Skip to main content

The Surface Quality Improvement Methods for FDM Printed Parts: A Review

  • Chapter
  • First Online:

Part of the book series: Materials Forming, Machining and Tribology ((MFMT))

Abstract

The implementation of traditional manufacturing processes is majorly limited by the scale of the manufacturing process and by the shape, size and geometrical nature of the part, and therefore manufacturing industries are sometimes obliged to use equipment and processes to decrease the final costs for the part. Nonetheless, the Fused deposition modeling technique is usually the most favorable additive manufacturing technique that is usually capable of overcoming certain special challenges, including physical properties, bad surface quality, and the use of various products for processing. The fact that the fused deposition modeling technique is best suited to the structure and custom nature of the component to be made, gives them a major competitive advantage. There have been several attempts to enhance surface quality by controlling various process parameters of the fused deposition modeling technique and using specific post-processing and pre-processing techniques including surface finishing methods. The purpose of this analysis is to report on a systemic literary examination of the general field of surface quality improvement methods used for fused deposition modeling printed parts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hassanin H, Elshaer A, Benhadj-Djilali R, Modica F, Fassi I (2018) Surface finish improvement of additive manufactured metal parts. In: Gupta K (ed) Micro and precision manufacturing. Engineering Materials. Springer International Publishing, Cham, pp 145–164. https://doi.org/10.1007/978-3-319-68801-5_7

  2. Kumbhar NN, Mulay AV (2018) Post processing methods used to improve surface finish of products which are manufactured by additive manufacturing technologies: a review. J Inst Eng India Ser C 99(4):481–487. https://doi.org/10.1007/s40032-016-0340-z

    Article  Google Scholar 

  3. Wong CH, Fung E (2015) More toxic goods stored near Tianjin homes. Wall Street J

    Google Scholar 

  4. Campbell RI, Martorelli M, Lee HS (2002) Surface roughness visualisation for rapid prototyping models. Comput Aided Des 34(10):717–725. https://doi.org/10.1016/S0010-4485(01)00201-9

    Article  Google Scholar 

  5. Yang S, Li W (2018) Surface quality and finishing technology. In: Surface finishing theory and new technology. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 1–64. https://doi.org/10.1007/978-3-662-54133-3_1

  6. Thomas DS, Gilbert SW (2014) Costs and cost effectiveness of additive manufacturing, NIST SP 1176. National Institute of Standards and Technology, p NIST SP 1176. https://doi.org/10.6028/NIST.SP.1176

  7. Boschetto A, Bottini L (2015) Surface improvement of fused deposition modeling parts by barrel finishing. Rapid Prototyping J 21(6):686–696. https://doi.org/10.1108/RPJ-10-2013-0105

    Article  Google Scholar 

  8. Dutta D, Prinz FB, Rosen D, Weiss L (2001) Layered manufacturing: current status and future trends. J Comput Inf Sci Eng 1(1):60–71. https://doi.org/10.1115/1.1355029

    Article  Google Scholar 

  9. Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM (2014) Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem 86(7):3240–3253. https://doi.org/10.1021/ac403397r

    Article  Google Scholar 

  10. Chohan JS, Singh R (2017) Pre and post processing techniques to improve surface characteristics of FDM parts: a state of art review and future applications. Rapid Prototyping J 23(3):495–513. https://doi.org/10.1108/RPJ-05-2015-0059

    Article  Google Scholar 

  11. Frazier WE (2014) Metal additive manufacturing: a review. J Materi Eng Perform 23(6):1917–1928. https://doi.org/10.1007/s11665-014-0958-z

    Article  Google Scholar 

  12. Seifi M, Salem A, Beuth J, Harrysson O, Lewandowski JJ (2016) Overview of materials qualification needs for metal additive manufacturing. JOM 68(3):747–764

    Article  Google Scholar 

  13. Tyberg J (1998) Local adaptive slicing for layered manufacturing. Thesis, Virginia Tech

    Google Scholar 

  14. Jain P, Kuthe AM (2013) Feasibility study of manufacturing using rapid prototyping: fdm approach. Procedia Eng 63:4–11. https://doi.org/10.1016/j.proeng.2013.08.275

    Article  Google Scholar 

  15. Lee J, Huang A (2013) Fatigue analysis of FDM materials. Rapid Prototyping J 19(4):291–299. https://doi.org/10.1108/13552541311323290

    Article  Google Scholar 

  16. Singh R, Singh S, Kapoor P (2016) Investigating the surface roughness of implant prepared by combining fused deposition modeling and investment casting. Proc Inst Mech Eng Part E: J Process Mech Eng 230(5):403–410. https://doi.org/10.1177/0954408914557374

    Article  Google Scholar 

  17. Hanus A, Špirutová N, Beňo J (2011) Surface quality of foundry pattern manufactured by FDM method-rapid prototyping. Arch Foundry Eng 11(1):15–20

    Google Scholar 

  18. Körner C (2016) Additive manufacturing of metallic components by selective electron beam melting—a review. Int Mater Rev 61(5):361–377. https://doi.org/10.1080/09506608.2016.1176289

    Article  Google Scholar 

  19. Carter EM, Caldwell B (1993) Return of the mentor: strategies for workplace learning (education policy perspectives). Falmer Press

    Google Scholar 

  20. Yadollahi A, Shamsaei N (2017) Additive manufacturing of fatigue resistant materials: challenges and opportunities. Int J Fatigue 98:14–31. https://doi.org/10.1016/j.ijfatigue.2017.01.001

    Article  Google Scholar 

  21. Grzenda M, Bustillo A (2013) The evolutionary development of roughness prediction models. Appl Soft Comput 13(5):2913–2922. https://doi.org/10.1016/j.asoc.2012.03.070

    Article  Google Scholar 

  22. Pandey PM, Thrimurthulu K, Reddy NV (2004) Optimal part deposition orientation in FDM by using a multicriteria genetic algorithm. Int J Prod Res 42(19):4069–4089. https://doi.org/10.1080/00207540410001708470

  23. Sood AK (2011) Study on parametric optimization of fused deposition modelling (FDM) Process. PhD

    Google Scholar 

  24. Gurrala PK, Regalla SP (2014) DOE based parametric study of volumetric change of FDM parts. Procedia Mater Sci 6:354–360. https://doi.org/10.1016/j.mspro.2014.07.045

    Article  Google Scholar 

  25. Vasudevarao B, Natarajan DP, Henderson M, Razdan A (2000) Sensitivity of RP surface finish to process parameter variation 251. https://doi.org/10.26153/TSW/3045

  26. Vijay P, Danaiah P, Rajesh K (2011) Critical parameters effecting the rapid prototyping surface finish. J Mech Eng Autom 1(1):17–20

    Article  Google Scholar 

  27. Nancharaiah T, Raju DR, Raju VR (2010) An experimental investigation on surface quality and dimensional accuracy of FDM components. Int J Emerg Technol 1(2):106–111

    Google Scholar 

  28. Peng AH (2012) Methods of improving part accuracy during rapid prototyping. AMR 430–432:760–763. https://doi.org/10.4028/www.scientific.net/AMR.430-432.760

    Article  Google Scholar 

  29. Ahn D, Kim H, Lee S (2009) Surface roughness prediction using measured data and interpolation in layered manufacturing. J Mater Process Technol 209(2):664–671. https://doi.org/10.1016/j.jmatprotec.2008.02.050

    Article  Google Scholar 

  30. Luzanin O, Movrin D, Plancak M (2013) Experimental investigation of extrusion speed and temperature effects on arithmetic mean. J Technol Plast 38(2)

    Google Scholar 

  31. Mohan Pandey P, Venkata Reddy N, Dhande SG (2003) Slicing procedures in layered manufacturing: a review. Rapid Prototyping J 9(5):274–288. https://doi.org/10.1108/13552540310502185

    Article  Google Scholar 

  32. Mani K, Kulkarni P, Dutta D (1999) Region-based adaptive slicing. Comput Aided Des 31(5):317–333. https://doi.org/10.1016/S0010-4485(99)00033-0

    Article  MATH  Google Scholar 

  33. Boschetto A, Giordano V, Veniali F (2012) Modelling micro geometrical profiles in fused deposition process. Int J Adv Manuf Technol 61(9–12):945–956. https://doi.org/10.1007/s00170-011-3744-1

    Article  Google Scholar 

  34. Pandey PM, Reddy NV, Dhande SG (2003) Real time adaptive slicing for fused deposition modelling. Int J Mach Tools Manuf 43(1):61–71. https://doi.org/10.1016/S0890-6955(02)00164-5

    Article  Google Scholar 

  35. Spencer JD, Cobb R, Dickens P (1993) Surface finishing techniques for rapid prototyping. Tech Pap Soc Manuf Eng Series

    Google Scholar 

  36. Mali HS, Prajwal B, Gupta D, Kishan J (2018) Abrasive flow finishing of FDM printed parts using a sustainable media. Rapid Prototyping J

    Google Scholar 

  37. Leong KF, Chua CK, Chua GS, Tan CH (1998) Abrasive jet deburring of jewellery models built by stereolithography apparatus (SLA). J Mater Process Technol 83(1–3):36–47. https://doi.org/10.1016/S0924-0136(98)00041-7

    Article  Google Scholar 

  38. Wennerberg A (1996) Experimental study of turned and grit-blasted screw-shaped implants with special emphasis on effects of blasting material and surface topography. Biomaterials 17(1):15–22. https://doi.org/10.1016/0142-9612(96)80750-2

    Article  Google Scholar 

  39. Schmid M, Simon C, Levy G (2009) Finishing of SLS-parts for rapid manufacturing (RM)—a comprehensive approach. Proceedings SFF, pp 1–10

    Google Scholar 

  40. Borras L, Mohr S, Brandt P-Y, Gilliéron C, Eytan A, Huguelet P (2007) Religious beliefs in schizophrenia: their relevance for adherence to treatment. Schizophr Bull 33(5):1238–1246

    Article  Google Scholar 

  41. Fischer M, Schöppner V (2013) Some investigations regarding the surface treatment of Ultem* 9085 parts manufactured with fused deposition modeling. In: 24th annual international solid freeform fabrication symposium, Austin, pp 12–14

    Google Scholar 

  42. Pandey PM, Venkata Reddy N, Dhande SG (2006) Virtual hybrid-FDM system to enhance surface finish. Virtual Phys Prototyping 1(2):101–116. https://doi.org/10.1080/17452750600763905

    Article  Google Scholar 

  43. Vinitha M, Rao A, Mallik M (2012) Optimization of speed parameters in burnishing of samples fabricated by fused deposition modeling. Int J Mech Ind Eng 2(2):10–12

    Google Scholar 

  44. Debnath S, Kunar S, Anasane SS, Bhattacharyya B (2017) Non-traditional micromachining processes: opportunities and challenges. In: Non-traditional micromachining processes. Kibria G, Bhattacharyya B, Davim JP (eds) Materials forming, machining and tribology. Springer International Publishing, Cham, pp 1–59. https://doi.org/10.1007/978-3-319-52009-4_1

  45. Bauri R, Yadav D, Suhas G (2011) Effect of friction stir processing (FSP) on microstructure and properties of Al–TiC in situ composite. Mater Sci Eng A 528(13–14):4732–4739. https://doi.org/10.1016/j.msea.2011.02.085

    Article  Google Scholar 

  46. Rodelas JM (2012) Friction stir processing of Nickel-Base alloys. The Ohio State University

    Google Scholar 

  47. Mukherjee A, Patel NV, Gurjar KC (2017) Review paper on friction stir welding and its impact on environment. IRJET 4:1481–1490

    Google Scholar 

  48. Lyczkowska E, Szymczyk P, Dybala B, Chlebus E (2014) Chemical polishing of scaffolds made of Ti-6Al-7Nb alloy by additive manufacturing. Arch Civil Mech Eng 14:586–594

    Google Scholar 

  49. Pyka G, Burakowski A, Kerckhofs G, Moesen M, Van Bael S, Schrooten J, Wevers M (2012) Surface modification of Ti6Al4V open porous structures produced by additive manufacturing. Adv Eng Mater 14(6):363–370. https://doi.org/10.1002/adem.201100344

    Article  Google Scholar 

  50. Percoco G, Lavecchia F, Galantucci LM (2012) Compressive properties of FDM rapid prototypes treated with a low cost chemical finishing. Res J Appl Sci Eng Technol 4(19):3838–3842

    Google Scholar 

  51. McCullough EJ, Yadavalli VK (2013) Surface modification of fused deposition modeling abs to enable rapid prototyping of biomedical microdevices. J Mater Process Technol 213(6):947–954. https://doi.org/10.1016/j.jmatprotec.2012.12.015

    Article  Google Scholar 

  52. Espalin D, Medina F, Arcaute K, Zinniel B, Hoppe T, Wicker R (2009) Effects of vapor smoothing on ABS part dimensions. In: Proceedings from rapid 2009 conference and exposition, Schaumburg, IL

    Google Scholar 

  53. Daneshmand S, Aghanajafi C, Ahmadi Nadooshan A (2010) The effect of chromium coating in RP technology for airfoil manufacturing. Sadhana 35(5):569–584. https://doi.org/10.1007/s12046-010-0036-7

    Article  Google Scholar 

  54. Impens D, Urbanic RJ (2016) A comprehensive assessment on the impact of post-processing variables on tensile, compressive and bending characteristics for 3D Printed components. Rapid Prototyping J 22(3):591–608. https://doi.org/10.1108/RPJ-02-2015-0018

    Article  Google Scholar 

  55. Ross I, Kumstel J, Bremen S, Willenborg E (2015) Laser polishing of laser additive manufactured surfaces made from Inconel 718 and ASTM F75. Proc ASPE Spring Top Meet Achiev Precis Toler Addit Manuf 60:136–140. https://doi.org/10.3390/app10010183

    Article  Google Scholar 

  56. Chai Y, Li RW, Perriman DM, Chen S, Qin Q-H, Smith PN (2018) Laser polishing of thermoplastics fabricated using fused deposition modelling. Int J Adv Manuf Technol 96(9–12):4295–4302. https://doi.org/10.1007/s00170-018-1901-5

    Article  Google Scholar 

  57. Taufik M, Jain PK (2017) Laser assisted finishing process for improved surface finish of fused deposition modelled parts. J Manuf Process 30:161–177. https://doi.org/10.1016/j.jmapro.2017.09.020

    Article  Google Scholar 

  58. Lambiase F, Genna S, Leone C (2020) Laser finishing of 3D printed parts produced by material extrusion. Optics Lasers Eng 124:105801. https://doi.org/10.1016/j.optlaseng.2019.105801

  59. Chen L, Zhang X (2019) Modification the surface quality and mechanical properties by laser polishing of Al/PLA part manufactured by fused deposition modeling. Appl Surf Sci 492(February):765–775. https://doi.org/10.1016/j.apsusc.2019.06.252

    Article  Google Scholar 

  60. Kumbhar NN, Mulay AV (2016) Finishing of fused deposition modelling (FDM) printed parts by CO2 laser. In: 6th International and 27th all india manufacturing technology, design and research conference (AIMTDR-2016), college of engineering. Pune, Maharashtra, India. Finishing, pp 63–67

    Google Scholar 

  61. Chen L, Zhang X, Wang Y, Osswald TA (2020) Laser polishing of Cu/PLA composite parts fabricated by fused deposition modeling: analysis of surface finish and mechanical properties. Polym Compos 41(4):1356–1368. https://doi.org/10.1002/pc.25459

    Article  Google Scholar 

  62. Krishna AV, Faulcon M, Timmers B, Reddy VV, Barth H, Nilsson G, Rosén BG (2020) Influence of different post-processing methods on surface topography of fused deposition modelling samples. Surf Topogr Metrol Prop 8(1). https://doi.org/10.1088/2051-672X/ab77d7

  63. Taufik M, Jain PK (2016) CNC-assisted selective melting for improved surface finish of FDM parts. Virtual Phys Prototyping 11(4):319–341

    Article  Google Scholar 

  64. Kim J, Cho KS, Hwang JC, Iurascu CC, Park FC (2002) Eclipse-RP: a new RP machine based on repeated deposition and machining. Proc Inst Mech Eng Part K J Multi-Body Dyn 216(1):13–20. https://doi.org/10.1243/146441902760029357

    Article  Google Scholar 

  65. Lee W-C, Wei C-C, Chung S-C (2014) Development of a hybrid rapid prototyping system using low-cost fused deposition modeling and five-axis machining. J Mater Process Technol 214(11):2366–2374. https://doi.org/10.1016/j.jmatprotec.2014.05.004

    Article  Google Scholar 

  66. Applications ITS (2016) Theory and practice theory and practice. J Pastoral Care Coun 30

    Google Scholar 

  67. Gowthaman CLYS (2018) Innovative design, analysis and development practices 1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anoj Meena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hashmi, A.W., Mali, H.S., Meena, A. (2021). The Surface Quality Improvement Methods for FDM Printed Parts: A Review. In: Dave, H.K., Davim, J.P. (eds) Fused Deposition Modeling Based 3D Printing. Materials Forming, Machining and Tribology. Springer, Cham. https://doi.org/10.1007/978-3-030-68024-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68024-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68023-7

  • Online ISBN: 978-3-030-68024-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics