Skip to main content

RhODIS® (The Rhinoceros DNA Index System): The Application of Simple Forensic and Genetic Tools Help Conserve African Rhinoceros

  • Chapter
  • First Online:
Wildlife Biodiversity Conservation

Abstract

All rhinoceros populations are under severe threat due to habitat encroachment and illegal hunting for their horns. Rhinoceros horn has been used for centuries in Traditional Chinese Medicine (TCM) and more recently to produce high-value items such as jewelry. Rhinoceros are killed for their horns which are trafficked through the various levels of crime syndicates to their final destination in primarily the Asian consumer countries. The demand for rhinoceros horn has made poaching of rhinoceros a highly profitable and nearly risk-free criminal activity due to difficulties in connecting confiscated horns to a specific crime scene. Rhinoceros poaching has increased in all African rhinoceros range states including South Africa, which saw a rise in poaching from 2008, reaching a peak in 2014. Rhinoceros poaching has become an increasingly sophisticated activity involving organized crime syndicates that operate across international borders. The development of an extraction method to obtain nuclear DNA from rhinoceros horn was a first step in producing the DNA evidence that links the horn to a specific crime scene. RhODIS® (The Rhinoceros DNA Index System) was launched in 2010 and the system includes an STR (Short Tandem Repeat)-based reference database for African rhinoceros, representing multiple populations across almost all the range of African black and white rhinoceros. Using data from the RhODIS® database in rhinoceros poaching and rhinoceros horn seizure cases has affirmed the value of the RhODIS® approach in criminal prosecutions, through the successful prosecution, conviction, and sentencing of suspects in South Africa and other countries. The same DNA data may additionally be used to support the management of rhinoceros populations, by evaluating the genetic viability and selection of individuals to ensure that genetic diversity of the remaining, increasingly isolated and fragmented populations, is maintained. Genetic information captured within a comprehensive database, therefore, directly supports the conservation of the species by enhancing both law enforcement and reproductive efficiency to offset losses due to poaching.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson-Lederer RM, Linklater WL, Ritchie PA (2012) Limited mitochondrial DNA variation within South Africa’s black rhino (Diceros bicornis minor) population and implications for management. Afr J Ecol 50:404–413

    Article  Google Scholar 

  • Balding DJ, Nichols RA (1995) A method for quantifying differentiation between populations at multi-allelic loci and its implications for investigating identity and paternity. Genetica 96:3–12

    Article  CAS  PubMed  Google Scholar 

  • Boy SC, Raubenheimer EJ, Marais J, Steenkamp G (2015) White rhinoceros Ceratotherium simum horn development and structure: a deceptive optical illusion. J Zool 296:161–166

    Article  Google Scholar 

  • Brown SM, Houlden BA (1999) Isolation and characterization of microsatellite markers in the black rhinoceros (Diceros bicornis). Mol Ecol 8:1559–1561

    Article  CAS  PubMed  Google Scholar 

  • Buckleton J, Curran J, Goudet J, Taylor D, Thiery A, Weir BS (2016) Population-specific FST values for forensic STR markers: a worldwide survey. Forensic Sci Int Genet 23:91–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butler JM (2015) Advanced topics in forensic DNA typing: interpretation. Academic Press, San Diego

    Google Scholar 

  • Caulderwood K (2014) Like cocaine minus the risk, rhino horn trade explodes in Africa; http://www.ibtimes.com/cocaine-minus-risk-rhino-horn-trade-explodes-africa-1569192 [Online]. Accessed 15 June 2018

  • Chen J-W, Uboh CE, Soma LR, Li X, Guan F, You Y, Liu Y (2010) Identification of racehorse and sample contamination by novel 24-plex STR system. Forensic Sci Int Genet 4:158–167

    Article  CAS  PubMed  Google Scholar 

  • Crosta, A., Sutherland, K. & Talerico, C. 2017. Grinding-rhino: an undercover investigation on rhino horn trafficking in China and Vietnam

    Google Scholar 

  • Cunningham J, Harley EH, O’Ryan C (1999) Isolation and characterization of microsatellite loci in black rhinoceros (Diceros bicornis). Electrophoresis 20:1778–1780

    Article  CAS  PubMed  Google Scholar 

  • Emslie RH, Brooks M (1999) African Rhino. Status survey and conservation action plan. IUCN/SSC African Rhino Specialist Group, IUCN, Gland and Cambridge

    Google Scholar 

  • Emslie RH, Milliken T, Talukdar B, Ellis S, Adcock K, Knight MH (2016) African and Asian rhinoceroses – status, conservation and trade. A report from the IUCN Species Survical Commission (IUCN/SSC) African and Asian Rhino Specialist Groups and TRAFFIC to the CITES Secretariat pursuant to Resolution Conf. 9.14 (Rev. CoP15). Report to CITES

    Google Scholar 

  • Florescu A, Davila JA, Scott C, Fernando P, Kellner K, Morales JC, Melnick D, Boag PT, Van Coeverden De Groot P (2003) Polymorphic microsatellites in white rhinoceros. Mol Ecol Notes 3:344–345

    Article  CAS  Google Scholar 

  • Guerier AS, Bishop JM, Crawford SJ, Schmidt-Küntzel A, Stratford KJ (2012) Parentage analysis in a managed free ranging population of southern white rhinoceros: genetic diversity, pedigrees and management. Conserv Genet 13:811–822

    Article  Google Scholar 

  • Guilford G (2013). http://www.theatlantic.com/business/archive/2013/05/why-does-a-rhino-horn-cost-300-000-because-vietnam-thinks-it-cures-cancer-and-hangovers/275881/ [Online]. Accessed 20 March 2014

  • Hall-Martin A (1984) Kenya’s black rhino in Addo, S. Africa. Newsl Afr Elephant Rhino Group 3:11

    Google Scholar 

  • Hall-Martin A (1988) Conservation of the black rhino: the strategy of the National Parks Board of South Africa. Quagga 1:12–17

    Google Scholar 

  • Hall-Martin A (2009) Black Rhinoceros in southern Africa. Oryx 15:27–32

    Article  Google Scholar 

  • Hall-Martin A, Penzhorn BL (1977) Behaviour and recruitment of translocated black rhinoceros Diceros bicornis. Koedoe 20:147–162

    Article  Google Scholar 

  • Harper CK, Vermeulen GJ, Clarke AB, De Wet JI, Guthrie AJ (2013) Extraction of nuclear DNA from rhinoceros horn and characterization of DNA profiling systems for white (Ceratotherium simum) and black (Diceros bicornis) rhinoceros. Forensic Sci Int Genet 7:428–433

    Article  CAS  PubMed  Google Scholar 

  • Harper C, Ludwig A, Clarke A, Makgopela K, Yurchenko A, Guthrie A, Dobrynin P, Tamazian G, Emslie R, van Heerden M, Hofmeyr M, Potter R, Roets J, Beytell P, Otiende M, Kariuki L, du Toit R, Anderson N, Okori J, Antonik A, Koepfli K-P, Thompson P, O’Brien SJ (2018) Robust forensic matching of confiscated horns to individual poached African rhinoceros. Curr Biol 28:R13–R14

    Article  CAS  PubMed  Google Scholar 

  • Hieronymus TL, Witmer LM, Ridgely RC (2006) Structure of white rhinoceros (Ceratotherium simum) horn investigated by X-ray computed tomography and histology with implications for growth and external form. J Morphol 267:1172–1176

    Article  PubMed  Google Scholar 

  • Hildebrandt TB, Hermes R, Colleoni S, Diecke S, Holtze S, Renfree MB, Stejskal J, Hayashi K, Drukker M, Loi P, Göritz F, Lazzari G, Galli C (2018) Embryos and embryonic stem cells from the white rhinoceros. Nat Commun 9:2589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Howard BC (2015) Only three northern White rhinos remain. National Geographic [Online]

    Google Scholar 

  • Hsing-Mei H, Huang L-H, Tsai L-C, Kuo Y-C, Meng H-H, Linacre A, Lee JC-I (2003) Species identification of rhinoceros horns using the cytochrome b gene. Forensic Sci Int 136:1–11

    Article  Google Scholar 

  • Jäger AC, Alvarez ML, Davis CP, Guzmán E, Han Y, Way L, Walichiewicz P, Silva D, Pham N, Caves G, Bruand J, Schlesinger F, Pond SJK, Varlaro J, Stephens KM, Holt CL (2017) Developmental validation of the MiSeq FGx forensic genomics system for targeted next generation sequencing in forensic DNA casework and database laboratories. Forensic Sci Int Genet 28:52–70

    Article  PubMed  CAS  Google Scholar 

  • Johnson RN, Wilson-Wilde L, Linacre A (2014) Current and future directions of DNA in wildlife forensic science. Forensic Sci Int Genet 10:1–11

    Article  CAS  PubMed  Google Scholar 

  • Karsten M, Jansen van Vuuren B, Goodman P, Barnaud A (2011) The history and management of black rhino in KwaZulu-Natal: a population genetic approach to assess the past and guide the future. Anim Conserv 14:363–370

    Article  Google Scholar 

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241

    Article  Google Scholar 

  • Knight MH, Kerley GIH (2009) Black rhino translocations within Africa. Africa Insight 39:70–83

    Google Scholar 

  • Kotzé A, Dalton DL, Du Toit R, Anderson N, Moodley Y (2014) Genetic structure of the black rhinoceros (Diceros bicornis) in South-Eastern Africa. Conserv Genet 15:1479–1489

    Article  Google Scholar 

  • Kun T, Lyons LA, Sacks BN, Ballard RE, Lindquist C, Wictum EJ (2013) Developmental validation of mini-DogFiler for degraded canine DNA. Forensic Sci Int Genet 7:151–158

    Article  CAS  PubMed  Google Scholar 

  • Lin Y-C, Hsieh H-M, Lee JC-I, Hsiao C-T, Lin D-Y, Linacre A, Tsai L-C (2014) Establishing a DNA identification system for pigs (Sus scrofa) using a multiplex STR amplification. Forensic Sci Int Genet 9:12–19

    Article  CAS  PubMed  Google Scholar 

  • Linacre A, Gusmão L, Hecht W, Hellmann AP, Mayr WR, Parson W, Prinz M, Schneider PM, Morling N (2011) ISFG: recommendations regarding the use of non-human (animal) DNA in forensic genetic investigations. Forensic Sci Int Genet 5:501–505

    Article  CAS  PubMed  Google Scholar 

  • Menotti-Raymond MA, David VA, Wachter LL, Butler JM, O’Brien SJ (2005) An STR forensic typing system for genetic individualization of domestic cat (Felis catus) samples. J Forensic Sci 50:1061–1070

    Article  CAS  PubMed  Google Scholar 

  • Milliken T, Shaw J (2012) The South Africa – Viet Nam rhino horn trade Nexus: a Traffic report. Traffic

    Google Scholar 

  • Moneron, S., Okes, N. & Rademeyer, J. 2017. Pendants, powder and pathways

    Google Scholar 

  • Moodley Y, Russo IRM, Dalton DL, Kotzé A, Muya S, Haubensak P, Bálint B, Munimanda GK, Deimel C, Setzer A, Dicks K, Herzig-Straschil B, Kalthoff DC, Siegismund HR, Robovský J, O’Donoghue P, Bruford MW (2017) Extinctions, genetic erosion and conservation options for the black rhinoceros (Diceros bicornis). Sci Rep 7:41417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muya SM, Bruford MW, Muigai AW-T, Osiemo ZB, Mwachiro E, Okita-Ouma B, Goossens B (2011) Substantial molecular variation and low genetic structure in Kenya’s black rhinoceros: implications for conservation. Conserv Genet 12:1575–1588

    Article  CAS  Google Scholar 

  • Nielsen L, Meehan-Meola D, Kilbourn A, Alcivar-Warren A (2008) Characterization of microsatellite loci in the black rhinoceros (Diceros bicornis) and white rhinoceros (Ceratotherium simum): their use for cross-species amplification and differentiation between the two species. Conserv Genet 9:239–242

    Article  CAS  Google Scholar 

  • Patton, F. 2011. The medicinal value of rhino horn – a quest for the truth

    Google Scholar 

  • Peppin L, McEwing R, Ogden R, Hermes R, Harper C, Guthrie A, Carvalho GR (2010) Molecular sexing of African rhinoceros. Conserv Genet 11:1181–1184

    Article  CAS  Google Scholar 

  • Player I (2013) The White rhino Saga. Jonathan Ball Publishers, Johannesburg

    Google Scholar 

  • Puch-Solis R, Roberts P, Pope S, Aitken C (2012) Communicating and interpreting statistical evidence in the Administration of Criminal Justice 2. Assessing the Probative value of DNA Evidence, Royal Statistical Society, London

    Google Scholar 

  • Reuters (2017) Constitutional Court lifts ban on domestic sales in rhino horn: http://www.enca.com/south-africa/constitutional-court-lifts-ban-on-domestic-sales-in-rhino-horn. eNCA

  • Rookmaaker K, Antoine P (2012) New maps representing the historical and recent distribution of the African species of rhinoceros: Diceros bicornis, Ceratotherium simum and Ceratotherium cottoni. Pachyderm 52:91–96

    Google Scholar 

  • Rudbeck L, Dissing J (1998) Rapid, simple alkaline extraction of human genomic DNA from whole blood, buccal epithelial cells, semen and forensic stains for PCR. BioTechniques 25:588–592

    Article  CAS  PubMed  Google Scholar 

  • Scott CA (2008) Microsatellite variability in four contemporary rhinoceros species: implications for conservation. MSc Dissertation MSc Dissertation, Queen’s University

    Google Scholar 

  • Scott C, Foose T, Morales JC, Fernando P, Melnick DJ, Boag PT, Davila JA, Van Coeverden De Groot PJ (2004) Optimization of novel polymorphic microsatellites in the endangered Sumatran rhinoceros (Dicerorhinus sumatrensis). Mol Ecol Notes 4:194–196

    Article  CAS  Google Scholar 

  • Tamazian G, Dobrynin P, Krasheninnikova K, Komissarov A, Koepfli K-P, O’Brien SJ (2016) Chromosomer: a reference-based genome arrangement tool for producing draft chromosome sequences. GigaScience 5:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Toonen RJ, Hughes S (2001) Increased throughput for fragment analysis on an ABI prism® 377 automated sequencer using a membrane comb and STRand software. BioTechniques 31:1320–1324

    CAS  PubMed  Google Scholar 

  • Van Coeverden de Groot PJ, Putnam AS, Erb P, Scott C, Melnick D, O’Ryan C, Boag PT (2011) Conservation genetics of the black rhinoceros, Diceros bicornis bicornis, in Namibia. Conserv Genet 12:783–792

    Article  Google Scholar 

  • Van De Goor LHP, Panneman H, Van Haeringen WA (2009) A proposal for standardization in forensic bovine DNA typing: allele nomenclature of 16 cattle-specific short tandem repeat loci. Anim Genet 40:630–636

    Article  PubMed  CAS  Google Scholar 

  • Wade CM, Giulotto E, Sigurdsson S, Zoli M, Gnerre S, Imsland F, Lear TL, Adelson DL, Bailey E, Bellone RR, Blöcker H, Distl O, Edgar RC, Garber M, Leeb T, Mauceli E, MacLeod JN, Penedo MCT, Raison JM, Sharpe T, Vogel J, Andersson L, Antczak DF, Biagi T, Binns MM, Chowdhary BP, Coleman SJ, Della Valle G, Fryc S, Guérin G, Hasegawa T, Hill EW, Jurka J, Kiialainen A, Lindgren G, Liu J, Magnani E, Mickelson JR, Murray J, Nergadze SG, Onofrio R, Pedroni S, Piras MF, Raudsepp T, Rocchi M, Røed KH, Ryder OA, Searle S, Skow L, Swinburne JE, Syvänen AC, Tozaki T, Valberg SJ, Vaudin M, White JR, Zody MC, Lander ES, Lindblad-Toh K (2009) Genome sequence, comparative analysis, and population genetics of the domestic horse. Science 326:865–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker C, Walker A (2012) The rhino keepers. Johannesburg, Jacana Media

    Google Scholar 

  • Weir BS (1996) The second National Research Council report on forensic DNA evidence. Am J Hum Genet 59(3):497–500

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wictum E, Kun T, Lindquist C, Malvick J, Vankan D, Sacks B (2013) Developmental validation of DogFiler, a novel multiplex for canine DNA profiling in forensic casework. Forensic Sci Int Genet 7:82–91

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cindy Kim Harper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harper, C.K. (2021). RhODIS® (The Rhinoceros DNA Index System): The Application of Simple Forensic and Genetic Tools Help Conserve African Rhinoceros. In: Underkoffler, S.C., Adams, H.R. (eds) Wildlife Biodiversity Conservation. Springer, Cham. https://doi.org/10.1007/978-3-030-64682-0_18

Download citation

Publish with us

Policies and ethics