Skip to main content

Lightweight Action Recognition in Compressed Videos

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 Workshops (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12536))

Included in the following conference series:

Abstract

Most existing action recognition models are large convolutional neural networks that work only with raw RGB frames as input. However, practical applications require lightweight models that directly process compressed videos. In this work, for the first time, such a model is developed, which is lightweight enough to run in real-time on embedded AI devices without sacrifices in recognition accuracy. A new Aligned Temporal Trilinear Pooling (ATTP) module is formulated to fuse three modalities in a compressed video. To remedy the weaker motion vectors (compared to optical flow computed from raw RGB streams) for representing dynamic content, we introduce a temporal fusion method to explicitly induce the temporal context, as well as knowledge distillation from a model trained with optical flows via feature alignment. Compared to existing compressed video action recognition models, it is much more compact and faster thanks to adopting a lightweight CNN backbone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In: CVPR, pp. 6299–6308 (2017)

    Google Scholar 

  2. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: CVPR, pp. 1251–1258 (2017)

    Google Scholar 

  3. Ding, M., et al.: Learning depth-guided convolutions for monocular 3D object detection. In: CVPR, pp. 4306–4315 (2020)

    Google Scholar 

  4. Ding, M., Wang, Z., Sun, J., Shi, J., Luo, P.: Camnet: coarse-to-fine retrieval for camera re-localization. In: ICCV, pp. 2871–2880 (2019)

    Google Scholar 

  5. Ding, M., Wang, Z., Zhou, B., Shi, J., Lu, Z., Luo, P.: Every frame counts: joint learning of video segmentation and optical flow. In: AAAI, pp. 10713–10720 (2020)

    Google Scholar 

  6. Ding, M., Zhao, A., Lu, Z., Xiang, T., Wen, J.R.: Face-focused cross-stream network for deception detection in videos. In: CVPR, pp. 7802–7811 (2019)

    Google Scholar 

  7. Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recognition. In: ICCV, pp. 6202–6211 (2019)

    Google Scholar 

  8. Forecast, C.V.: Cisco visual networking index: Forecast and trends, 2017–2022. Cisco Public Information, White paper (2019)

    Google Scholar 

  9. Gao, Y., Beijbom, O., Zhang, N., Darrell, T.: Compact bilinear pooling. In: CVPR, pp. 317–326 (2016)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  11. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  12. Howard, A., et al.: Searching for mobilenetv3. In: ICCV, pp. 1314–1324 (2019)

    Google Scholar 

  13. Huo, Y., Xu, X., Lu, Y., Niu, Y., Lu, Z., Wen, J.R.: Mobile video action recognition. arXiv preprint arXiv:1908.10155 (2019)

  14. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: Squeezenet: alexnet-level accuracy with 50x fewer parameters and \(<\) 0.5 mb model size. arXiv preprint arXiv:1602.07360 (2016)

  15. Ji, J., Buch, S., Soto, A., Carlos Niebles, J.: End-to-end joint semantic segmentation of actors and actions in video. In: ECCV, pp. 702–717 (2018)

    Google Scholar 

  16. Kantorov, V., Laptev, I.: Efficient feature extraction, encoding and classification for action recognition. In: CVPR, pp. 2593–2600 (2014)

    Google Scholar 

  17. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: CVPR, pp. 1725–1732 (2014)

    Google Scholar 

  18. Kay, W., et al.: The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017)

  19. Kim, J.H., On, K.W., Lim, W., Kim, J., Ha, J.W., Zhang, B.T.: Hadamard product for low-rank bilinear pooling. In: ICLR (2016)

    Google Scholar 

  20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NeurIPS, pp. 1097–1105 (2012)

    Google Scholar 

  21. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: Hmdb: a large video database for human motion recognition. In: ICCV, pp. 2556–2563. IEEE (2011)

    Google Scholar 

  22. Lin, J., Gan, C., Han, S.: Tsm: temporal shift module for efficient video understanding. In: ICCV, pp. 7083–7093 (2019)

    Google Scholar 

  23. Lin, T., Zhao, X., Su, H., Wang, C., Yang, M.: Bsn: boundary sensitive network for temporal action proposal generation. In: ECCV, pp. 3–19 (2018)

    Google Scholar 

  24. Lin, T.Y., RoyChowdhury, A., Maji, S.: Bilinear cnn models for fine-grained visual recognition. In: ICCV, pp. 1449–1457 (2015)

    Google Scholar 

  25. Ma, N., Zhang, X., Zheng, H.T., Sun, J.: Shufflenet v2: practical guidelines for efficient cnn architecture design. In: ECCV, pp. 116–131 (2018)

    Google Scholar 

  26. Shou, Z., et al.: Dmc-net: Generating discriminative motion cues for fast compressed video action recognition. In: CVPR, pp. 1268–1277 (2019)

    Google Scholar 

  27. Sikora, T.: The mpeg-4 video standard verification model. TCSV 7(1), 19–31 (1997)

    Google Scholar 

  28. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: NeurIPS, pp. 568–576 (2014)

    Google Scholar 

  29. Soomro, K., Zamir, A.R., Shah, M.: Ucf101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)

  30. Sullivan, G.J., Ohm, J.R., Han, W.J., Wiegand, T.: Overview of the high efficiency video coding (HEVC) standard. TCSV 22(12), 1649–1668 (2012)

    Google Scholar 

  31. Tan, M., Le, Q.V.: Efficientnet: rethinking model scaling for convolutional neural networks. In: ICML, pp. 6105–6114 (2019)

    Google Scholar 

  32. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: ICCV, pp. 4489–4497 (2015)

    Google Scholar 

  33. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: CVPR, pp. 6450–6459 (2018)

    Google Scholar 

  34. Wang, L., et al.: Temporal segment networks: towards good practices for deep action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 20–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_2

    Chapter  Google Scholar 

  35. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR, pp. 7794–7803 (2018)

    Google Scholar 

  36. Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A.: Overview of the H. 264/ AVC video coding standard. TCSV 13(7), 560–576 (2003)

    Google Scholar 

  37. Wu, C.Y., Zaheer, M., Hu, H., Manmatha, R., Smola, A.J., Krähenbühl, P.: Compressed video action recognition. In: CVPR, pp. 6026–6035 (2018)

    Google Scholar 

  38. Yu, Z., Yu, J., Fan, J., Tao, D.: Multi-modal factorized bilinear pooling with co-attention learning for visual question answering. In: ICCV, pp. 1821–1830 (2017)

    Google Scholar 

  39. Zhang, B., Wang, L., Wang, Z., Qiao, Y., Wang, H.: Real-time action recognition with enhanced motion vector CNNs. In: CVPR, pp. 2718–2726 (2016)

    Google Scholar 

  40. Zhang, B., Wang, L., Wang, Z., Qiao, Y., Wang, H.: Real-time action recognition with deeply transferred motion vector CNNs. TIP 27(5), 2326–2339 (2018)

    MathSciNet  Google Scholar 

  41. Zolfaghari, M., Singh, K., Brox, T.: Eco: efficient convolutional network for online video understanding. In: ECCV, pp. 695–712 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Beijing Outstanding Young Scientist Program (BJJWZYJH012019100020098), National Natural Science Foundation of China (61976220 and 61832017), and the Outstanding Innovative Talents Cultivation Funded Programs 2018 of Renmin University of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwu Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huo, Y. et al. (2020). Lightweight Action Recognition in Compressed Videos. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12536. Springer, Cham. https://doi.org/10.1007/978-3-030-66096-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66096-3_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66095-6

  • Online ISBN: 978-3-030-66096-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics