Skip to main content

Radio Access Technologies Selection in Vehicular Networks: State-of-the-Art and Perspectives for Autonomous Connected Vehicles

  • Conference paper
  • First Online:
Communication Technologies for Vehicles (Nets4Cars/Nets4Trains/Nets4Aircraft 2020)

Abstract

Inter-vehicle (V2V) and vehicle to infrastructure (V2I) communication is an active research field in Vehicular Network domain. Each application in these networks presents specific needs in terms of Quality of Service (QoS), reliability and security. Thus, it is important to select in a smart way the various radio access technologies (RAT) to be used to transfer information. In this paper, we present a state of the art related to this subject. Then we propose ideas for a smarter, multi-application, adaptable and secure selection solution of RAT. This approach is essential in the context of autonomous connected vehicle, where vehicles and users always send and receive data from diverse applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    SCOOP project official website: http://www.scoop.developpement-durable.gouv.fr/ [Accessed 27/03/2020].

  2. 2.

    Intercor official website: https://intercor-project.eu/ [Accessed 27/03/2020].

  3. 3.

    C-ROADS: https://www.c-roads.eu/pilots/core-members/france/Partner/project/show/c-roads-france.html [Accessed 27/03/2020].

References

  1. Allen, B., Eschbach, B., Mikulandra, M.: Defining an adaptable communications system for all railways. In: Proceedings of the 7th Transport Research Arena TRA 2018, TRA 2018, Vienna, 16–19 April 2018 (2018)

    Google Scholar 

  2. Benedetto, M.D., Vojcic, B.R.: Ultra wide band wireless communications: a tutorial. J. Commun. Netw. 5(4), 290–302 (2003)

    Article  Google Scholar 

  3. Bergenhem, C., Shladover, S., Coelingh, E., Englund, C., Tsugawa, S.: Overview of platooning systems. In: Proceedings of the 19th ITS World Congress, Vienna, Austria, 22–26 October 2012 (2012)

    Google Scholar 

  4. Bi, S., Chen, C., Du, R., Guan, X.: Proper handover between VANET and cellular network improves internet access. In: Proceedings of the 80th IEEE Vehicular Technology Conference, VTC2014-Fall, pp. 1–5. IEEE (2014)

    Google Scholar 

  5. Boban, M., Kousaridas, A., Manolakis, K., Eichinger, J., Xu, W.: Use cases, requirements, and design considerations for 5G V2X. arXiv preprint arXiv:1712.01754 (2017)

  6. Campolo, C., Molinaro, A., Iera, A., Menichella, F.: 5G network slicing for vehicle-to-everything services. IEEE Wirel. Commun. 24(6), 38–45 (2017)

    Article  Google Scholar 

  7. Chahal, M., Harit, S.: Network selection and data dissemination in heterogeneous software-defined vehicular network. Comput. Netw. 161, 32–44 (2019)

    Article  Google Scholar 

  8. Elassali, R., et al.: Performance evaluation of high data rate M-OAM UWB physical layer for intelligent transportation systems. Wirel. Pers. Commun. 94(4), 3265–3283 (2016). https://doi.org/10.1007/s11277-016-3776-9

    Article  Google Scholar 

  9. ETSI: Intelligent Transport Systems (ITS); Vehicular Communications; GeoNetworking; Part 4: Geographical addressing and forwarding for point-to-point and point-to-multipoint communications; Sub-part 1: Media-Independent Functionality. European Telecommunications Standards Institute (2013)

    Google Scholar 

  10. ETSI: Intelligent Transport Systems (ITS); Vehicular Communications; GeoNetworking; Part 4: Geographical addressing and forwarding for point-to-point and point-to-multipoint communications; Sub-part 1: Media-Independent Functionality. European Telecommunications Standards Institute (2014)

    Google Scholar 

  11. ETSI: Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Facilities layer protocols and communication requirements for infrastructure services. European Telecommunications Standards Institute (2016)

    Google Scholar 

  12. Habbal, A., Goudar, S.I., Hassan, S.: Context-aware radio access technology selection in 5G ultra dense networks. IEEE Access 5, 6636–6648 (2017)

    Article  Google Scholar 

  13. Hasswa, A., Nasser, N., Hassanein, H.: Tramcar: a context-aware cross-layer architecture for next generation heterogeneous wireless networks. In: 2006 IEEE International Conference on Communications, vol. 1, pp. 240–245. IEEE (2006)

    Google Scholar 

  14. ISO: Advanced technical ceramics. Monolithic ceramics. Gerneral and textural properties. Standard, International Organization for Standardization (2014)

    Google Scholar 

  15. Jiang, D., Huo, L., Lv, Z., Song, H., Qin, W.: A joint multi-criteria utility-based network selection approach for vehicle-to-infrastructure networking. IEEE Trans. Intell. Transp. Syst. 19(10), 3305–3319 (2018)

    Article  Google Scholar 

  16. Lee, S., Sriram, K., Kim, K., Kim, Y.H., Golmie, N.: Vertical handoff decision algorithms for providing optimized performance in heterogeneous wireless networks. IEEE Trans. Veh. Technol. 58(2), 865–881 (2008)

    Google Scholar 

  17. Mitola, J., Maguire, G.: Cognitive radio: making software radios more personal. IEEE Pers. Commun. 6(4), 13–18 (1999)

    Article  Google Scholar 

  18. Molina-Masegosa, R., Gozalvez, J.: LTE-V for sidelink 5G V2X vehicular communications: a new 5G technology for short-range vehicle-to-everything communications. IEEE Veh. Technol. Mag. 12(4), 30–39 (2017)

    Article  Google Scholar 

  19. Molisch, A.F.: Ultra-wideband communications: an overview. URSI Radio Sci. Bull. 2009(329), 31–42 (2009)

    Google Scholar 

  20. Mouawad, N., Naja, R., Tohmé, S.: SDN-based network selection platform for V2X use cases. In: 2019 International Conference on Wireless and Mobile Computing, Networking and Communications, WiMob 2019, Barcelona, Spain, 21–23 October 2019, pp. 1–6. IEEE (2019). https://doi.org/10.1109/WiMOB.2019.8923214

  21. Naik, G., Choudhury, B., Park, J.M.: IEEE 802.11bd & 5G NR V2X: evolution of radio access technologies for V2X communications. IEEE Access 7, 70169–70184 (2019). https://doi.org/10.1109/ACCESS.2019.2919489

    Article  Google Scholar 

  22. Nasser, N., Hasswa, A., Hassanein, H.: Handoffs in fourth generation heterogeneous networks. IEEE Commun. Mag. 44(10), 96–103 (2006)

    Article  Google Scholar 

  23. Silva, R., Couturier, C., Bonnin, J.M., Ernst, T.: A heuristic decision maker algorithm for opportunistic networking in C-ITS. In: 2019 5th International Conference on Vehicle Technology and Intelligent Transport Systems (2019)

    Google Scholar 

  24. Qualcomm Tech.: Building a unified, more capable 5G air interface for the next decade and beyond. Qualcomm 3GPP Standard (2020)

    Google Scholar 

  25. Tian, D., Zhou, J., Wang, Y., Lu, Y., Xia, H., Yi, Z.: A dynamic and self-adaptive network selection method for multimode communications in heterogeneous vehicular telematics. IEEE Trans. Intell. Transp. Syst. 16(6), 3033–3049 (2015)

    Article  Google Scholar 

  26. Uçar, S., Ergen, S.Ç., Özkasap, Ö.: Visible light communication in vehicular ad-hoc networks. In: 2016 24th Signal Processing and Communication Application Conference (SIU), pp. 881–884. IEEE (2016)

    Google Scholar 

  27. Uysal, M., Ghassemlooy, Z., Bekkali, A., Kadri, A., Menouar, H.: Visible light communication for vehicular networking: performance study of a V2V system using a measured headlamp beam pattern model. IEEE Veh. Technol. Mag. 10(4), 45–53 (2015)

    Article  Google Scholar 

  28. Xu, K., Wang, K.C., Amin, R., Martin, J., Izard, R.: A fast cloud-based network selection scheme using coalition formation games in vehicular networks. IEEE Trans. Veh. Technol. 64(11), 5327–5339 (2014)

    Article  Google Scholar 

  29. Zheng, K., Zheng, Q., Chatzimisios, P., Xiang, W., Zhou, Y.: Heterogeneous vehicular networking: a survey on architecture, challenges, and solutions. IEEE Commun. Surv. Tutor. 17(4), 2377–2396 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This study has been carried out with financial support from the French State, managed by the French National Research Agency (ANR) in the frame of the “Investments for the future” Programme IdEx Bordeaux - SysNum (ANR-10-IDEX-03-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sidoine Juicielle Kambiré .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kambiré, S.J., Aniss, H., Krief, F., Maaloul, S., Berbineau, M. (2020). Radio Access Technologies Selection in Vehicular Networks: State-of-the-Art and Perspectives for Autonomous Connected Vehicles. In: Krief, F., Aniss, H., Mendiboure, L., Chaumette, S., Berbineau, M. (eds) Communication Technologies for Vehicles. Nets4Cars/Nets4Trains/Nets4Aircraft 2020. Lecture Notes in Computer Science(), vol 12574. Springer, Cham. https://doi.org/10.1007/978-3-030-66030-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66030-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66029-1

  • Online ISBN: 978-3-030-66030-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics