Skip to main content

Optimising Attractor Computation in Boolean Automata Networks

  • Conference paper
  • First Online:
Language and Automata Theory and Applications (LATA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12638))

Abstract

This paper details a method for optimising the size of Boolean automata networks in order to compute their attractors under the parallel update schedule. This method relies on the formalism of modules introduced recently that allows for (de)composing such networks. We discuss the practicality of this method by exploring examples. We also propose results that nail the complexity of most parts of the process, while the complexity of one part of the problem is left open.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aracena, J.: Maximum number of fixed points in regulatory Boolean networks. Bull. Math. Biol. 70, 1398–1409 (2008). https://doi.org/10.1007/s11538-008-9304-7

    Article  MathSciNet  MATH  Google Scholar 

  2. Aracena, J., Richard, A., Salinas, L.: Number of fixed points and disjoint cycles in monotone Boolean networks. SIAM J. Discr. Math. 31, 1702–1725 (2017)

    Article  MathSciNet  Google Scholar 

  3. Bridoux, F., Durbec, N., Perrot, K., Richard, A.: Complexity of maximum fixed point problem in Boolean networks. In: Manea, F., Martin, B., Paulusma, D., Primiero, G. (eds.) CiE 2019. LNCS, vol. 11558, pp. 132–143. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22996-2_12

    Chapter  Google Scholar 

  4. Bridoux, F., Gaze-Maillot, C., Perrot, K., Sené, S.: Complexity of limit-cycle problems in Boolean networks (2020, submitted) arXiv:2001.07391

  5. Davidich, M.I., Bornholdt, S.: Boolean network model predicts cell cycle sequence of fission yeast. PLoS One 3, e1672 (2008)

    Article  Google Scholar 

  6. Demongeot, J., Goles, E., Morvan, M., Noual, M., Sené, S.: Attraction basins as gauges of robustness against boundary conditions in biological complex systems. PLoS One 5, e11793 (2010)

    Article  Google Scholar 

  7. Demongeot, J., Noual, M., Sené, S.: Combinatorics of Boolean automata circuits dynamics. Discrete Appl. Math. 160, 398–415 (2012)

    Article  MathSciNet  Google Scholar 

  8. Floreen, P., Orponen, P.: Counting stable states and sizes of attraction domains in Hopfield nets is hard. In: Proceedings of IJCNN 1989, pp. 395–399. IEEE (1989)

    Google Scholar 

  9. Goldreich, O.: On promise problems: a survey. In: Goldreich, O., Rosenberg, A.L., Selman, A.L. (eds.) Theoretical Computer Science. LNCS, vol. 3895, pp. 254–290. Springer, Heidelberg (2006). https://doi.org/10.1007/11685654_12

    Chapter  Google Scholar 

  10. Goles, E., Salinas, L.: Comparison between parallel and serial dynamics of Boolean networks. Theor. Comput. Sci. 396, 247–253 (2008)

    Article  MathSciNet  Google Scholar 

  11. Ilango, R., Loff, B., Oliveira, I.C.: NP-hardness of circuit minimization for multi-output functions. In: Proceedings of ECCC 2020, pp. TR20-021 (2020)

    Google Scholar 

  12. Kabanets, V., Cai, J.: Circuit minimization problem. In: Proceedings of STOC 2000, pp. 73–79. ACM (2000)

    Google Scholar 

  13. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22, 437–467 (1969)

    Article  MathSciNet  Google Scholar 

  14. Meggido, N., Papadimitriou, C.: A note on total functions, existence theorems, and computational complexity. Technical report, IBM (1989)

    Google Scholar 

  15. Mendoza, L., Alvarez-Buylla, E.R.: Dynamics of the genetic regulatory network for Arabidopsis thaliana flower morphogenesis. J. Theor. Biol. 193, 307–319 (1998)

    Article  Google Scholar 

  16. Noual, M.: Dynamics of circuits and intersecting circuits. In: Dediu, A.-H., Martín-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 433–444. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28332-1_37

    Chapter  MATH  Google Scholar 

  17. Noûs, C., Perrot, K., Sené, S., Venturini, L.: #P-completeness of counting update digraphs, cacti, and a series-parallel decomposition method. In: Proceedings of CiE 2020 (2020, accepted), arXiv:2004.02129

  18. Orponen, P.: Neural networks and complexity theory. In: Havel, I.M., Koubek, V. (eds.) MFCS 1992. LNCS, vol. 629, pp. 50–61. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55808-X_5

    Chapter  Google Scholar 

  19. Perrot, K., Perrotin, P., Sené, S.: A framework for (De)composing with Boolean automata networks. In: Durand-Lose, J., Verlan, S. (eds.) MCU 2018. LNCS, vol. 10881, pp. 121–136. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92402-1_7

    Chapter  Google Scholar 

  20. Perrot, K., Perrotin, P., Sené, S.: On the complexity of acyclic modules in automata networks. In: Chen, J., Feng, Q., Xu, J. (eds.) TAMC 2020. LNCS, vol. 12337, pp. 168–180. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59267-7_15. arXiv:1910.07299

    Chapter  Google Scholar 

  21. Robert, F.: Discrete Iterations: A Metric Study. Springer, Heidelberg (1986). https://doi.org/10.1007/978-3-642-61607-5

    Book  Google Scholar 

  22. Thomas, R.: Boolean formalization of genetic control circuits. J. Theor. Biol. 42, 563–585 (1973)

    Article  Google Scholar 

Download references

Acknowledgements

The works of Kévin Perrot and Sylvain Sené were funded mainly by their salaries as French State agents, affiliated to Aix-Marseille Univ., Univ. de Toulon, CNRS, LIS, UMR 7020, Marseille, France (both) and to Univ. Côte d’Azur, CNRS, I3S, UMR 7271, Sophia Antipolis, France (KP), and secondarily by ANR-18-CE40-0002 FANs project, ECOS-Sud C19E02 project, STIC AmSud CoDANet 19-STIC-03 (Campus France 43478PD) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pacôme Perrotin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Perrot, K., Perrotin, P., Sené, S. (2021). Optimising Attractor Computation in Boolean Automata Networks. In: Leporati, A., Martín-Vide, C., Shapira, D., Zandron, C. (eds) Language and Automata Theory and Applications. LATA 2021. Lecture Notes in Computer Science(), vol 12638. Springer, Cham. https://doi.org/10.1007/978-3-030-68195-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68195-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68194-4

  • Online ISBN: 978-3-030-68195-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics