Skip to main content

Solving Large-Scale Interior Eigenvalue Problems to Investigate the Vibrational Properties of the Boson Peak Regime in Amorphous Materials

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering (HPCSE 2019)

Abstract

Amorphous solids, like metallic glasses, exhibit an excess of low frequency vibrational states reflecting the break-up of sound due to the strong structural disorder inherent to these materials. Referred to as the boson peak regime of frequencies, how the corresponding eigenmodes relate to the underlying atomic-scale disorder remains an active research topic. In this paper we investigate the use of a polynomial filtered eigensolver for the computation and study of low frequency eigenmodes of a Hessian matrix located in a specific interval close to the boson peak regime. A distributed-memory parallel implementation of a polynomial filtered eigensolver is presented. Our implementation, based on the Trilinos framework, is then applied to a Hessian matrix of an atomistic bulk metallic glass structure derived from a molecular dynamics simulation for the computation of eigenmodes close to the boson peak. In addition, we study the parallel scalability of our implementation on multicore nodes. Our resulting calculations successfully concur with previous atomistic results, and additionally demonstrate a broad cross-over of boson peak frequencies within which sound is seen to break-up.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www-users.cs.umn.edu/~saad/software/EVSL/.

  2. 2.

    https://trilinos.org/packages/.

  3. 3.

    https://portal.hdfgroup.org/.

  4. 4.

    https://math.nist.gov/MatrixMarket/.

  5. 5.

    https://scicomp.ethz.ch/wiki/Euler.

  6. 6.

    https://www.hpcg-benchmark.org/.

  7. 7.

    https://www.cs.virginia.edu/stream/.

References

  1. Accaputo, G.: Solving large scale eigenvalue problems in amorphous materials. Master’s thesis, ETH Zurich, Computer Science Department (2017). https://doi.org/10.3929/ethz-b-000221499

  2. Accaputo, G., Derlet, P.M., Arbenz, P.: Solving large-scale interior eigenvalue problems to investigate the vibrational properties of the boson peak regime in amorphous materials. Print Archive: arXiv:1902.07041 [physics.comp-ph] (2019)

  3. Aktulga, H.M., Buluç, A., Williams, S., Yang, C.: Optimizing sparse matrix-multiple vectors multiplication for nuclear configuration interaction calculations. In: International Parallel and Distributed Processing Symposium (IPDPS), pp. 1213–1222 (2014)

    Google Scholar 

  4. Arbenz, P., Hetmaniuk, U.L., Lehoucq, R.B., Tuminaro, R.: A comparison of eigensolvers for large-scale 3D modal analysis using AMG-preconditioned iterative methods. Int. J. Numer. Methods Eng. 64, 204–236 (2005)

    Article  MATH  Google Scholar 

  5. Avron, H., Toledo, S.: Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix. J. ACM 58, 8:1–8:34 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baker, C.G., Hetmaniuk, U.L., Lehoucq, R.B., Thornquist, H.K.: Anasazi software for the numerical solution of large-scale eigenvalue problems. ACM Trans. Math. Softw. 36, 1–23 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. van Barel, M.: Designing rational filter functions for solving eigenvalue problems by contour integration. Linear Algebra Appl. 502, 346–365 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Barrett, R., et al.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia (1994)

    Book  Google Scholar 

  9. Bekas, C., Kokiopoulou, E., Saad, Y.: Polynomial filtered Lanczos iterations with applications in density functional theory. SIAM J. Matrix Anal. Appl. 30, 397–418 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bell, R.J., Dean, P.: Atomic vibrations in vitreous silica. Discuss. Faraday Soc. 50, 55–61 (1970)

    Article  Google Scholar 

  11. Berthier, L., Charbonneau, P., Jin, Y., Parisi, G., Seoane, B., Zamponi, F.: Growing timescales and lengthscales characterizing vibrations of amorphous solids. Proc. Nat. Acad. Sci. 113, 8397–8401 (2016)

    Article  Google Scholar 

  12. Derlet, P.M., Maaß, R.: Thermal processing and enthalpy storage of a binary amorphous solid: a molecular dynamics study. J. Mater. Res. 32, 2668–2679 (2017)

    Article  Google Scholar 

  13. Derlet, P.M., Maaß, R.: Local volume as a robust structural measure and its connection to icosahedral content in a model binary amorphous system. Materialia 3, 97–106 (2018)

    Article  Google Scholar 

  14. Derlet, P.M., Maaß, R.: Thermally-activated stress relaxation in a model amorphous solid and the formation of a system-spanning shear event. Acta Mater. 143, 205–213 (2018)

    Article  Google Scholar 

  15. Derlet, P.M., Maaß, R., Löffler, J.F.: The Boson peak of model glass systems and its relation to atomic structure. Eur. Phys. J. B 85, 1–20 (2012)

    Article  Google Scholar 

  16. Fang, H.R., Saad, Y.: A filtered Lanczos procedure for extreme and interior eigenvalue problems. SIAM J. Sci. Comput. 34, A2220–A2246 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. FUJITSU Server Performance Report PRIMERGY RX2540 M4. White paper, version 1.3. Fujitsu Corporation, 17 November 2018 (2018)

    Google Scholar 

  18. Galgon, M., et al.: Improved coefficients for polynomial filtering in ESSEX. In: Sakurai, T., Zhang, S.-L., Imamura, T., Yamamoto, Y., Kuramashi, Y., Hoshi, T. (eds.) EPASA 2015. LNCSE, vol. 117, pp. 63–79. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62426-6_5

    Chapter  Google Scholar 

  19. Hutchinson, M.F.: A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines. Commun. Stat. Simulat. Comput. 19, 433–450 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jay, L.O., Kim, H., Saad, Y., Chelikowsky, J.R.: Electronic structure calculations for plane-wave codes without diagonalization. Comput. Phys. Commun. 118, 21–30 (1999)

    Article  MATH  Google Scholar 

  21. Krämer, L., Di Napoli, E., Galgon, M., Lang, B., Bientinesi, P.: Dissecting the FEAST algorithm for generalized eigenproblems. J. Comput. Appl. Math. 244, 1–9 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kreutzer, M., Pieper, A., Hager, G., Wellein, G., Alvermann, A., Fehske, H.: Performance engineering of the kernel polynomial method on large-scale CPU-GPU systems. In: International Parallel and Distributed Processing Symposium (IPDPS), pp. 417–426 (2015)

    Google Scholar 

  23. Leonforte, F., Boissière, R., Tanguy, A., Wittmer, J.P., Barrat, J.L.: Continuum limit of amorphous elastic bodies. III. Three-dimensional systems. Phys. Rev. B 72, 224206 (2005)

    Article  Google Scholar 

  24. Li, R., Xi, Y., Vecharynski, E., Yang, C., Saad, Y.: A thick-restart Lanczos algorithm with polynomial filtering for Hermitian eigenvalue problems. SIAM J. Sci. Comput. 38, A2512–A2534 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liang, Z., Keblinski, P.: Sound attenuation in amorphous silica at frequencies near the boson peak. Phys. Rev. B 93, 054205 (2016)

    Article  Google Scholar 

  26. Lin, L., Saad, Y., Yang, C.: Approximating spectral densities of large matrices. SIAM Rev. 58, 34–65 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Marruzzo, A., Schirmacher, W., Fratalocchi, A., Ruocco, G.: Heterogeneous shear elasticity of glasses: the origin of the boson peak. Sci. Rep. 3, 1407 (2013)

    Article  Google Scholar 

  28. Monaco, G., Mossa, S.: Anomalous properties of the acoustic excitations in glasses on the mesoscopic length scale. Proc. Nat. Acad. Sci. 106, 16907–16912 (2009)

    Article  Google Scholar 

  29. di Napoli, E., Polizzi, E., Saad, Y.: Efficient estimation of eigenvalue counts in an interval. Numer. Linear Algebra Appl. 23, 674–692 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Parlett, B.N.: The Symmetric Eigenvalue Problem. Prentice Hall, Upper Saddle River (1980)

    MATH  Google Scholar 

  31. Pieper, A., et al.: High-performance implementation of Chebyshev filter diagonalization for interior eigenvalue computations. J. Comput. Phys. 325, 226–243 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rivlin, T.J.: An Introduction to the Approximation of Functions. Dover, New York (1981)

    MATH  Google Scholar 

  33. Saad, Y.: Numerical Methods for Large Eigenvalue Problems, 2nd edn. SIAM, Philadelphia (2011)

    Book  MATH  Google Scholar 

  34. Schaffner, S.: Using Trilinos to solve large scale eigenvalue problems in amorphous materials. Master’s thesis, ETH Zurich, Computer Science Department (2015)

    Google Scholar 

  35. Schirmacher, W.: The boson peak. Phys. Status Solidi B 250, 937–943 (2013)

    Article  Google Scholar 

  36. Schirmacher, W., Ruocco, G., Scopigno, T.: Acoustic attenuation in glasses and its relation with the boson peak. Phys. Rev. Lett. 98, 025501 (2007)

    Article  Google Scholar 

  37. Schirmacher, W., Scopigno, T., Ruocco, G.: Theory of vibrational anomalies in glasses. J. Non-Cryst. Solids 407, 133–140 (2015)

    Article  Google Scholar 

  38. Schofield, G., Chelikowsky, J.R., Saad, Y.: A spectrum slicing method for the Kohn–Sham problem. Comput. Phys. Commun. 183, 497–505 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Shintani, H., Tanaka, H.: Universal link between the boson peak and transverse phonons in glass. Nat. Mater. 7, 870–877 (2008)

    Article  Google Scholar 

  40. Silver, R.N., Röder, H.: Calculation of densities of states and spectral functions by Chebyshev recursion and maximum entropy. Phys. Rev. E 56, 4822–4829 (1997)

    Article  Google Scholar 

  41. Silver, R.N., Röder, H., Voter, A.F., Kress, J.D.: Kernel polynomial approximations for densities of states and spectral functions. J. Comput. Phys. 124, 115–130 (1996)

    Article  MATH  Google Scholar 

  42. Sleijpen, G.L.G., van den Eshof, J.: On the use of harmonic Ritz pairs in approximating internal eigenpairs. Linear Algebra Appl. 358, 115–137 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sleijpen, G.L.G., van der Vorst, H.A.: A Jacobi–Davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Anal. Appl. 17, 401–425 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  44. Trefethen, L.N.: Approximation Theory and Approximation Practice. SIAM, Philadelphia (2013)

    MATH  Google Scholar 

  45. The Trilinos Project Home Page. https://trilinos.github.io

  46. Wahnström, G.: Molecular-dynamics study of a supercooled 2-component Lennard–Jones system. Phys. Rev. A 44, 3752–3764 (1991)

    Article  Google Scholar 

  47. Weiße, A., Wellein, G., Alvermann, A., Fehske, H.: The kernel polynomial method. Rev. Mod. Phys. 78, 275–306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wu, K., Simon, H.D.: Thick-restart Lanczos method for large symmetric eigenvalue problems. SIAM J. Matrix Anal. Appl. 22, 602–616 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  49. Xu, N., Wyart, M., Liu, A.J., Nagel, S.R.: Excess vibrational modes and the Boson peak in model glasses. Phys. Rev. Lett. 98, 175502 (2007)

    Article  Google Scholar 

  50. Yamazaki, I., Tadano, H., Sakurai, T., Ikegami, T.: Performance comparison of parallel eigensolvers based on a contour integral method and a Lanczos method. Parallel Comput. 39, 280–290 (2013)

    Article  MathSciNet  Google Scholar 

  51. Zhou, Y., Saad, Y., Tiago, M.L., Chelikowsky, J.R.: Self-consistent field calculations using Chebyshev-filtered subspace iteration. J. Comput. Phys. 219, 172–184 (2006)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The computations have been executed on the Euler compute cluster at ETH Zurich at the expense of a grant of the Seminar for Applied Mathematics. We acknowledge the assistance of the Euler Cluster Support Team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Arbenz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Accaputo, G., Derlet, P.M., Arbenz, P. (2021). Solving Large-Scale Interior Eigenvalue Problems to Investigate the Vibrational Properties of the Boson Peak Regime in Amorphous Materials. In: Kozubek, T., Arbenz, P., Jaroš, J., Říha, L., Šístek, J., Tichý, P. (eds) High Performance Computing in Science and Engineering. HPCSE 2019. Lecture Notes in Computer Science(), vol 12456. Springer, Cham. https://doi.org/10.1007/978-3-030-67077-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67077-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67076-4

  • Online ISBN: 978-3-030-67077-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics