Skip to main content

Environmental Aspects of the Electrochemical Recovery of Tellurium by Electrochemical Deposition-Redox Replacement (EDRR)

  • Conference paper
  • First Online:
Rare Metal Technology 2021

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

The current study investigates the energy consumption and the corresponding global warming potential (GWP) of tellurium recovery from multimetal solution by the use of a tailored electrochemical recovery approach based on electrodeposition-redox replacement (EDRR). A three-electrode cell was used to recover Te from synthetically prepared pregnant leach solution similar to the PLS of leached Doré slag (30% aqua regia, [Cu] = 3.9 g/L, [Bi] = 4.6 g/L, [Fe] = 1.4 g/L, and [Te] = 100–500 ppm). The enrichment of Te on the electrode (with 100 EDRR cycles) had a calculated global warming potential of 3.7 CO2 -eqv from a solution with 500 ppm Te based on a Finnish energy mix. In comparison, a decrease of Te concentration to 100 ppm increased the corresponding environmental impact to 16.9 CO2 -eqv. Overall, GWP was shown to be highly dependent on the geographical area, i.e. the dominating energy production methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ibers J (2009) Tellurium in a twist. Nat Chem 1(6):508. https://doi.org/10.1038/nchem.350

    Article  CAS  Google Scholar 

  2. Foster RP (1993) Gold metallogeny and exploration. Springer, 426 pp. ISBN: 978-0-412-56960-9

    Google Scholar 

  3. Tang G, Qian Q, Wen X, Zhou G, Chen X, Sun M, Chen D, Yang Z (2015) Phosphate glass-clad tellurium semiconductor core optical fibers. J Alloy Compd 633:1–4. https://doi.org/10.1016/j.jallcom.2015.02.007

    Article  CAS  Google Scholar 

  4. Aspiala M, Taskinen P (2016) Thermodynamic study of the Ag–Sb–Te system with an advanced EMF method. J Chem Thermodyn 93:261–266. https://doi.org/10.1016/j.jct.2015.08.025

    Article  CAS  Google Scholar 

  5. Maani T, Celik I, Heben MJ, Ellingson RJ, Apul D (2020) Environmental impacts of recycling crystalline silicon (c-SI) and cadmium telluride (CDTE) solar panels. Sci Total Environ 735:138827. https://doi.org/10.1016/j.scitotenv.2020.138827

    Article  CAS  Google Scholar 

  6. Imamzai M, Aghaei M, Thayoob YHM, Forouzanfar M (2012) A review on comparison between traditional silicon solar cells and thin-film CdTe solar cells. In: Proceedings national graduate conference, 5 pp

    Google Scholar 

  7. Sherwani AF, Usmani JA, Varun (2010) Life cycle assessment of solar PV based electricity generation systems: a review. Renew Sustain Energy Rev 14(1): 540–544. https://doi.org/10.1016/j.rser.2009.08.003

  8. Biswas J, Jana RK, Kumar V, Dasgupta P, Bandyopadhyay M, Sanyal SK (1998) Hydrometallurgical processing of anode slime for recovery of valuable metals. Environ Waste Manag 216–224. ISSN: 0971-9407

    Google Scholar 

  9. Robles-Vega A, Sanchez-Corrales VM, Castillon-Barraza F (2009) An improved hydrometallurgical route for tellurium production. Miner Metall Process 26(3):169–173. https://doi.org/10.1007/BF03402231

    Article  CAS  Google Scholar 

  10. Halli P, Wilson BP, Hailemariam T, Latostenmaa P, Yliniemi K, Lundström M (2020) Electrochemical recovery of tellurium from metallurgical industrial waste. J Appl Electrochem 50. https://doi.org/10.1007/s10800-019-01363-6.

  11. Halli P, Heikkinen JJ, Elomaa H, Wilson BP, Jokinen V, Yliniemi K, Franssila S, Lundström M (2018) Platinum recovery from industrial process solutions by electrodeposition-redox replacement. ACS Sustain Chem Eng 6(11):14631–14640. https://doi.org/10.1021/acssuschemeng.8b03224

    Article  CAS  Google Scholar 

  12. Korolev I, Spathariotis S, Yliniemi K, Wilson BP, Abbott AP, Lundström M (2020) Mechanism of selective gold extraction from multi-metal chloride solutions by electrodeposition-redox replacement. Green Chem. https://doi.org/10.1039/d0gc00985g

    Article  Google Scholar 

  13. Wang Z, Halli P, Hannula P, Liu F, Wilson BP, Yliniemi K, Lundström M (2019) Recovery of silver from dilute effluents via electrodeposition and redox replacement. J Electrochem Soc 166(8):E266–E274. https://doi.org/10.1149/2.0031910jes

    Article  CAS  Google Scholar 

  14. Hannula P-M, Pletincx S, Janas D, Yliniemi K, Hubin A, Lundström M (2019) Controlling the deposition of silver and bimetallic silver/copper particles onto a carbon nanotube film by electrodeposition-redox replacement. Surf Coat Technol 374:305–316. https://doi.org/10.1016/j.surfcoat.2019.05.085

    Article  CAS  Google Scholar 

  15. Sphera, GaBi-software, GaBi solutions

    Google Scholar 

  16. Ecoinvent, database ecoinvent 3.5. www.ecoinvent.org. Accessed 12 June 2020

  17. U.S. Geological Survey (2020) Mineral commodity summaries 2020, U.S. Geological Survey, 200 pp. https://doi.org/10.3133/mcs2020.

  18. IAEE (2018) Renewable energy materials supply implications. IAEE Energy Forum. https://www.iaee.org/documents/2018EnergyForum1qtr.pdf. Accessed 12 June 2020

  19. Anctill A, Fthenakis V (2012) Critical metals in strategic photovoltaic technologies: abundance versus recyclability. Progr Photovolt 21(6):1253–1259. https://doi.org/10.1002/pip.2308

    Article  CAS  Google Scholar 

  20. U.S. Energy Information Administration, Country Analysis Brief: Japan (2017), 21 pp. Internet: https://www.eia.gov/international/analysis/country/JPN. Accessed 12 June 2020

  21. ENTSO-E (2018) Electricity in Europe 2017

    Google Scholar 

Download references

Acknowledgements

This work has been financed and supported by the “GoldTail” (Grant 319691, PH, MR, and BW) and “NoWASTE” (Grant 297962, KY and ML) projects funded by Academy of Finland. The research also made use of the Academy of Finland funded “RawMatTERS Finland Infrastructure” (RAMI) based at Aalto University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lundström .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Minerals, Metals & Minerals Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Halli, P., Rinne, M., Wilson, B.P., Yliniemi, K., Lundström, M. (2021). Environmental Aspects of the Electrochemical Recovery of Tellurium by Electrochemical Deposition-Redox Replacement (EDRR). In: Azimi, G., et al. Rare Metal Technology 2021. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-65489-4_7

Download citation

Publish with us

Policies and ethics