Skip to main content

Genetic Improvement of Yardlong Bean (Vigna unguiculata (L.) Walp. ssp. sesquipedalis (L.) Verdc.)

  • Chapter
  • First Online:

Abstract

Vigna unguiculata (L.) Walp. ssp. sesquipedalis (L.) Verdc. is commonly known as asparagus bean, Chinese long bean, long-podded cowpea, pea bean, snake bean or yardlong bean, and is an underexploited crop with rich nutritional value. Yardlong bean has evolved and was domesticated from cowpea but differs phenotypically as a result of divergent selection. This crop has its origin in Southeast Asia and its habitat in Asia, Europe, Oceania and North America. It is a warm season crop and besides being a food source, it is used as an ornamental plant and for fodder. Ample germplasm diversity exists in this crop. Major commercial varieties were developed by pure line selection. At present, other breeding methods and principles have limited scope. The presence of genetic diversity in this crop needs to be studied with molecular tools. DNA marker analysis with RAPDs, SSRs and SNPs has begun in yardlong bean. However, genomic studies need to be further developed for the construction of high-density genetic maps and application of modern biotechnology tools. This chapter is an overview of yardlong bean origin, evolution and domestication, general cultivation practices, germplasm biodiversity, characterization, conservation strategies, world and Indian gene banks, biotic and abiotic stress tolerance and crop improvement strategies including conventional breeding, biotechnology, tissue culture and micropropagation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aasim M (2010) In vitro shoot regeneration of NAA-pulse treated plumular leaf explants of cowpea. Not Sci Biol 2(2):60–63

    Article  CAS  Google Scholar 

  • Aasim M, Khawar KM, Özcan S (2009a) Comparison of shoot regeneration on different concentrations of thidiazuron from shoot tip explant of cowpea on gelrite and agar containing medium. Not Bot Hort Agrobot 37(1):89–93

    CAS  Google Scholar 

  • Aasim M, Khawar KM, Özcan S (2009b) In vitro micropropagation from plumular apices of Turkish cowpea (Vigna unguiculata L.) cultivar Akkiz. Sci Hortic 122(3):468–471

    Article  CAS  Google Scholar 

  • Abdallah NA, Prakash CS, McHughen AG (2015) Genome editing for crop improvement: challenges and opportunities. GM Crops Food 6(4):183–205

    Article  PubMed  Google Scholar 

  • Agbicodo EM, Fatokun CA, Muranaka S, Visser RG (2009) Breeding drought tolerant cowpea: constraints, accomplishments, and future prospects. Euphytica 167(3):353–370

    Article  Google Scholar 

  • Agrawal A, Singh S, Malhotra EV et al (2019) In vitro conservation and cryopreservation of clonally propagated horticultural species. In: Rajasekharan P, Rao V (eds) Conservation and utilization of horticultural genetic resources. Springer, Singapore, pp 529–578

    Chapter  Google Scholar 

  • Al-Atawneh N, Amri A, Assi R et al (2008) Management plans for promoting in situ conservation of local agrobiodiversity in the West Asia centre of plant diversity. In: Maxted N (ed) Crop wild relative conservation and use. CAB International, Wallingford, pp 338–361

    Google Scholar 

  • Ali M, Farooq U, Shih YY (2002) Vegetable research and development in the ASEAN region: a guideline for setting priorities. In: Perspectives of ASEAN cooperation in vegetable research and development. Asian Vegetable Research and Development Center, Shanhua, pp 20–64

    Google Scholar 

  • Aliyu RE, Ibigbemi SS, Azeez WA et al (2016) Photoautotrophic tissue culture of cowpea (Vigna unguiculata L Walp.). Int J Sci Eng Res 7(2):352–361

    Google Scholar 

  • Anand RP, Ganapathi A, Anbazhagan VR et al (2000) High frequency plant regeneration via somatic embryogenesis in cell suspension cultures of cowpea, Vigna unguiculata (L.) Walp. In Vitro Cell Dev Biol Plant 36(6):475–480

    Article  CAS  Google Scholar 

  • Andy P (2016) Abiotic stress tolerance in plants. Plant Sci 7:1–9

    Google Scholar 

  • Anonymous (1983) Biosphere reserves. Indian approach. Indian National MAB Committee, Department of Environment, New Delhi

    Google Scholar 

  • Anonymous (1987) Biosphere reserves. In: Proceedings of 1st national Symposium. Udhagamandalum, Ministry of Environment and Forests, New Delhi

    Google Scholar 

  • Aragão FJL, Campos FAP (2007) Common bean and cowpea. In: Pua EC, Davey MR (eds) Transgenic crops IV. Springer, Berlin, pp 263–276

    Chapter  Google Scholar 

  • Arora L, Narula A (2017) Gene editing and crop improvement using CRISPR-Cas9 system. Front Plant Sci 8:1932

    Article  PubMed  PubMed Central  Google Scholar 

  • Asoontha, Abraham M (2017) Variability and genetic diversity in yard long bean (Vigna unguiculata subsp. sesquipedalis). Int J Curr Microbiol App Sci 6(9):3646–3654

    Article  Google Scholar 

  • Bahar H, Islam A, Mannan A, Uddin J (2007) Effectiveness of some botanical extracts on bean aphids attacking yard-long beans. J Entomol 4(2):136–142

    Article  Google Scholar 

  • Bakshi S, Sahoo L (2013) How relevant is recalcitrance for the recovery of transgenic cowpea: implications of selection strategies. J Plant Growth Regul 32:148–158

    Article  CAS  Google Scholar 

  • Bakshi S, Sadhukhan A, Mishra S, Sahoo L (2011) Improved Agrobacterium-mediated transformation of cowpea via sonication and vacuum infiltration. Plant Cell Rep 30:2281–2292

    Article  CAS  PubMed  Google Scholar 

  • Begum E, Hussain M, Talucdar FA (1991) Relative effectiveness of some granular insecticides against mustard aphid, Lipaphis insecticides against mustard aphid, Lipaphis erysimi (Kalt). Bang J Agric Sci 18:49–52

    Google Scholar 

  • Benchasri S, Bairaman C, Nualsri C (2012) Evaluation of yard long bean and cowpea for resistance to Aphis craccivora Koch in southern part of Thailand. J Anim Plant Sci 22:1024–1029

    Google Scholar 

  • Benson EE, Harding K, Debouck D et al (2011) Refinement and standardization of storage procedures for clonal crops – global public goods phase 2: Part II. Status of In Vitro conservation technologies for: Andean root and tuber crops, cassava, musa, potato, sweet potato and yam. System-wide genetic resources programme, Rome, Italy

    Google Scholar 

  • Bett B, Gollasch S, Moore A et al (2019) An improved transformation system for cowpea (Vigna unguiculata L. Walp) via sonication and a kanamycin-geneticin selection regime. Front Plant Sci 10:219

    Article  PubMed  PubMed Central  Google Scholar 

  • Bland RG, Knausenberger WI (1985) Predators and parasites of insect pests on cantaloupe and asparagus bean, St. Croix, U.S. Virgin Islands. In: Proceedings of caribbean food crops society annual meeting, pp 56–60

    Google Scholar 

  • Boukar O, Fatokun CA, Huynh BL et al (2016) Genomic tools in cowpea breeding programs: status and perspectives. Front Plant Sci 7:757

    Article  PubMed  PubMed Central  Google Scholar 

  • Bounnhong V (1997) Yardlong bean varietal trial. In: Proceedings of the 15th regional training course in vegetable production and research. Nakornpathom, ARC-AVRDC, pp 211–214

    Google Scholar 

  • Brar MS, Al-Khayri JM, Shamblin CE et al (1999a) In vitro shoot tip multiplication of cowpea Vigna unguiculata (L.) Walp. In Vitro Cell Dev Plant 33(2):114–118

    Article  Google Scholar 

  • Brar MS, Al-Khayri JM, Morelock TE, Anderson EJ (1999b) Genotypic response of cowpea Vigna unguiculata (L.) to in vitro regeneration from cotyledon explants. In Vitro Cell Dev Plant 35(1):8–12

    Article  CAS  Google Scholar 

  • Carvalho M, Munoz-Amatrian M, Castro I et al (2017) Genetic diversity and structure of Iberian Peninsula cowpeas compared to world-wide cowpea accessions using high density SNP markers. BMC Genomics 18(1):891

    Article  PubMed  PubMed Central  Google Scholar 

  • Chanapan D, Benchasri S, Simla S (2017) Investigation of inorganic and organic agricultural systems for Vigna spp. production in Thailand. Aust J Crop Sci 11(5):585

    Article  CAS  Google Scholar 

  • Chaudhury D, Madanpotra S, Jaiwal R et al (2007) Agrobacterium tumefaciens-mediated high frequency genetic transformation of an Indian cowpea (Vigna unguiculata L. Walp.) cultivar and transmission of transgenes into progeny. Plant Sci 172(4):692–700

    Article  CAS  Google Scholar 

  • Chekroun C, Belkhodja M (2017) In vitro micropropagation and plants regeneration of Cowpea (Vigna unguiculata (L.) Walp) from cotyledonary node. Int J Innov Appl Stud 21(2):247–253

    CAS  Google Scholar 

  • Chowdhury MA, Vandenberg V, Warkentin T (2002) Cultivar identification and genetic relationship among selected breeding lines and cultivars in chickpea (Cicer arietinum L.). Euphytica 127:317–325

    Article  CAS  Google Scholar 

  • Crisp P, Astley D (1985) Genetic resources in vegetables. In: Russel GE (ed) Progress in plant breeding. Butterworths, London, pp 281–310

    Chapter  Google Scholar 

  • Dadmal KD, Navhale VC (2011) Induction of callus from cowpea [Vigna unguiculata (L.) Walp] through in vitro culture. Int J Plant Sci 6(1):27–30

    CAS  Google Scholar 

  • DePauw RM, Shebeski LH (1973) An evaluation of an early generation yield testing procedure in Triticum aestivum. Can J Plant Sci 53(3):465–470

    Article  Google Scholar 

  • Diallo MS, Ndiaye A, Sagna M, Gassama-Dia YK (2008) Plants regeneration from African cowpea variety (Vigna unguiculata L. Walp.). Afric. J Biotech 7(16):2828–2833

    CAS  Google Scholar 

  • FAO (2010) The second report on the state of the world’s plant genetic resources for food and agriculture, Rome

    Google Scholar 

  • FAOIAEA (2019). https://mvd.iaea.org/. Accessed on 9 Dec 2019

  • Fatokun CA, Singh BB (1987) Interspecific hybridization between Vigna pubescens and V. unguiculata [L.] Walp. through embryo rescue. Plant Cell Tiss Org Cult 9:229–233

    Article  Google Scholar 

  • Fery RL (2002) New opportunities in Vigna. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS Press, Alexandria, pp 424–428

    Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soyabean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Garcia JA, Hille J, Goldbach R (1986) Transformation of cowpea Vigna unguiculata cells with an antibiotic resistance gene using a Ti-plasmid-derived vector. Plant Sci 44(1):37–46

    Article  CAS  Google Scholar 

  • Garcia JA, Hille J, Vos P, Goldbach R (1987) Transformation of cowpea Vigna unguiculata with a full-length DNA copy of cowpea mosaic virus M-RNA. Plant Sci 48(2):89–98

    Article  CAS  Google Scholar 

  • Grubben GJH (1993) Vigna unguiculata (L.) Walp. cv. group sesquipedalis. In: Siemonsma JS, Piluek K (eds) Plant resources of south-east asia no 8. Vegetables Pudoc Scientific Publishers, Wageningen, pp 274–278

    Google Scholar 

  • Hanson PR, Jenkins G, Westcott B (1979) Early generation selection in a cross of spring barley. Zeitschrift fuer Pflanzenzuechtung, Germany, FR

    Google Scholar 

  • Harlan JR (1966) Plant introductions and biosystematics. In: Frey KJ (ed) Plant breeding. Iowa State University Press, Ames, pp 55–83

    Google Scholar 

  • Headings ME, Morris L, Hammel J (2008) Description of extrafloral nectaries found on yard-long beans, Vigna unguiculata L. Walp Ohio J Sci 108(1):1–5

    Google Scholar 

  • Heidarvand L, Amiri RM (2010) What happens in plant molecular responses to cold stress? Acta Physiol Plant 32(3):419–431

    Article  CAS  Google Scholar 

  • Heiser CB (1990) Seed to civilization: the story of food. Harvard University Press, Cambridge, MA

    Book  Google Scholar 

  • Henshaw FO, Sanni SA (1995) The effects of seed physical properties and chemical composition on cooking properties of seven cowpea (Vigna unguiculata) varieties. Niger Food J 13:53–63

    Google Scholar 

  • Huang H, Tan H, Xu D et al (2018) High-density genetic map construction and comparative genome analysis in asparagus bean. Sci Rep 8(1):1–9

    Google Scholar 

  • Huque AM, Hossain MK, Alam N et al (2012) Genetic divergence in yardlong bean (Vigna unguiculata (L.) Walp. ssp. sesquipedalis Verdc). Bangl J Bot 41(1):61–69

    Article  Google Scholar 

  • Ikea J, Ingelbrecht I, Uwaifo A, Thottappilly G (2003) Stable gene transformation in cowpea (Vigna unguiculata L. Walp.) using particle gun method. Afr J Biotechnol 2(8):211–218

    Article  CAS  Google Scholar 

  • Isaac SR, Mathew B (2016) Influence of nutrient source on yield, quality and economics of seed production in vegetable cowpea (Vigna unguiculata ssp. sesquipedalis). J Hortic Sci 11(1):72–75

    Google Scholar 

  • Jahan I, Alam N, Roy PK (2015) Micropropagation of yardlong bean (Vigna unguiculata (L.) Walsp. ssp. sesquipedalis L. Verdc.) through in vitro culture. Bangladesh J Bot 44(2):345–350

    Article  Google Scholar 

  • Jain HK, Kharkwal MC (eds) (2012) Plant breeding: mendelian to molecular approaches. Springer, Dordrecht

    Google Scholar 

  • Jarvis DI, Myer L, Klemick H et al (2000) A training guide for in situ conservation on-farm. version 1. International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Ji J, Zhang C, Sun Z et al (2019) Genome editing in cowpea Vigna unguiculata using CRISPR-Cas9. Int J Mol Sci 20(10):2471

    Article  CAS  PubMed Central  Google Scholar 

  • Kaga A, Isemura T, Tomooka N, Vaughan DA (2008) The genetics of domestication of the azuki bean (Vigna angularis). Genetics 178(2):1013–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamala V, Aghora TS, Sivaraj N et al (2014) Germplasm collection and diversity analysis in yardlong bean (Vigna unguiculata subsp. sesquipedalis) from coastal Andhra Pradesh and Odisha. Indian J Plant Genet Resour 27(2):171–177

    Article  Google Scholar 

  • Kameswara RN (2004) Biotechnology for plant resources conservation and use. Principles of seed handling in genebanks training course, Kampala, Uganda

    Google Scholar 

  • Kartha KK, Pahl K, Leung NL, Mroginski LA (1981) Plant regeneration from meristems of grain legumes: soybean, cowpea, peanut, chickpea, and bean. Can J Bot 59(9):1671–1679

    Article  CAS  Google Scholar 

  • Kongjaimun A, Kaga A, Tomooka N et al (2012) The genetics of domestication of yardlong bean, Vigna unguiculata (L.) Walp. ssp. unguiculata cv.-gr. sesquipedalis. Ann Bot 109(6):1185–1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kononowicz AK, Murdock LL, Shade RE et al (1997) Developing a transformation system for cowpea (Vigna unguiculata [L.] Walp.). In: Singh BB (ed) Advances in cowpea research. Copublication of IITA and JIRCAS, Ibadan, pp 361–371

    Google Scholar 

  • Kulothungan S, Ganapathi A, Shajahan A, Kathiravan K (1995) Somatic embryogenesis in cell suspension culture of cowpea (Vigna unguiculata (L.) Walp). Isr J Plant Sci 43(4):385–390

    Article  Google Scholar 

  • Kuo CG (2002) Perspectives of ASEAN cooperation in vegetable research and development. In: Proceedings of the forum on the ASEAN-AVRDC regional network on vegetable research and development (AARNET) (No. Research) AVRDC

    Google Scholar 

  • Le BUI, De Carvalho MHC, Zuily-Fodil Y et al (2002) Direct whole plant regeneration of cowpea [Vigna unguiculata (L.) Walp] from cotyledonary node thin cell layer explants. J Plant Physiol 159(11):1255–1258

    Article  Google Scholar 

  • Lestari MW, Arfarita N, Sharma A, Purkait B (2019) Tolerance mechanisms of Indonesian plant varieties of yardlong beans (Vigna unguiculata subsp. sesquipedalis) against drought stress. Indian J Agric Sci 53(2):223–227

    Google Scholar 

  • Li G, Liu Y, Ehlers JD et al (2007) Identification of an AFLP fragment linked to rust resistance in asparagus bean and its conversion to a SCAR marker. Hortic Sci 42(5):1153–1156

    CAS  Google Scholar 

  • Lingaraj S, Sugla T, Singh ND, Jaiwal PK (2000) In vitro plant regeneration and recovery of cowpea (Vigna unguiculata) transformants via Agrobacterium-mediated transformation. Plant Cell Biotech Mol Biol 1(1/2):47–54

    Google Scholar 

  • Lulsdorf MM, Croser JS, Ochatt S (2011) Androgenesis and doubled-haploid production in food legumes. Biol Breed Food Legum 159:159–177

    Article  Google Scholar 

  • Manjesh M, Adivappar N, Jayalakshmi K, Girijesh GK (2018) Effect of plant spacing on yield and rust disease incidence of yardlong bean (Vigna unguiculata subsp. sesquipedalis) in southern transitional zone of Karnataka. J Pharmacogn Phytother 7(2):1246–1248

    Google Scholar 

  • Manjesh M, Adivappar N, Srinivasa V, Girijesh GK (2019) Effect of plant densities and different environments on productivity and profitability of yardlong bean (Vigna unguiculata subsp. sesquipedalis). Legum Res Int J 42(3):348–353

    Google Scholar 

  • Manoharan M, Khan S, James OG (2008) Improved plant regeneration in cowpea through shoot meristem. J Appl Hortic 10(1):40–43

    Article  Google Scholar 

  • Mao JQ, Zaidi MA, Arnason JT, Altosaar I (2006) In vitro regeneration of Vigna unguiculata (L.) Walp. cv. blackeye cowpea via shoot organogenesis. Plant Cell Tiss Org 87(2):121–125

    Article  CAS  Google Scholar 

  • Maríchal R, Mascherpa JM, Stainer F (1978) Etude taxonomique d’un groupe complexe d’speces des genres Phaseolus et Vigna (Papilionaceae) sur la base de donnees morphologiques et polliniques, traitees par l’analyse informatique. Boissiera 28:244

    Google Scholar 

  • Maxted N, Hawkes JG, Ford-Lloyd BV, Williams JT (1997) A practical model for in situ genetic conservation complementary conservation strategies. In: Maxted N, Ford-Lloyd BV, Hawkes JG (eds) Plant genetic conservation: the in situ approach. Chapman and Hall, London, pp 339–367

    Chapter  Google Scholar 

  • Maxted N, Mabuza-Diamini P, Moss H et al (2004) Systematic and ecogeographic studies on crop genepools 11: an ecogeographic study African Vigna. International Plant Genetic Resources Institute (IPGRI), Rome, 454 p, https://cgspace.cgiar.org/bitstream/handle/10568/105017/1041.pdf?sequence=3&isAllowed=y

  • Maxted N, Dulloo E, Ford-Lloyd BV et al (2008) Gap analysis: a tool for complementary genetic conservation assessment. Divers Distrib 14:1018–1030

    Article  Google Scholar 

  • Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16:237–251

    Article  CAS  PubMed  Google Scholar 

  • Mishra SD (1992) Nematode pests of pulse crops. In: Bhatti DS, Walia RK (eds) Nematodes pests of vegetable crops. CBS Publishers and Distributors, New Delhi, p 140

    Google Scholar 

  • Moray C, Game ET, Maxted N (2014) Prioritizing in situ conservation of crop resources: a case study of African cowpea (Vigna unguiculata). Sci Rep 17(4):5247

    Article  Google Scholar 

  • Muchero W, Diop NN, Bhat PR et al (2009) A consensus genetic map of cowpea [Vigna unguiculata (L) Walp.] and synteny based on EST-derived SNPs. Proc Natl Acad Sci 106(43):18159–18164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muñoz-Perea CG, Teran H, Allen RG et al (2006) Selection for drought resistance in dry bean landraces and cultivars. Crop Sci 46(5):2111–2120

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Muthukumar B, Mariamma M, Gnanam A (1995) Regeneration of plants from primary leaves of cowpea. Plant Cell Tiss Org 42(2):153–155

    Article  Google Scholar 

  • Muthukumar B, Mariamma M, Veluthambi K, Gnanam A (1996) Genetic transformation of cotyledon explants of cowpea (Vigna unguiculata L. Walp.) using Agrobacterium tumefaciens. Plant Cell Rep 15:980–985

    CAS  PubMed  Google Scholar 

  • Nanda SN, Sahu A, Panda JM, Senapati N (1997) Effect of ethyl methane sulfonate (EMS) on asparagus bean (Vigna sesquipedalis). ACIAR Food Legum Newsl 25:6–8

    Google Scholar 

  • Ng NQ (1995) Cowpea In. In: Smart J, Simonds NW (eds) Evolution of crop plants, 2nd edn. Longman, London, pp 326–332

    Google Scholar 

  • Ng NQ, Maréchal R (1985) Cowpea taxonomy, origin and germ plasm. In: Singh SR, Rachie KO (eds) Cowpea research, production and utilization. Wiley, Chichester, pp 11–21

    Google Scholar 

  • Nzewi D, Egbuonu AC (2011) Effect of boiling and roasting on the proximate properties of asparagus bean (Vigna sesquipedalis). Afr J Biotechnol 10(54):11239–11244

    Article  CAS  Google Scholar 

  • Odutayo OI, Akinrimisi FB, Ogunbosoye I, Oso RT (2005) Multiple shoot induction from embryo derived callus cultures of cowpea (Vigna unguiculata l.) Walp. Afr J Biotechnol 4(11):1214–1216

    CAS  Google Scholar 

  • Ogunkanmi LA, Ogundipe OT, Ng NQ et al (2007) Genetic diversity in yardlong bean (Vigna unguiculata subspecies unguiculata cvgr sesquipedalis) as revealed by simple sequence repeat (SSR) markers. J Genet Breed 61(1):43. https://hdl.handle.net/10568/91478

    Google Scholar 

  • Olawuni I, Ojukwu M, Iwouno JO et al (2013) Effect of pH and temperature on functional physico-chemical properties of asparagus bean (Vigna sesquipedalis) flours. Int J Basic Appl Sci 2:1–6

    Google Scholar 

  • Padi FK, Ehlers JD (2008) Effectiveness of early generation selection in cowpea for grain yield and agronomic characteristics in semiarid West Africa. Crop Sci 48(2):533–540

    Article  Google Scholar 

  • Padulosi S, Ng NQ (1997) Origin, morphology and taxonomy of Vigna ungiculata (L.) Walp. Advances in cowpea research. Co-publication of International Institute of Tropical Agriculture (IITA) and Japan International Research Center for Agricultural Sciences (JIRCAS). IITA, Ibadan, Nigeria, pp 1–12

    Google Scholar 

  • Pan L, Yu X, Shao J et al (2019) Transcriptomic profiling and analysis of differentially expressed genes in asparagus bean (Vigna unguiculata ssp. sesquipedalis) under salt stress. PLoS One 14(7):e0219799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey R, Sharma N, Agrawal A et al (2015) In vitro and cryopreservation of vegetatively propagated crops. In: Jacob SR, Singh N, Srinivasan K et al (eds) Management of plant genetic resources. ICAR-National Bureau of Plant Genetic Resources, New Delhi, pp 197–204

    Google Scholar 

  • Pasquet RS (1999) Genetic relationships among subspecies of Vigna unguiculata (L.) Walp. based on allozyme variation. Theor Appl Genet 98:1104–1119

    Article  CAS  Google Scholar 

  • Pasquet RS (2000) Genetic diversity of cultivated cowpea Vigna unguiculata (L.) Walp. based on allozyme variation. Theor Appl Genet 101:211–219

    Article  CAS  Google Scholar 

  • Pedigo LP (2002) Entomology and pest management. Princeton and Hall, London

    Google Scholar 

  • Pellegrineschi A, Fatokun CA, Thottappilly G, Adepoju AA (1997) Cowpea embryo rescue. 1. Influence of culture media composition on plant recovery from isolated immature embryos. Plant Cell Rep 17(2):133–138

    Article  CAS  PubMed  Google Scholar 

  • Phansak P, Taylor PW, Mongkolporn O (2005) Genetic diversity in yardlong bean (Vigna unguiculata ssp. sesquipedalis) and related Vigna species using sequence tagged microsatellite site analysis. Sci Hortic 106(2):137–146

    Article  CAS  Google Scholar 

  • Pidigam S, Munnam SB, Nimmarajula S et al (2019) Assessment of genetic diversity in yardlong bean (Vigna unguiculata (L.) Walp subsp. sesquipedalis Verdc.) germplasm from India using RAPD markers. Genet Resour Crop Evol 66(6):1231–1242

    Article  CAS  Google Scholar 

  • Polegri L, Negri V (2010) Molecular markers for promoting agro-biodiversity conservation: a case study from Italy. How cowpea landraces were saved from extinction. Genet Resour Crop Evol 57(6):867–880

    Article  CAS  Google Scholar 

  • Popelka JC, Terryn N, Higgins TJV (2004) Gene technology for grain legumes: can it contribute to the food challenge in developing countries? Plant Sci 167:195–206

    Article  CAS  Google Scholar 

  • Production guide-pole sitao (2013) Department of agriculture, bureau of plant industry, January 2013. http://bpi.da.gov.ph/bpi/images/Production_guide/pdf/PRODUCTIONGUIDE-POLESITAO.pdf

  • Purugganan MD, Fuller DQ (2009) The nature of selection during plant domestication. Nature 457(7231):843

    Article  CAS  PubMed  Google Scholar 

  • Raina A, Laskar RA, Tantray YR et al (2020) Characterization of induced high yielding cowpea mutant lines using physiological, biochemical and molecular markers. Sci Rep 10(1):1–22

    Article  CAS  Google Scholar 

  • Rajan S (ed) (1991) Tips on vegetable seed production, KAU Tech Bull 20. KAU Press, Thrissur

    Google Scholar 

  • Ramakrishnan K, Gnanam R, Sivakumar P, Manickam A (2005) In vitro somatic embryogenesis from cell suspension cultures of cowpea [Vigna unguiculata (L.) Walp]. Plant Cell Rep 24(8):449–461

    Article  CAS  PubMed  Google Scholar 

  • Rambabu E, Ravinder Reddy K, Kamala V et al (2016a) Morphological characterization of yardlong bean – an underexploited vegetable. Int J Sci Nat 7(2):344–348

    Google Scholar 

  • Rambabu E, Reddy KR, Kamala V et al (2016b) Genetic divergence for quality, yield and yield components in yardlong bean [Vigna unguiculata (L.) Walp. ssp. sesquipedalis Verdc.]. Legum Res 39(6):900–904

    Google Scholar 

  • Ramírez-Villegas J, Khoury C, Jarvis A et al (2010) Gap analysis methodology for collecting crop genepools: a case study with phaseolus beans. PLoS One 5(10):e13497

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raveendar S, Premkumar A, Sasikumar S et al (2009) Development of a rapid, highly efficient system of organogenesis in cowpea Vigna unguiculata (L.) Walp. S Afr J Bot 75(1):17–21

    Article  Google Scholar 

  • Rawal KM (1975) Natural hybridization among weedy and cultivated Vigna unguiculata (L.) Walp. Euphytica 24:699–707

    Article  Google Scholar 

  • Rhoden EG, Bonsi CK, Ngoyi ML (1990) Effect of southern root knot nematode on yield components of yardlong beans. In: Janick J, Simon JE (eds) Advances in new crops: proceedings of the first national symposium on new crops, research, development, economics. Timber Press, Portland. (Abstr) p 446

    Google Scholar 

  • Ribaut JM, De Vicente MC, Delannay X (2010) Molecular breeding in developing countries: challenges and perspectives. Curr Opin Plant Biol 13(2):213–218

    Article  PubMed  Google Scholar 

  • Rubatzky VE, Yamaguchi M (1997) World vegetables: principles, production, and nutritive values, 2nd edn. Chapman & Hall, New York

    Book  Google Scholar 

  • Sani AL (2018) Hormonal regulation of root morphogenesis in callus culture of cowpea (Vigna unguiculata L. WALP). FUDMA J Sci 2(2):256–261

    Google Scholar 

  • Sarma AK, Devi MR, Nigam A (2014) Efficiency of storage device for long term storage of cowpea seeds. Int J Agric Environ Biotechnol 7(2):233–240

    Article  Google Scholar 

  • Sarutayophat T, Nualsri C (2010) The efficiency of pedigree and single seed descent selections for yield improvement at generation 4 (F4) of two yardlong bean populations. Kasetsart J (Nat Sci) 44:343–352

    Google Scholar 

  • Sarutayophat T, Nualsri C, Santipracha Q, Saereeprasert V (2007) Characterization and genetic relatedness among 37 yardlong bean and cowpea accessions based on morphological characters and RAPD analysis. Warasan Songkhla Nakharin (Sakha Witthayasat lae Technology)

    Google Scholar 

  • Saxena A, Tomar Rukam S (2020) Assessment of genetic diversity in cowpea (Vigna unguiculata L. Walp.) through ISSR marker. Res J Biotechnol 15(3):66–71

    CAS  Google Scholar 

  • Shabala S (2013) Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot 112:1209–1221

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma DR, Kaur R, Kumar K (1996) Embryo rescue in plants: a review. Euphytica 89:325–337

    Article  Google Scholar 

  • Sheikh WA, Dedhrotiya AT, Khan N et al (2016) Rapid and highly efficient in vitro regeneration protocol for cowpea (Vigna unguiculata (L.) Walp.). J. Progress Agric 7(1):20–22

    Google Scholar 

  • Singh BB (2005) Cowpea (Vigna unguiculata (L) Walp). In: Singh RJ, Jauhar P (eds) Genetic resources, chromosome engineering and crop improvement. Vol. grain legumes. CRC Press, Boca Raton, pp 117–162

    Chapter  Google Scholar 

  • Singh BB (2014) Future prospects of cowpea. In: Cowpea: the food legume of the 21st century, pp 145–157

    Chapter  Google Scholar 

  • Singh A (2015) Micropropagation of plants. In: Bahadur B, Venkat Rajam M, Sahijram L, Krishnamurthy K (eds) Plant biology and biotechnology. Springer, New Delhi, pp 329–346

    Chapter  Google Scholar 

  • Sitathani K (1977) Selection and improvement of asparagus bean (Vigna sesquipedalis Fruw.). M.S. Thesis, Kasetsart University

    Google Scholar 

  • Sivakumar V, Celine VA, Girija VK (2018) Evaluation of yard long bean (Vigna unguiculata subsp. sesquipedalis) genotypes for collar rot and web blight. Int J Curr Microbiol App Sci 7(7):4238–4245

    Article  CAS  Google Scholar 

  • Smartt J (1990) Grain legumes: evolution and genetic resources. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Somers DA, Samac DA, Olhoft PM (2003) Recent advances in legume transformation. Plant Physiol 131(3):892–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stadler LJ (1928) Genetic effects of X-rays in maize. Proc Natl Acad Sci 14:69–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan H, Huang H, Tie M et al (2016) Transcriptome profiling of two asparagus bean (Vigna Unguiculata subsp. sesquipedalis) cultivars differing in chilling tolerance under cold stress. PLoS One 11(3):e0151105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang Y, Chen L, Li XM et al (2012) Effect of culture conditions on the plant regeneration via organogenesis from cotyledonary node of cowpea (Vigna unguiculata L. Walp). Afr J Biotechnol 11(14):3270–3275

    Article  CAS  Google Scholar 

  • Tantasawat P, Trongchuen J, Prajongjai T et al (2010) Variety identification and comparative analysis of genetic diversity in yardlong bean (Vigna unguiculata spp. sesquipedalis) using morphological characters, SSR and ISSR analysis. Sci Hortic 124(2):204–216

    Article  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Biol 50:571–599

    Article  CAS  Google Scholar 

  • Tie M, Luo Q, Zhu Y, Li H (2013) Effect of 6-BA on the plant regeneration via organogenesis from cotyledonary node of cowpea (Vigna unguiculata L. Walp). J Agric Sci 5(5):1

    Google Scholar 

  • Tomooka N, Yoon MS, Doi K et al (2002) AFLP analysis of diploid species in the genus Vigna subgenus Ceratotropis. Genet Resour Crop Evol 49:521–530

    Article  Google Scholar 

  • Ullah MZ, Hasan MJ, Rahman AH, Saki AI (2011) Genetic variability, character association and path analysis in yard long bean. SAARC J Agric 9(2):9–16

    Google Scholar 

  • Usberti R, Gomes RBR (1998) Seed viability constants for groundnut. Ann Bot 82:691–694

    Article  Google Scholar 

  • Vavilapalli SK, Celine VA, Vahab AM (2014) Assessment of genetic divergence in among yard long bean (Vigna unguiculata subsp. Sesquipedalis [L.]) genotypes. Legum Genomic Genet 5(5):1–13

    Google Scholar 

  • Vinoth S, Rathika N, Jhansi M et al (2019) In vitro regeneration of Vigna unguiculata using marine seaweed Sargassum polycystum. Res J Pharm Technol 12(4):1580–1584

    Article  Google Scholar 

  • Wan Q, Wei L, Chan-you C (2007) The effect of temperature stress on seed germination physiological indices in asparagus bean (Vigna unguiculata L. ssp. sesquipdalis Verdc). Seed 10:10

    Google Scholar 

  • Widyawan MH, Wulandary S, Taryono (2020) Genetic diversity analysis of yardlong bean genotypes (Vigna unguiculata subsp. sesquipedalis) based on IRAP marker. Biodiversitas 21(3):1101–1107

    Article  Google Scholar 

  • Xu P, Wu X, Wang B et al (2011) A SNP and SSR based genetic map of asparagus bean (Vigna unguiculata ssp. sesquipedialis) and comparison with the broader species. PLoS One 6(1)

    Google Scholar 

  • Xu P, Wu X, Wang B et al (2012) Genome wide linkage disequilibrium in Chinese asparagus bean (Vigna. unguiculata ssp. sesquipedialis) germplasm: implications for domestication history and genome wide association studies. Heredity 109(1):34–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu P, Wu X, Wang B et al (2013) QTL mapping and epistatic interaction analysis in asparagus bean for several characterized and novel horticulturally important traits. BMC Genet 14(1):4

    Article  PubMed  PubMed Central  Google Scholar 

  • Xue-bao L, Zhi-hong X, Zhi-ming W, Yong-yan B (1993) Somatic embryogenesis and plant regeneration from protoplasts of cowpea (Vigna sinensis). J Integr Plant Biol 35(8)

    Google Scholar 

  • Yadav KS, Yadava HS, Naik ML (2004) Gene action governing the inheritance of pod yield in cowpea. Legume Res Int J 27(1):66–69

    Google Scholar 

  • Zaidi MA, Mohammadi M, Postel S et al (2005) The Bt gene cry2Aa2 driven by a tissue specific ST-LS1 promoter from potato effectively controls Heliothis virescens. Transgenic Res 14:289–298

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Xu W, Chen H et al (2020) Evaluation and qtl mapping of salt tolerance in yardlong bean [Vigna unguiculata (L.) Walp. subsp. sesquipedalis Group] seedlings. Plant Mol Biol Report 38:1–11

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Appendix I: Popular Varieties/Cultivars of Yardlong Bean with Traits Under Cultivation in Australia, South and Southeast Asia and Africa

Varietal Identification No.

Country

Trait

Growth Habitat

Pod Color

Flower Color

Seed Color

VI034177

Australia

ILCA O#77253 (REYCALOONA)

Twining

Violet

Pale tan or straw

Tan with brown saddle

VI047698

Bangladesh

BARBARI

Twining

Mauve pink

Pale tan or straw

Brown and tan

VI047713

Bangladesh

BARBARI

Twining

Mauve pink

Pale tan or straw

Brown with whitish color at top end

VI034170

China

Green tail

Twining

Violet

Pale tan or straw

Mixture

VI034176

Ethiopia

VAR TVU 1977-OD

Twining

White

Pale tan or straw

Tan with brown saddle

VI055597

Laos

THUA NAO

Twining

Violet

Pale tan or straw

Black

VI055635

Laos

THEUA NHAG

Twining

Mauve pink

Dark tan

Red with brown mottles

VI034393

Malaysia

MPK-4

Twining

Dark tan

Mauve pink

Brown with whitish color at one end

VI034394

Malaysia

MPK-5

Twining

Dark tan

Mauve pink

Brown with whitish color at one end

VI034408

Malaysia

RED TAIL

Twining

Violet

Dark tan

Red

VI034416

Malaysia

Snake bean

Twining

White

Dark brown

White

VI034426

Malaysia

BALATONG (DUSUN)

Twining

Violet

Dark tan

Mixture

VI034439

Malaysia

EX-S’KAN

Twining

White

Dark brown

Tan with black saddle

VI034440

Malaysia

T.S.3

Twining

Mauve pink

Dark tan

Mixture

VI034416

Malaysia

Snake bean

Twining

White

Dark brown

White

VI034426

Malaysia

BALATONG (DUSUN)

Twining

Violet

Dark tan

Mixture

VI034441

Malaysia

T.S.6

Twining

White

Pale tan or straw

Red with whitish color at one end

VI034442

Malaysia

T.S.9

Twining

Mauve pink

Pale tan or straw

Black

VI034494

Malaysia

MKP4

Twining

Mauve pink

Dark tan

Red with whitish color at one end

VI034495

Malaysia

MKP5

Twining

Mauve pink

Dark tan

Red with whitish color at top end

VI034553

Malaysia

TAIWAN VAR

Twining

White

Dark brown

White

VI034554

Malaysia

BANGKOK VAR

Twining

White

Pale tan or straw

Red with whitish color at one end

VI034184

Mali

MALI#79114

Twining

Violet

Pale tan or straw

Tan

VI057925

Nepal

BODI

Twining

White

Pale tan or straw

Tan

VI034247

Nigeria

IT-82E-18

Twining

White

Pale tan or straw

Mixture

VI034252

Nigeria

N#82237 TVU1476

Twining

Violet

Pale tan or straw

Tan with purple mottles

VI034395

Philippines

CSL-14

Twining

Dark tan

Violet

Brown with whitish color at one end

VI034397

Philippines

CSL-19

Twining

Pale tan or straw

Mauve pink

Brown with whitish color at one end

VI036252

Philippines

BALATONG

Twining

Dark tan

Violet

Brown

VI041733

Philippines

SITAO

Twining

Dark tan

Violet

Mixture

VI041717

Philippines

SITAO

Twining

Violet

Dark tan

Red

VI034396

Philippines

CSL-16

Twining

White

*Pale tan/straw

Red with whitish color at one end

VI034398

Philippines

SANDIGAN

Twining

Mauve pink

Pale tan/straw

Red with whitish color at one end

VI034378

Philippines

EGPS 45-0-11

Twining

Violet

Dark tan

Brown

VI045112

Surinam

SIDOREDJO

Twining

Violet

Pale tan or straw

Red with brown mottled

VI040004

Thailand

THUA PEE

Twining

Pale tan or straw

Violet

Black

VI040032

Thailand

THUA NUEA

Twining

Pale tan or straw

Violet

Red

VI040606

Thailand

THUA-FAK-YAAO

Twining

Pale tan or straw

Violet

Red

VI040625

Thailand

THUA-FAK-YAAO

Twining

Pale tan/straw

Mauve pink

Brown

VI040705

Thailand

THUA-FAK-YAAO

Twining

Pale tan or straw

Mauve pink

Brown with whitish color at one end

VI040726

Thailand

THUA-FAK-YAAO

Twining

Pale tan/straw

Mauve pink

Brown with whitish color at one end

VI040748

Thailand

THUA-FAK-YAAO

Twining

Pale tan or straw

Mauve pink

Brown with whitish color at one end

VI040777

Thailand

THUA-FAK-YAAO

Twining

Pale tan

Mauve pink

Red with whitish color at one end

VI040695

Thailand

THUA-FAK-YAAO

Twining

Mixture

Mauve pink

Mixture

VI040828

Thailand

THUA-FAK-YAAO

Twining

Dark tan

Mauve pink

Mixture

VI040862

Thailand

THUA-FAK-YAAO

Twining

Dark brown

Mauve pink

Red with whitish color at one end

VI040886

Thailand

THUA-FAK-YAAO

Twining

Dark tan

Mauve pink

Red

VI040938

Thailand

THUA-PAK-YAAO

Twining

Pale tan or straw

Mauve pink

Red with whitish color at one end

VI040997

Thailand

THUA-FAK-YAAO

Twining

Pale tan or straw

Mauve pink

Mixture

VI041016

Thailand

THUA-FAK-YAAO

Twining

Pale tan or straw

Mauve pink

Mixture

VI041057

Thailand

THUA-FAK-YAAO

Twining

Pale tan or straw

Mauve pink

Red with whitish color at one end

VI041070

Thailand

THUA-FAK-YAAO

Twining

Pale tan or straw

Mauve pink

Mixture

VI041074

Thailand

THUA-FAK-YAAO

Twining

Pale tan or straw

Mauve pink

Red with whitish color at one end

VI040004

Thailand

THUA PEE

Twining

Pale tan or straw

Violet

Black

VI040032

Thailand

THUA NUEA

Twining

Pale tan or straw

Violet

Red

VI041098

Thailand

THUA-FAK-YAAO

Twining

Pale tan or Straw

Mauve pink

Mixture

VI045927

Vietnam

DAU HOANG DAO

Twining

Mauve pink

Pale tan or straw

Tan

VI045931

Vietnam

DAU DUA

Twining

Mauve pink

Pale tan or straw

Red

1.2 Appendix II: List of Yardlong Bean Crop Improvement Research Institutes in India

Name of the Research Institute

Specialization and Research Activities

Accessibility

World Vegetable Center (Formerly AVRDC), Hyderabad, India

Germplasm storage, evaluation and improvement of yardlong bean

https://avrdc.org/

ICAR-Indian Institute of Horticulture Research (ICAR-IIHR), Bengaluru, Karnataka, India

Evaluation and improvement of yardlong bean

https://www.iihr.res.in/

Sri Konda Laxman Telangana State Horticultural University (SKLTSHU), Hyderabad, Telangana, India

Evaluation and improvement of yardlong bean

https://www.skltshu.ac.in

Kerala Agricultural University, Thrissur, Kerala, India

Evaluation and improvement of yardlong bean

http://www.kau.in/

ICAR Research complex for Eastern Region, Patna, India

Evaluation and improvement of yardlong bean

http://www.icarrcer.in

ICAR-National Bureau of Plant Genetic Resources, New Delhi, India

Collection, passport data, conservation and distribution

http://www.nbpgr.ernet.in/

1.3 Appendix III: List of Yardlong Bean Released Varieties in India

Variety

Year and Institute of Release

Habitat

Characteristic Features

Fresh Pod Yield and Maturity Days

Swarna Haritha

2008 – ICAR Research complex for Eastern Region, Patna, India

Pole type

Pure line selection recommended for Jharkhand and Bihar

27.21–31.75 mt/ha, 50–55 days

Pods are dark green, very long (50–60 cm), straight, round and fleshy

Cooking quality is excellent

Seeds are light brown, elongated kidney shaped

Tolerant to mosaic viruses and rust under field conditions

Swarna Sweta

2004 – ICAR Research complex for Eastern Region, Patna, India

Pole type

Pure line selection recommended for Jharkhand and Bihar

22.6–27.21 mt/ha, 50–55 days

Pods are white in color, medium long (30–35 cm), straight round and fleshy with good cocking quality

Resistant to mosaic viruses and rust, Tolerant to pod borer

Swarna Suphala

2006 – ICAR Research complex for Eastern Region, Patna, India

Pole type

Pods are light green in color, medium long (30–35 cm) with bulges at seed positions

22.6–27.21 mt/ha, 50–55 days

Seeds are bicolored (sandalwood color with brown mottling)

Field resistant to cowpea mosaic viruses and field tolerant to pod borer during summer

Recommended for Jharkhand, Bihar, Karnataka and Kerala

Arka Mangala

ICAR- Indian Institute of Horticultural Research, Bangalore, India

Pole type

Pure line selection for yield

22.6 mt/ha, 60 days

Pods are very long (70–80 cm), string less, crisp, light green in color, tender and easy to snap without parchment

Number of pods per plant are 42

Lola

2001 – Kerala Agricultural University, Thrissur, Kerala, India

Pole type

High yielder, pods are long with pale green color

18.14 mt/ha

Seeds are black in color

Vijayanthi

1998 – Kerala Agricultural University, Thrissur, Kerala, India

Pole type

A selection from Perumpadavam local (PS) for yield .

11.43 mt/ha

Pods are long with pink color

Vellayani Jyothika

2006 – Kerala Agricultural University, Thrissur, Kerala, India

Pole type

A selection from Sreekaryam local yield

17.53 mt/ha

Pods are long with light green color

Githika

2015 – Kerala Agricultural University, Thrissur, Kerala, India

Pole type

High yielder with mosaic virus resistance

25.03 mt/ha

Pods are long, thick, and fleshy with light green color

Pods are long (53.4 cm) with reddish-brown seeds

Mithra

2018 – Kerala Agricultural University, Thrissur, Kerala, India

Trailing growth habit

High yielder suitable for riverine alluvium of Central Travancore

18.77 mt/ha

Pods are attractive, long (78.6 cm), light green color

Seeds are brown with white speck at one end

Telangana Podugu Bobbarlu

2019 -Sri Konda Laxman Telangana State Horticultural University, Hyderabad, India

Pole type

Pure line selection for good yield

19.95 mt/ha, 76 days

Pods are long, light green color, fleshy with good cocking quality

Tolerant to aphids

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pidigam, S. et al. (2021). Genetic Improvement of Yardlong Bean (Vigna unguiculata (L.) Walp. ssp. sesquipedalis (L.) Verdc.). In: Al-Khayri, J.M., Jain, S.M., Johnson, D.V. (eds) Advances in Plant Breeding Strategies: Vegetable Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-66969-0_10

Download citation

Publish with us

Policies and ethics