jan 4]. Available from: http://www.mdpi.com/2072-6643/5/4/1417.

  18. Hemdane S, Jacobs PJ, Bosmans GM, Verspreet J, Delcour JA, Courtin CM. Study on the effects of wheat bran incorporation on water mobility and biopolymer behavior during bread making and storage using time-domain 1H NMR relaxometry. Food Chem. 2017;236:76–86.

    Article  CAS  PubMed  Google Scholar 

  19. Papathanasopoulos A, Camilleri M. Dietary fiber supplements: effects in obesity and metabolic syndrome and relationship to gastrointestinal functions. Gastroenterology. 2010;138:65–72.e2.

    Article  CAS  PubMed  Google Scholar 

  20. McRorie JW. Evidence-based approach to fiber supplements and clinically meaningful health benefits, part 1. Nutr Today [Internet]. 2015;50:82–9. Lippincott Williams and Wilkins [cited 2020 Apr 10]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25972618.

  21. Shepherd AJ, Mohapatra DP. Tissue preparation and immunostaining of mouse sensory nerve fibers innervating skin and limb bones. J Vis Exp [Internet]. 2012;1–6 [cited 2020 Apr 10]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22314687.

  22. Meng H, Matthan NR, Ausman LM, Lichtenstein AH. Effect of macronutrients and fiber on postprandial glycemic responses and meal glycemic index and glycemic load value determinations. Am J Clin Nutr [Internet]. 2017;105:842–53. American Society for Nutrition [cited 2020 Apr 10]. Available from: https://academic.oup.com/ajcn/article/105/4/842-853/4569720.

  23. Chen H, Zhao C, Li J, Hussain S, Yan S, Wang Q. Effects of extrusion on structural and physicochemical properties of soluble dietary fiber from nodes of lotus root. LWT. 2018;93:204–11.

    Article  CAS  Google Scholar 

  24. Krajmalnik-Brown R, Ilhan ZE, Kang DW, DiBaise JK. Effects of gut microbes on nutrient absorption and energy regulation. Nutr Clin Pract. 2012;27:201–14.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jefferson A, Adolphus K. The effects of intact cereal grain fibers, including wheat bran on the gut microbiota composition of healthy adults: a systematic review. Front Nutr. 2019;6:33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Barroso E, Cueva C, Peláez C, Martínez-Cuesta MC, Requena T. Development of human colonic microbiota in the computer-controlled dynamic SIMulator of the GastroIntestinal tract SIMGI. LWT-Food Sci Technol. 2015;61:283–9.

    Article  CAS  Google Scholar 

  27. Gullón B, Gullón P, Tavaria F, Pintado M, Gomes AM, Alonso JL, et al. Structural features and assessment of prebiotic activity of refined arabinoxylooligosaccharides from wheat bran. J Funct Foods. 2014;6:438–49.

    Article  CAS  Google Scholar 

  28. Moore J, Gunn P, Fielding B. The role of dietary sugars and de novo lipogenesis in non-alcoholic fatty liver disease. Nutrients [Internet]. 2014;6:5679–703 [cited 2018 Nov 13]. Available from: http://www.mdpi.com/2072-6643/6/12/5679.

  29. Hu FB, Malik VS. Sugar-sweetened beverages and risk of obesity and type 2 diabetes: epidemiologic evidence. Physiol Behav. 2010;100:47–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, De los Reyes-Gavilán CG, Salazar N. Intestinal short chain fatty acids and their link with diet and human health. Front. Microbiol. 2016;7:185.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hu J, Lin S, Zheng B, Cheung PCK. Short-chain fatty acids in control of energy metabolism. Crit Rev Food Sci Nutr [Internet]. 2018;58:1243–9 . Taylor and Francis Inc. [cited 2020 Apr 10]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27786539.

  32. Braune A, Bunzel M, Yonekura R, Blaut M. Conversion of dehydrodiferulic acids by human intestinal microbiota. J Agric Food Chem [Internet]. 2009;57:3356–62 [cited 2018 Dec 27]. Available from: http://pubs.acs.org/doi/abs/10.1021/jf900159h

  33. Raka F, Farr S, Kelly J, Stoianov A, Adeli K. Metabolic control via nutrient-sensing mechanisms: role of taste receptors and the gut-brain neuroendocrine axis [Internet]. Am J Physiol Endocrinol Metab NLM (Medline). 2019:E559–72 [cited 2020 Apr 10]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31310579.

  34. Roper SD, Chaudhari N. Taste buds: cells, signals and synapses. Nat Rev. 2017;18:485–97.

    Article  CAS  Google Scholar 

  35. Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol. 2015;11:577–91.

    Article  CAS  PubMed  Google Scholar 

  36. Priyadarshini M, Kotlo KU, Dudeja PK, Layden BT. Role of short chain fatty acid receptors in intestinal physiology and pathophysiology. Compr Physiol. 2018;8:1065–90.

    Google Scholar 

  37. Miyamoto J, Hasegawa S, Kasubuchi M, Ichimura A, Nakajima A, Kimura I. Nutritional signaling via free fatty acid receptors. Int J Mol Sci. 2016;17:450.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Falcinelli S, Rodiles A, Unniappan S, Picchietti S, Gioacchini G, Merrifield DL, et al. Probiotic treatment reduces appetite and glucose level in the zebrafish model. Sci Rep. 2016;6:18061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lin H V., Frassetto A, Kowalik EJ, Nawrocki AR, Lu MM, Kosinski JR, et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One [Internet]. 2012;7:e35240 [cited 2020 Apr 10]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22506074.

  40. Rahat-Rozenbloom S, Fernandes J, Cheng J, Wolever TMS. Acute increases in serum colonic short-chain fatty acids elicited by inulin do not increase GLP-1 or PYY responses but may reduce ghrelin in lean and overweight humans. Eur J Clin Nutr. 2017;71:953–8.

    Article  CAS  PubMed  Google Scholar 

  41. Chambers ES, Viardot A, Psichas A, Morrison DJ, Murphy KG, Zac-Varghese SEK, et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut BMJ. 2015;64:1744–54.

    Article  CAS  Google Scholar 

  42. Frost G, Sleeth ML, Sahuri-Arisoylu M, Lizarbe B, Cerdan S, Brody L, et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun. 2014;5:3611.

    Article  CAS  PubMed  Google Scholar 

  43. Lockyer S, Nugent AP. Health effects of resistant starch. Nutr Bull [Internet]. 2017;42:10–41. Blackwell Publishing Ltd [cited 2020 Apr 11]. Available from: http://doi.wiley.com/10.1111/nbu.12244.

  44. Gower BA, Bergman R, Stefanovski D, Darnell B, Ovalle F, Fisher G, et al. Baseline insulin sensitivity affects response to high-amylose maize resistant starch in women: a randomized, controlled trial.[Erratum appears in Nutr Metab (Lond). 2016;13:6; PMID: 26839576]. Nutr Metab (Lond) [Internet]. 2016;13:2 [cited 2020 Apr 11]. Available from: http://proxycheck.lib.umanitoba.ca/libraries/online/proxy.php?http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=prem&AN=26766961.

  45. Belobrajdic DP, King RA, Christophersen CT, Bird AR. Dietary resistant starch dose-dependently reduces adiposity in obesity-prone and obesity-resistant male rats. Nutr Metab. 2012;9:93.

    Article  CAS  Google Scholar 

  46. Lattimer JM, Haub MD. Effects of dietary fiber and its components on metabolic health [Internet]. Nutrients. 2010:1266–89. MDPI AG [cited 2020 Apr 11]. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3257631&tool=pmcentrez&rendertype=abstract.

  47. Adam CL, Williams PA, Garden KE, Thomson LM, Ross AW. Dose-dependent effects of a soluble dietary fibre (pectin) on food intake, adiposity, gut hypertrophy and gut satiety hormone secretion in rats. Blachier F, editor. PLoS One [Internet]. 2015;10:e0115438. Public Library of Science [cited 2020 Apr 11]. Available from: https://dx.plos.org/10.1371/journal.pone.0115438.

  48. Adam CL, Williams PA, Dalby MJ, Garden K, Thomson LM, Richardson AJ, et al. Different types of soluble fermentable dietary fibre decrease food intake, body weight gain and adiposity in young adult male rats. Nutr Metab. 2014;11:36.

    Article  CAS  Google Scholar 

  49. Nastasi C, Candela M, Bonefeld CM, Geisler C, Hansen M, Krejsgaard T, et al. The effect of short-chain fatty acids on human monocyte-derived dendritic cells. Sci Rep. 2015;5:1–10.

    Article  CAS  Google Scholar 

  50. Harsch I, Konturek P. The role of gut microbiota in obesity and type 2 and type 1 diabetes mellitus: new insights into “old” diseases. Med Sci. 2018;6:32.

    Google Scholar 

  51. Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, De los Reyes-Gavilán CG, Salazar N. Intestinal short chain fatty acids and their link with diet and human health [Internet]. Front. Microbiol. 2016:185. Frontiers Media S.A. [cited 2020 Apr 10]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26925050.

  52. Leoncini E, Prata C, Malaguti M, Marotti I, Segura-Carretero A, Catizone P, et al. Phytochemical profile and Nutraceutical value of old and modern common wheat cultivars. PLoS One. 2012;7:e45997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ramírez-Maganda J, Blancas-Benítez FJ, Zamora-Gasga VM, García-Magaña M d L, Bello-Pérez LA, Tovar J, et al. Nutritional properties and phenolic content of a bakery product substituted with a mango (Mangifera indica) ‘Ataulfo’ processing by-product. Food Res Int. 2015;73:117–23.

    Article  CAS  Google Scholar 

  54. Boukid F, Dall’Asta M, Bresciani L, Mena P, Del Rio D, Calani L, et al. Phenolic profile and antioxidant capacity of landraces, old and modern Tunisian durum wheat. Eur Food Res Technol. 2019;245:73–82.

    Article  CAS  Google Scholar 

  55. Abdel-Aal E-SM, Rabalski I. J Cereal Sci. [Internet]. 2013. Academic Press [cited 2018 Dec 20]. Available from: http://agris.fao.org/agris-search/search.do?recordID=US201500065466.

  56. Okarter N, Liu R. Health benefits of whole grain phytochemicals. Crit Rev Food Sci Nutr. 2010;50:193–208.

    Article  CAS  PubMed  Google Scholar 

  57. Conlon MA, Bird AR. The impact of diet and lifestyle on gut microbiota and human health. Nutrients. 2015;7:17–44.

    Article  CAS  Google Scholar 

  58. Fardet A. How can both the health potential and sustainability of cereal products be improved? A French perspective. J Cereal Sci. 2014;60:540–8.

    Article  Google Scholar 

  59. Golzarand M, Bahadoran Z, Mirmiran P, Sadeghian-Sharif S, Azizi F. Dietary phytochemical index is inversely associated with the occurrence of hypertension in adults: a 3-year follow-up (the Tehran Lipid and Glucose Study). Eur J Clin Nutr. 2015;69:392–8.

    Article  CAS  PubMed  Google Scholar 

  60. Fardet A, Rock E, Rémésy C. Is the in vitro antioxidant potential of whole-grain cereals and cereal products well reflected in vivo? J Cereal Sci. 2008;48:258–76.

    Article  CAS  Google Scholar 

  61. Springmann M, Wiebe K, Mason-D’Croz D, Sulser TB, Rayner M, Scarborough P. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country-level detail. Lancet Planet Heal. 2018;2:e451–61.

    Article  Google Scholar 

  62. Deutz NEP, Bauer JM, Barazzoni R, Biolo G, Boirie Y, Bosy-Westphal A, et al. Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN expert group. Clin Nutr Churchill Livingstone. 2014;33:929–36.

    Article  CAS  Google Scholar 

  63. Lafiandra D, Riccardi G, Shewry PR. Improving cereal grain carbohydrates for diet and health [Internet]. J Cereal Sci. 2014:312–26 Academic Press [cited 2020 Apr 11]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24966450.

  64. Lecerf JM, Clerc E, Jaruga A, Wagner A, Respondek F. Postprandial glycaemic and insulinaemic responses in adults after consumption of dairy desserts and pound cakes containing short-chain fructo-oligosaccharides used to replace sugars. J Nutr Sci [Internet]. 2015;4:e34 [cited 2018 Dec 23]. Available from: http://www.journals.cambridge.org/abstract_S2048679015000221.

  65. Scazzina F, Siebenhandl-Ehn S, Pellegrini N. The effect of dietary fibre on reducing the glycaemic index of bread. Br J Nutr. 2013;109:1163–74.

    Article  CAS  PubMed  Google Scholar 

  66. Eleazu CO. The concept of low glycemic index and glycemic load foods as panacea for type 2 diabetes mellitus; prospects, challenges and solutions. Afr Health Sci [Internet]. 2016;16:468–79. Makerere University, Medical School [cited 2020 Apr 11]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27605962.

  67. Di Angelantonio E, Bhupathiraju SN, Wormser D, Gao P, Kaptoge S, de Gonzalez AB, et al. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet [Internet]. 2016;388:776–86. Lancet Publishing Group [cited 2020 Apr 11]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27423262.

  68. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009;461:1282–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fedewa A, Rao SSC. Dietary fructose intolerance, fructan intolerance and FODMAPs. Curr Gastroenterol Rep [Internet]. 2014;16:370. Current Medicine Group LLC 1 [cited 2020 Apr 11]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24357350.

  70. Whelan K, Abrahmsohn O, David GJP, Staudacher H, Irving P, Lomer MCE, et al. Fructan content of commonly consumed wheat, rye and gluten-free breads. Int J Food Sci Nutr [Internet]. 2011;62:498–503 [cited 2020 Apr 11]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21428719.

  71. Rao SSC, Yu S, Fedewa A. Systematic review: dietary fibre and FODMAP-restricted diet in the management of constipation and irritable bowel syndrome. Aliment Pharmacol Ther. 2015;41:1256–70.

    Article  CAS  PubMed  Google Scholar 

  72. Tengjaroenkul B, Smith BJ, Caceci T, Smith SA. Distribution of intestinal enzyme activities along the intestinal tract of cultured Nile tilapia, Oreochromis niloticus L. Aquaculture. 2000;182:317–27.

    Article  CAS  Google Scholar 

  73. Salari-Moghaddam A, Keshteli AH, Esmaillzadeh A, Adibi P. Empirically derived food-based inflammatory potential of the diet, irritable bowel syndrome, and its severity. Nutrition. 2019;63–64:141–7.

    Article  PubMed  Google Scholar 

  74. Fasano A, Sapone A, Zevallos V, Schuppan D. Nonceliac gluten sensitivity. Gastroenterology. 2015;148:1195–204.

    Article  CAS  PubMed  Google Scholar 

  75. Boukid F, Mejri M, Pellegrini N, Sforza S, Prandi B. How looking for celiac-safe wheat can influence its technological properties. Compr Rev Food Sci Food Saf [Internet]. 2017;16:797–807 [cited 2018 Nov 9]. Available from: http://doi.wiley.com/10.1111/1541-4337.12288

  76. de Punder K, Pruimboom L. The dietary intake of wheat and other cereal grains and their role in inflammation. Nutrients [Internet]. 2013;5:771–87 [cited 2018 Mar 4]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23482055.

  77. Almeida LM, Gandolfi L, Pratesi R, Uenishi RH, de Almeida FC, Selleski N, et al. Presence of DQ2.2 associated with DQ2.5 increases the risk for celiac disease. Autoimmune Dis [Internet]. 2016;2016:5409653. Hindawi Limited [cited 2018 Nov 9]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28042478.

  78. Pisapia L, Camarca A, Picascia S, Bassi V, Barba P, Del Pozzo G, et al. HLA-DQ2.5 genes associated with celiac disease risk are preferentially expressed with respect to non-predisposing HLA genes: implication for anti-gluten T cell response. J Autoimmun [Internet]. 2016;70:63–72 [cited 2018 Nov 9]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27083396.

  79. Boukid F, Prandi B, Buhler S, Sforza S. Effectiveness of germination on protein hydrolysis as a way to reduce adverse reactions to wheat. J Agric Food Chem. 2017;65:9854–60.

    Article  CAS  PubMed  Google Scholar 

  80. Boukid F, Prandi B, Sforza S, Sayar R, Seo YW, Mejri M, et al. Understanding the effects of genotype, growing year, and breeding on Tunisian durum wheat Allergenicity. 2. The celiac disease case. J Agric Food Chem. 2017;65:5837.

    Article  CAS  PubMed  Google Scholar 

  81. Shewry PR, Tatham AS. Improving wheat to remove coeliac epitopes but retain functionality. J Cereal Sci. 2016;67:12–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Prandi B, Tedeschi T, Folloni S, Galaverna G, Sforza S. Peptides from gluten digestion: a comparison between old and modern wheat varieties. Food Res Int [Internet]. 2017;91:92–102. Elsevier [cited 2018 Nov 9]. Available from: https://www.sciencedirect.com/science/article/pii/S0963996916305816?via%3Dihub

  83. Kaur A, Bains NS, Sood A, Yadav B, Sharma P, Kaur S, et al. Molecular characterization of α-gliadin gene sequences in Indian wheat cultivars Vis-à-Vis celiac disease eliciting epitopes. J Plant Biochem Biotechnol. 2017;26:106–12.

    Article  CAS  Google Scholar 

  84. Balakireva AV, Zamyatnin AA. Properties of gluten intolerance: gluten structure, evolution, pathogenicity and detoxification capabilities. Nutrients. 2016;8:644.

    Article  PubMed Central  CAS  Google Scholar 

  85. Gujral N, Freeman HJ, Thomson ABR. Celiac disease: Prevalence, diagnosis, pathogenesis and treatment. World J Gastroenterol. 2012;18:6036–59.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Mohan Kumar BV, Prasada Rao UJS, Prabhasankar P. Immunogenicity characterization of hexaploid and tetraploid wheat varieties related to celiac disease and wheat allergy. Food Agric Immunol. 2017;28:888–903.

    Article  CAS  Google Scholar 

  87. Catassi C, Kryszak D, Bhatti B, Sturgeon C, Helzlsouer K, Clipp SL, et al. Natural history of celiac disease autoimmunity in a USA cohort followed since 1974. Ann Med. 2010;42:530–8.

    Article  PubMed  Google Scholar 

  88. Colgrave ML, Byrne K, Blundell M, Howitt CA. Identification of barley-specific peptide markers that persist in processed foods and are capable of detecting barley contamination by LC-MS/MS. J Proteome. 2016;147:169–76.

    Article  CAS  Google Scholar 

  89. Uvackova L, Skultety L, Bekesova S, McClain S, Hajduch M. MSE based multiplex protein analysis quantified important allergenic proteins and detected relevant peptides carrying known epitopes in wheat grain extracts. J Proteome Res. 2013;12:4862–9.

    Article  CAS  PubMed  Google Scholar 

  90. Boukid F, Prandi B, Sforza S, Sayar R, Seo YW, Mejri M, et al. Understanding the effects of genotype, growing year, and breeding on Tunisian durum wheat Allergenicity. 1. The Baker’s asthma case. J Agric Food Chem. 2017;65:5831–6.

    Article  CAS  PubMed  Google Scholar 

  91. Sapone A, Bai JC, Ciacci C, Dolinsek J, Green PHR, Hadjivassiliou M, et al. Spectrum of gluten-related disorders: consensus on new nomenclature and classification. BMC Med. 2012;10:13.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Scherf KA. Immunoreactive cereal proteins in wheat allergy, non-celiac gluten/wheat sensitivity (NCGS) and celiac disease. Curr Opin Food Sci. 2019;25:35–41.

    Article  Google Scholar 

  93. Valerii MC, Ricci C, Spisni E, Di Silvestro R, De Fazio L, Cavazza E, et al. Responses of peripheral blood mononucleated cells from non-celiac gluten sensitive patients to various cereal sources. Food Chem. 2015;176:167–74.

    Article  CAS  PubMed  Google Scholar 

  94. Fallahbaghery A, Zou W, Byrne K, Howitt CA, Colgrave ML. Comparison of gluten extraction protocols assessed by LC-MS/MS analysis. J Agric Food Chem [Internet]. 2017;65:2857–66. [cited 2018 Nov 9]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28285530.

  95. Carroccio A, Di Prima L, Noto D, Fayer F, Ambrosiano G, Villanacci V, et al. Searching for wheat plants with low toxicity in celiac disease: between direct toxicity and immunologic activation. Dig Liver Dis. 2011;43:34–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Boukid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boukid, F. (2021). The Bright and Dark Sides of Wheat. In: Boukid, F. (eds) Cereal-Based Foodstuffs: The Backbone of Mediterranean Cuisine. Springer, Cham. https://doi.org/10.1007/978-3-030-69228-5_9

Download citation

Publish with us

Policies and ethics