Skip to main content

Subwavelength Silicon Photonics

  • Chapter
  • First Online:
Silicon Photonics IV

Part of the book series: Topics in Applied Physics ((TAP,volume 139))

Abstract

Subwavelength gratings refer to periodic structures that have a period less than half the wavelength of light in the material so that no Bragg diffraction mode is supported. Instead, the light will propagate as if it was in a homogeneous material with anisotropic refractive indices. Subwavelength gratings have attracted great interest recently, as they provide a useful degree of freedom for the crafting of the effective refractive index of the material in photonic devices. In this chapter, we will introduce some of the applications of subwavelength structures for silicon photonics devices. We start by introducing the background theory of subwavelength gratings and then discuss their applications for the engineering of waveguide grating couplers, suspended membrane devices for mid-infrared (mid-IR) wavelengths, and their use with numerical optimization techniques for optimizing photonic devices. We shall discuss the classic effective medium theory (EMT) for subwavelength gratings and show how EMT can reduce time-consuming three-dimensional (3D) numerical optimizations to an effective two-dimensional (2D) optimization problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.M. Rytov, Electromagnetic properties of a finely stratified medium. Sov. Phys. JEPT 2, 466–475 (1956)

    MATH  Google Scholar 

  2. P.J. Bock, P. Cheben, J.H. Schmid, J. Lapointe, A. Delâge, S. Janz, G.C. Aers, D.-X. Xu, A. Densmore, T.J. Hall, Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide. Opt. Express 18, 20251–20262 (2010)

    Article  ADS  Google Scholar 

  3. R. Halir, P. Cheben, S. Janz, D.-X. Xu, Í. Molina-Fernández, J.G. Wangüemert-Pérez, Waveguide grating coupler with subwavelength microstructures. Opt. Lett. 34, 1408–1410 (2009)

    Article  ADS  Google Scholar 

  4. X. Chen, H.K. Tsang, Nanoholes grating couplers for coupling between silicon-on-insulator waveguides and optical fibers. IEEE Photonics J. 1, 184–190 (2009)

    Article  ADS  Google Scholar 

  5. X. Chen, H.K. Tsang, Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides. Opt. Lett. 36, 796–798 (2011)

    Article  ADS  Google Scholar 

  6. Z. Cheng, X. Chen, C.Y. Wong, K. Xu, C.K.Y. Fung, Y.M. Chen, H.K. Tsang, Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide. Opt. Lett. 37, 1217–1219 (2012)

    Article  ADS  Google Scholar 

  7. G. Floquet, Sur les équations différentielles linéaires à coefficients périodiques. Ann. Sci. LÉcole Norm. Supér. 12, 47–88 (1883)

    Article  MATH  Google Scholar 

  8. F. Bloch, Über die Quantenmechanik der Elektronen in Kristallgittern. Z. Für Phys. 52, 555–600 (1929)

    Article  ADS  MATH  Google Scholar 

  9. L. Brillouin, “Wave propagation in periodic structures: electric filters and crystal lattices,” Dover Publications (2003) https://cds.cern.ch/record/106186

  10. W. Zhou, Z. Cheng, X. Wu, B. Zhu, X. Sun, H.K. Tsang, Fully suspended slot waveguides for high refractive index sensitivity. Opt. Lett. 42, 1245–1248 (2017)

    Article  ADS  Google Scholar 

  11. P. Cheben, R. Halir, J.H. Schmid, H.A. Atwater, D.R. Smith, Subwavelength integrated photonics. Nature 560, 565–572 (2018)

    Article  ADS  Google Scholar 

  12. R. Halir, P.J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J.H. Schmid, J. Lapointe, D.-X. Xu, J.G. Wangüemert-Pérez, Í. Molina-Fernández, S. Janz, Waveguide sub-wavelength structures: a review of principles and applications. Laser Photonics Rev. 9, 25–49 (2015)

    Article  ADS  Google Scholar 

  13. T.W. Ang, G.T. Reed, A. Vonsovici, A.G.R. Evans, P.R. Routley, M.R. Josey, Effects of grating heights on highly efficient unibond SOI waveguide grating couplers. IEEE Photonics Technol. Lett. 12, 59–61 (2000)

    Article  ADS  Google Scholar 

  14. D. Taillaert, W. Bogaerts, P. Bienstman, T.F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, R. Baets, An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers. IEEE J. Quantum Electron. 38, 949–955 (2002)

    Article  ADS  Google Scholar 

  15. D. Taillaert, F.V. Laere, M. Ayre, W. Bogaerts, D.V. Thourhout, P. Bienstman, R. Baets, Grating couplers for coupling between optical fibers and nanophotonic waveguides. Jpn. J. Appl. Phys. 45, 6071 (2006)

    Article  ADS  Google Scholar 

  16. X. Chen, M.M. Milosevic, S. Stanković, S. Reynolds, T.D. Bucio, K. Li, D.J. Thomson, F. Gardes, G.T. Reed, The emergence of silicon photonics as a flexible technology platform. Proc. IEEE 106, 2101–2116 (2018)

    Article  Google Scholar 

  17. X. Chen, C. Li, H.K. Tsang, Device engineering for silicon photonics. NPG Asia Mater. 3, 34–40 (2011)

    Article  Google Scholar 

  18. X. Chen, C. Li, C.K.Y. Fung, S.M.G. Lo, H.K. Tsang, Apodized waveguide grating couplers for efficient coupling to optical fibers. IEEE Photonics Technol. Lett. 22, 1156–1158 (2010)

    Article  ADS  Google Scholar 

  19. J. Schrauwen, F. Van Laere, D. Van Thourhout, R. Baets, Focused-Ion-Beam fabrication of slanted grating couplers in silicon-on-insulator waveguides. IEEE Photonics Technol. Lett. 19, 816–818 (2007)

    Article  ADS  Google Scholar 

  20. S. Scheerlinck, J. Schrauwen, F.V. Laere, D. Taillaert, D.V. Thourhout, R. Baets, Efficient, broadband and compact metal grating couplers for silicon-on-insulator waveguides. Opt. Express 15, 9625–9630 (2007)

    Article  ADS  Google Scholar 

  21. Y. Ding, C. Peucheret, H. Ou, K. Yvind, Fully etched apodized grating coupler on the SOI platform with −0.58 dB coupling efficiency. Opt. Lett. 39, 5348–5350 (2014)

    Article  ADS  Google Scholar 

  22. L. Liu, M. Pu, K. Yvind, J.M. Hvam, High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure. Appl. Phys. Lett. 96, 051126 (2010)

    Article  ADS  Google Scholar 

  23. X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, R.T. Chen, Complementary metal–oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics. Appl. Phys. Lett. 101, 031109 (2012)

    Article  ADS  Google Scholar 

  24. H. Subbaraman, X. Xu, J. Covey, R.T. Chen, Efficient light coupling into in-plane semiconductor nanomembrane photonic devices utilizing a sub-wavelength grating coupler. Opt. Express 20, 20659–20665 (2012)

    Article  ADS  Google Scholar 

  25. J. Yang, Z. Zhou, H. Jia, X. Zhang, S. Qin, High-performance and compact binary blazed grating coupler based on an asymmetric subgrating structure and vertical coupling. Opt. Lett. 36, 2614–2617 (2011)

    Article  ADS  Google Scholar 

  26. R. Halir, P. Cheben, J.H. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe, Í. Molina-Fernández, Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure. Opt. Lett. 35, 3243–3245 (2010)

    Article  ADS  Google Scholar 

  27. Z. Cheng, X. Chen, C.Y. Wong, K. Xu, H.K. Tsang, Apodized focusing subwavelength grating couplers for suspended membrane waveguides. Appl. Phys. Lett. 101, 101104 (2012)

    Article  ADS  Google Scholar 

  28. Y. Ding, H. Ou, C. Peucheret, Ultrahigh-efficiency apodized grating coupler using fully etched photonic crystals. Opt. Lett. 38, 2732–2734 (2013)

    Article  ADS  Google Scholar 

  29. D. Benedikovic, P. Cheben, J.H. Schmid, D.-X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, M. Dado, Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides. Opt. Express 23, 22628–22635 (2015)

    Article  ADS  Google Scholar 

  30. T. Watanabe, M. Ayata, U. Koch, Y. Fedoryshyn, J. Leuthold, Perpendicular grating coupler based on a blazed antiback-reflection structure. J. Light. Technol. 35, 4663–4669 (2017)

    Article  ADS  Google Scholar 

  31. Z. Cheng, H.K. Tsang, Experimental demonstration of polarization-insensitive air-cladding grating couplers for silicon-on-insulator waveguides. Opt. Lett. 39, 2206–2209 (2014)

    Article  ADS  Google Scholar 

  32. X. Chen, K. Xu, Z. Cheng, C.K.Y. Fung, H.K. Tsang, Wideband subwavelength gratings for coupling between silicon-on-insulator waveguides and optical fibers. Opt. Lett. 37, 3483–3485 (2012)

    Article  ADS  Google Scholar 

  33. Z. Cheng, X. Chen, C.Y. Wong, K. Xu, H.K. Tsang, Broadband focusing grating couplers for suspended-membrane waveguides. Opt. Lett. 37, 5181–5183 (2012)

    Article  ADS  Google Scholar 

  34. X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, R.T. Chen, Colorless grating couplers realized by interleaving dispersion engineered subwavelength structures. Opt. Lett. 38, 3588–3591 (2013)

    Article  ADS  Google Scholar 

  35. Y. Wang, W. Shi, X. Wang, Z. Lu, M. Caverley, R. Bojko, L. Chrostowski, N.A.F. Jaeger, Design of broadband subwavelength grating couplers with low back reflection. Opt. Lett. 40, 4647–4650 (2015)

    Article  ADS  Google Scholar 

  36. A. Sánchez-Postigo, J.G. Wangüemert-Pérez, J.M. Luque-González, Í. Molina-Fernández, P. Cheben, C.A. Alonso-Ramos, R. Halir, J.H. Schmid, A. Ortega-Moñux, Broadband fiber-chip zero-order surface grating coupler with 0.4 dB efficiency. Opt. Lett. 41, 3013–3016 (2016)

    Article  ADS  Google Scholar 

  37. J.H. Schmid, P. Cheben, S. Janz, J. Lapointe, E. Post, D.-X. Xu, Gradient-index antireflective subwavelength structures for planar waveguide facets. Opt. Lett. 32, 1794–1796 (2007)

    Article  ADS  Google Scholar 

  38. Y. Wang, Z. Lu, M. Ma, H. Yun, F. Zhang, N.A.F. Jaeger, L. Chrostowski, Compact broadband directional couplers using subwavelength gratings. IEEE Photonics J. 8, 1–8 (2016)

    Article  Google Scholar 

  39. Z. Cheng, X. Chen, C.Y. Wong, K. Xu, C.K.Y. Fung, Y.M. Chen, H.K. Tsang, Mid-Infrared grating couplers for silicon-on-sapphire waveguides. IEEE Photonics J. 4, 104–113 (2012)

    Article  ADS  Google Scholar 

  40. Z. Cheng, X. Chen, C.Y. Wong, K. Xu, H.K. Tsang, Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator. IEEE Photonics J. 4, 1510–1519 (2012)

    Article  ADS  Google Scholar 

  41. J.S. Penadés, C. Alonso-Ramos, A.Z. Khokhar, M. Nedeljkovic, L.A. Boodhoo, A. Ortega-Moñux, I. Molina-Fernández, P. Cheben, G.Z. Mashanovich, Suspended SOI waveguide with sub-wavelength grating cladding for mid-infrared. Opt. Lett. 39, 5661–5664 (2014)

    Article  ADS  Google Scholar 

  42. W. Zhou, Z. Cheng, X. Wu, X. Sun, H.K. Tsang, Fully suspended slot waveguide platform. J. Appl. Phys. 123, 063103 (2018)

    Article  ADS  Google Scholar 

  43. J. Kang, Z. Cheng, W. Zhou, T.-H. Xiao, K.-L. Gopalakrisna, M. Takenaka, H.K. Tsang, K. Goda, Focusing subwavelength grating coupler for mid-infrared suspended membrane germanium waveguides. Opt. Lett. 42, 2094–2097 (2017)

    Article  ADS  Google Scholar 

  44. T.-H. Xiao, Z. Zhao, W. Zhou, M. Takenaka, H.K. Tsang, Z. Cheng, K. Goda, Mid-infrared germanium photonic crystal cavity. Opt. Lett. 42, 2882–2885 (2017)

    Article  ADS  Google Scholar 

  45. T.-H. Xiao, Z. Zhao, W. Zhou, M. Takenaka, H.K. Tsang, Z. Cheng, K. Goda, High-Q germanium optical nanocavity. Photonics Res. 6, 925–928 (2018)

    Article  Google Scholar 

  46. T.-H. Xiao, Z. Zhao, W. Zhou, C.-Y. Chang, S.Y. Set, M. Takenaka, H.K. Tsang, Z. Cheng, K. Goda, Mid-infrared high-Q germanium microring resonator. Opt. Lett. 43, 2885–2888 (2018)

    Article  ADS  Google Scholar 

  47. Y. Ma, Y. Zhang, S. Yang, A. Novack, R. Ding, A.E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, M. Hochberg, Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect. Opt. Express 21, 29374–29382 (2013)

    Article  ADS  Google Scholar 

  48. Q. Zhong, V. Veerasubramanian, Y. Wang, W. Shi, D. Patel, S. Ghosh, A. Samani, L. Chrostowski, R. Bojko, D.V. Plant, Focusing-curved subwavelength grating couplers for ultra-broadband silicon photonics optical interfaces. Opt. Express 22, 18224–18231 (2014)

    Article  ADS  Google Scholar 

  49. J. Covey, R.T. Chen, Efficient perfectly vertical fiber-to-chip grating coupler for silicon horizontal multiple slot waveguides. Opt. Express 21, 10886–10896 (2013)

    Article  ADS  Google Scholar 

  50. Z. Yu, H. Cui, X. Sun, Genetic-algorithm-optimized wideband on-chip polarization rotator with an ultrasmall footprint. Opt. Lett. 42, 3093–3096 (2017)

    Article  ADS  Google Scholar 

  51. Y. Tong, W. Zhou, H.K. Tsang, Efficient perfectly vertical grating coupler for multi-core fibers fabricated with 193-nm DUV lithography. Opt. Lett. 43, 5709–5712 (2018)

    Article  ADS  Google Scholar 

  52. Y. Tong, W. Zhou, X. Wu, H.K. Tsang, Efficient mode multiplexer for few-mode fibers using integrated silicon-on-insulator waveguide grating coupler. IEEE J. Quantum Electron. 56, 1–7 (2020)

    Article  Google Scholar 

  53. Y. Tong, X. Zhou, Y. Wang, C.-W. Chow, H. K. Tsang, Bridging the graded-index few-mode fibre with photonic integrated circuits via efficient diffraction gratings in European Conference on Integrated Optics, 22nd edition, Paris (2020)

    Google Scholar 

  54. M. Turduev, E. Bor, C. Latifoglu, I.H. Giden, Y.S. Hanay, H. Kurt, Ultracompact photonic structure design for strong light confinement and coupling into nanowaveguide. J. Light. Technol. 36, 2812–2819 (2018)

    Article  ADS  Google Scholar 

  55. J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B.G. DeLacy, J.D. Joannopoulos, M. Tegmark, M. Soljačić, Nanophotonic particle simulation and inverse design using artificial neural networks. Sci. Adv. 4, eaar4206 (2018)

    Google Scholar 

  56. D. Melati, Y. Grinberg, M. Kamandar Dezfouli, S. Janz, P. Cheben, J. H. Schmid, A. Sánchez-Postigo, D.-X. Xu, Mapping the global design space of nanophotonic components using machine learning pattern recognition. Nat. Commun. 10, 4775 (2019)

    Google Scholar 

  57. J.S. Jensen, O. Sigmund, Topology optimization for nano-photonics. Laser Photonics Rev. 5, 308–321 (2011)

    Article  ADS  Google Scholar 

  58. A.Y. Piggott, J. Lu, K.G. Lagoudakis, J. Petykiewicz, T.M. Babinec, J. Vučković, Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat. Photonics 9, 374–377 (2015)

    Article  ADS  Google Scholar 

  59. B. Shen, P. Wang, R. Polson, R. Menon, An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm 2 footprint. Nat. Photonics 9, 378–382 (2015)

    Article  ADS  Google Scholar 

  60. L.F. Frellsen, Y. Ding, O. Sigmund, L.H. Frandsen, Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides. Opt. Express 24, 16866–16873 (2016)

    Article  ADS  Google Scholar 

  61. S. Molesky, Z. Lin, A.Y. Piggott, W. Jin, J. Vucković, A.W. Rodriguez, Inverse design in nanophotonics. Nat. Photonics 12, 659–670 (2018)

    Article  ADS  Google Scholar 

  62. A.Y. Piggott, E.Y. Ma, L. Su, G.H. Ahn, N.V. Sapra, D. Vercruysse, A.M. Netherton, A.S.P. Khope, J.E. Bowers, J. Vučković, Inverse-designed photonics for semiconductor foundries. ACS Photonics 7, 569–575 (2020)

    Article  Google Scholar 

  63. W. Zhou, Y. Tong, X. Sun, H.K. Tsang, Ultra-broadband hyperuniform disordered silicon photonic polarizers. IEEE J. Sel. Top. Quantum Electron. 26, 1–9 (2020)

    Google Scholar 

  64. G. Roelkens, D. Vermeulen, D. Van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, J.-M. Fédéli, High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit. Appl. Phys. Lett. 92, 131101 (2008)

    Article  ADS  Google Scholar 

  65. D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D.V. Thourhout, G. Roelkens, High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform. Opt. Express 18, 18278–18283 (2010)

    Article  ADS  Google Scholar 

  66. S. Amaran, N.V. Sahinidis, B. Sharda, S.J. Bury, Simulation optimization: a review of algorithms and applications. Ann. Oper. Res. 240, 351–380 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  67. Y. Ding, J. Xu, F.D. Ros, B. Huang, H. Ou, C. Peucheret, On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer. Opt. Express 21, 10376–10382 (2013)

    Article  ADS  Google Scholar 

  68. D. Dai, J. Wang, Y. Shi, Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light. Opt. Lett. 38, 1422 (2013)

    Article  ADS  Google Scholar 

  69. W. Zhou, Z. Cheng, X. Sun, H.K. Tsang, Tailorable dual-wavelength-band coupling in a transverse-electric-mode focusing subwavelength grating coupler. Opt. Lett. 43, 2985–2988 (2018)

    Article  ADS  Google Scholar 

  70. W. Zhou, H.K. Tsang, Dual-wavelength-band subwavelength grating coupler operating in the near infrared and extended shortwave infrared. Opt. Lett. 44, 3621–3624 (2019)

    Article  ADS  Google Scholar 

  71. C. Alonso-Ramos, A. Ortega-Moñux, L. Zavargo-Peche, R. Halir, J. de Oliva-Rubio, I. Molina-Fernández, P. Cheben, D.-X. Xu, S. Janz, N. Kim, B. Lamontagne, Single-etch grating coupler for micrometric silicon rib waveguides. Opt. Lett. 36, 2647–2649 (2011)

    Article  ADS  Google Scholar 

  72. W. Zhou, Z. Cheng, X. Chen, K. Xu, X. Sun, H. Tsang, Subwavelength engineering in silicon photonic devices. IEEE J. Sel. Top. Quantum Electron. 25, 1–13 (2019)

    ADS  Google Scholar 

  73. X. Wen, K. Xu, Q. Song, Design of a barcode-like waveguide nanostructure for efficient chip-fiber coupling. Photonics Res. 4, 209–213 (2016)

    Article  Google Scholar 

  74. S. Torquato, F.H. Stillinger, Local density fluctuations, hyperuniformity, and order metrics. Phys. Rev. E 68, 041113 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  75. R.D. Batten, F.H. Stillinger, S. Torquato, Classical disordered ground states: Super-ideal gases and stealth and equi-luminous materials. J. Appl. Phys. 104, 033504 (2008)

    Article  ADS  Google Scholar 

  76. O.U. Uche, F.H. Stillinger, S. Torquato, Constraints on collective density variables: two dimensions. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70, 046122 (2004)

    Google Scholar 

  77. M. Florescu, S. Torquato, P.J. Steinhardt, Designer disordered materials with large, complete photonic band gaps. Proc. Natl. Acad. Sci. 106, 20658–20663 (2009)

    Article  ADS  Google Scholar 

  78. W. Man, M. Florescu, E.P. Williamson, Y. He, S.R. Hashemizad, B.Y.C. Leung, D.R. Liner, S. Torquato, P.M. Chaikin, P.J. Steinhardt, Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids. Proc. Natl. Acad. Sci. 110, 15886–15891 (2013)

    Article  ADS  Google Scholar 

  79. M. Lee, J. Lee, S. Kim, S. Callard, C. Seassal, H. Jeon, Anderson localizations and photonic band-tail states observed in compositionally disordered platform. Sci. Adv. 4, e1602796 (2018)

    Article  ADS  Google Scholar 

  80. W. Zhou, Z. Cheng, B. Zhu, X. Sun, H.K. Tsang, Hyperuniform disordered network polarizers. IEEE J. Sel. Top. Quantum Electron. 22, 288–294 (2016)

    Article  ADS  Google Scholar 

  81. W. Zhou, Y. Tong, X. Sun, H.K. Tsang, Hyperuniform disordered photonic bandgap polarizers. J. Appl. Phys. 126, 113106 (2019)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hon Ki Tsang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsang, H.K., Chen, X., Cheng, Z., Zhou, W., Tong, Y. (2021). Subwavelength Silicon Photonics. In: Lockwood, D.J., Pavesi, L. (eds) Silicon Photonics IV. Topics in Applied Physics, vol 139. Springer, Cham. https://doi.org/10.1007/978-3-030-68222-4_6

Download citation

Publish with us

Policies and ethics