Skip to main content

The COVID-19 Vaccine Landscape

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1318))

Abstract

The history of vaccine development spans centuries. At first, whole pathogens were used as vaccine agents, either inactivated or attenuated, to reduce virulence in humans. Safety and tolerability were increased by including only specific proteins as antigens and using cell culture methods, while novel vaccine strategies, like nucleic acid- or vector-based vaccines, hold high promise for the future. Vaccines have generally not been employed as the primary tools in outbreak response, but this might change since advances in medical technology in the last decades have made the concept of developing vaccines against novel pathogens a realistic strategy. Wandering the uncharted territory of a novel pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we can learn from other human Betacoronaviridae that emerged in the last decades, SARS-CoV-1 and MERS-CoV. We can identify the most likely target structures of immunity, establish animal models that emulate human disease and immunity as closely as possible, and learn about complex mechanisms of immune interaction such as cross-reactivity or antibody-dependent enhancement (ADE). However, significant knowledge gaps remain. What are the correlates of protection? How do we best induce immunity in vulnerable populations like the elderly? Will the immunity induced by vaccination (or by natural infection) wane over time? To date, at least 149 vaccine candidates against SARS-CoV-2 are under development. At the time of writing, at least 17 candidates have already progressed past preclinical studies (in vitro models and in vivo animal experiments) into clinical development. This chapter will provide an overview of this rapidly developing field.

Till Koch and Anahita Fathi are contributed equally.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agrawal AS, Tao X, Algaissi A, Garron T, Narayanan K, Peng B-H, Couch RB, Tseng C-TK (2016) Immunization with inactivated Middle East Respiratory Syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus. Hum Vaccin Immunother 12(9):2351–2356. https://doi.org/10.1080/21645515.2016.1177688

    Article  PubMed  PubMed Central  Google Scholar 

  • Aguilar JC, Rodríguez EG (2007) Vaccine adjuvants revisited. Vaccine 25(19):3752–3762. https://doi.org/10.1016/j.vaccine.2007.01.111

    Article  PubMed  CAS  Google Scholar 

  • Alberer M, Gnad-Vogt U, Hong HS, Mehr KT, Backert L, Finak G, Gottardo R, Bica MA, Garofano A, Koch SD (2017) Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet 390(10101):1511–1520

    Article  PubMed  CAS  Google Scholar 

  • Barquet N (1997) Smallpox: the triumph over the most terrible of the ministers of death. Ann Intern Med 127(8_Part_1):635. https://doi.org/10.7326/0003-4819-127-8_Part_1-199710150-00010

    Article  PubMed  CAS  Google Scholar 

  • Belshe Robert B, Gruber William C, Mendelman Paul M, Mehta Harshvardhan B, Mahmood K, Reisinger K, Treanor J, Zangwill K, Hayden Frederick G, Bernstein David I, Kotloff K, King J, Piedra Pedro A, Block Stan L, Yan L, Wolff M (2000) Correlates of immune protection induced by live, attenuated, cold-adapted, trivalent, intranasal influenza virus vaccine. J Infect Dis 181(3):1133–1137. https://doi.org/10.1086/315323

    Article  Google Scholar 

  • Björkholm B, Böttiger M, Christenson B, Hagberg L (1986) Antitoxin antibody levels and the outcome of illness during an outbreak of diphtheria among alcoholics. Scand J Infect Dis 18(3):235–239

    Article  PubMed  Google Scholar 

  • Blume S (2000) Essay on science and society:a brief history of polio vaccines. Science 288(5471):1593–1594. https://doi.org/10.1126/science.288.5471.1593

    Article  PubMed  CAS  Google Scholar 

  • Bogers WM, Oostermeijer H, Mooij P, Koopman G, Verschoor EJ, Davis D, Ulmer JB, Brito LA, Cu Y, Banerjee K (2015) Potent immune responses in rhesus macaques induced by nonviral delivery of a self-amplifying RNA vaccine expressing HIV type 1 envelope with a cationic nanoemulsion. J Infect Dis 211(6):947–955

    Article  PubMed  CAS  Google Scholar 

  • Borrow R, Balmer P, Miller E (2005) Meningococcal surrogates of protection?Serum bactericidal antibody activity. Vaccine 23(17–18):2222–2227. https://doi.org/10.1016/j.vaccine.2005.01.051

    Article  PubMed  CAS  Google Scholar 

  • Bradburne AF, Somerset BA (1972) Coronavirus antibody titres in sera of healthy adults and experimentally infected volunteers. Epidemiol Infect 70(2):235–244

    CAS  Google Scholar 

  • Buchbinder SP, Mehrotra DV, Duerr A, Fitzgerald DW, Mogg R, Li D, Gilbert PB, Lama JR, Marmor M, del Rio C (2008) Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 372(9653):1881–1893

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burki T (2017) CEPI: preparing for the worst. Lancet Infect Dis 17(3):265–266. https://doi.org/10.1016/S1473-3099(17)30062-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Callow KA, Parry HF, Sergeant M, Tyrrell DAJ (1990) The time course of the immune response to experimental coronavirus infection of man. Epidemiol Infect 105(2):435–446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Castagnoli R, Votto M, Licari A, Brambilla I, Bruno R, Perlini S, Rovida F, Baldanti F, Marseglia GL (2020) Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children and adolescents: a systematic review. JAMA Pediatr

    Google Scholar 

  • Cate TR, Couch RB, Kasel JA, Six HR (1977) Clinical trials of monovalent influenza A/New Jersey/76 virus vaccines in adults: reactogenicity, antibody response, and antibody persistence. J Infect Dis 136(Suppl_3):S450–S455

    Article  PubMed  Google Scholar 

  • CEPI (2020) research potfolio. https://cepi.net/research_dev/our-portfolio/. Accessed 22 May 2020

  • Chandrashekar A, Liu J, Martinot AJ, McMahan K, Mercado NB, Peter L, Tostanoski LH, Yu J, Maliga Z, Nekorchuk M (2020) SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science

    Google Scholar 

  • Che X, Qiu L, Liao Z, Wang Y, Wen K, Pan Y, Hao W, Mei Y, Cheng Vincent CC, Yuen K (2005) Antigenic cross-reactivity between severe acute respiratory syndrome–associated coronavirus and human coronaviruses 229E and OC43. J Infect Dis 191(12):2033–2037. https://doi.org/10.1086/430355

    Article  PubMed  CAS  Google Scholar 

  • clinicaltrials.gov (2011) Phase I dose escalation SARS-CoV recombinant S protein, with and without adjuvant, vaccine study. https://clinicaltrials.gov/ct2/show/NCT01376765. Accessed 09 June 2020

  • Condon C, Watkins SC, Celluzzi CM, Thompson K, Falo LD (1996) DNA–based immunization by in vivo transfection of dendritic cells. Nat Med 2(10):1122–1128. https://doi.org/10.1038/nm1096-1122

    Article  PubMed  CAS  Google Scholar 

  • Dejnirattisai W, Jumnainsong A, Onsirisakul N, Fitton P, Vasanawathana S, Limpitikul W, Puttikhunt C, Edwards C, Duangchinda T, Supasa S, Chawansuntati K, Malasit P, Mongkolsapaya J, Screaton G (2010) Cross-reacting antibodies enhance dengue virus infection in humans. Science 328(5979):745–748. https://doi.org/10.1126/science.1185181

    Article  PubMed  CAS  Google Scholar 

  • Du L, Tai W, Zhou Y, Jiang S (2016) Vaccines for the prevention against the threat of MERS-CoV. Expert Rev Vaccines 15(9):1123–1134. https://doi.org/10.1586/14760584.2016.1167603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Edsall G (1959) Specific prophylaxis of tetanus. J Am Med Assoc 171(4):417–427

    Article  PubMed  CAS  Google Scholar 

  • Edwards KM, Karzon DT (1990) Pertussis vaccines. Pediatr Clin N Am 37(3):549–566

    Article  CAS  Google Scholar 

  • Erasmus JH, Khandhar AP, Walls AC, Hemann EA, O’Connor MA, Murapa P, Archer J, Leventhal S, Fuller J, Lewis T, Draves KE, Randall S, Guerriero KA, Duthie MS, Carter D, Reed SG, Hawman DW, Feldmann H, Gale M Jr, Veesler D, Berglund P, Fuller DH (2020) Single-dose replicating RNA vaccine induces neutralizing antibodies against SARS-CoV-2 in nonhuman primates. BioRxiv (preprint).https://doi.org/10.1101/2020.05.28.121640

  • Ertl HCJ (2009) Novel vaccines to human rabies. PLoS Negl Trop Dis 3(9):e515. https://doi.org/10.1371/journal.pntd.0000515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fathi A, Dahlke C, Addo MM (2019) Recombinant vesicular stomatitis virus vector vaccines for WHO blueprint priority pathogens. Hum Vaccin Immunother 15(10):2269–2285

    Article  PubMed  PubMed Central  Google Scholar 

  • Fleeton MN, Chen M, Berglund P, Rhodes G, Parker SE, Murphy M, Atkins GJ, Liljeström P (2001) Self-replicative RNA vaccines elicit protection against influenza A virus, respiratory syncytial virus, and a tickborne encephalitis virus. J Infect Dis 183(9):1395–1398

    Article  PubMed  CAS  Google Scholar 

  • Folegatti PM, Bellamy D, Flaxman A, Mair C, Ellis C, Ramon RL, Ramos Lopez F, Mitton C, Baker M, Poulton I, Lawrie A, Roberts R, Minassian A, Ewer KJ, Evans TG, Hill AVS, Gilbert SC (2019) Safety and immunogenicity of the heterosubtypic Influenza A vaccine MVA-NP+M1 manufactured on the AGE1.CR.pIX avian cell line. Vaccine 7(1):33. https://doi.org/10.3390/vaccines7010033

    Article  CAS  Google Scholar 

  • Folegatti PM, Bittaye M, Flaxman A, Lopez FR, Bellamy D, Kupke A, Mair C, Makinson R, Sheridan J, Rohde C, Halwe S, Jeong Y, Park Y-S, Kim J-O, Song M, Boyd A, Tran N, Silman D, Poulton I, Datoo M, Marshal J, Themistocleous Y, Lawrie A, Roberts R, Berrie E, Becker S, Lambe T, Hill A, Ewer K, Gilbert S (2020) Safety and immunogenicity of a candidate Middle East respiratory syndrome coronavirus viral-vectored vaccine: a dose-escalation, open-label, non-randomised, uncontrolled, phase 1 trial. Lancet Infect Dis:S1473309920301602. https://doi.org/10.1016/S1473-3099(20)30160-2

  • Frey SE, Winokur PL, Salata RA, El-Kamary SS, Turley CB, Walter EB, Hay CM, Newman FK, Hill HR, Zhang Y, Chaplin P, Tary-Lehmann M, Belshe RB (2013) Safety and immunogenicity of IMVAMUNE® smallpox vaccine using different strategies for a post event scenario. Vaccine 31(29):3025–3033. https://doi.org/10.1016/j.vaccine.2013.04.050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fulginiti V, Eller J, Sieber O, Joyner J, Minamitani M, Meiklejohn G (1969) Respiratory virus immunization: a field trial of two inactivated respiratory virus vaccines; an aqueous trivalent parainfluenza virus vaccine and an alum-precipitated respiratory syncytial virus vaccine. Am J Epidemiol 89(4):435–448

    Article  PubMed  CAS  Google Scholar 

  • Gao W, Tamin A, Soloff A, D'Aiuto L, Nwanegbo E, Robbins PD, Bellini WJ, Barratt-Boyes S, Gambotto A (2003) Effects of a SARS-associated coronavirus vaccine in monkeys. Lancet 362(9399):1895–1896

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao Q, Bao L, Mao H, Wang L, Xu K, Yang M, Li Y, Zhu L, Wang N, Lv Z (2020) Development of an inactivated vaccine candidate for SARS-CoV-2. Science

    Google Scholar 

  • Gauger PC, Vincent AL, Loving CL, Lager KM, Janke BH, Kehrli ME Jr, Roth JA (2011) Enhanced pneumonia and disease in pigs vaccinated with an inactivated human-like (δ-cluster) H1N2 vaccine and challenged with pandemic 2009 H1N1 influenza virus. Vaccine 29(15):2712–2719

    Article  PubMed  CAS  Google Scholar 

  • Geall AJ, Verma A, Otten GR, Shaw CA, Hekele A, Banerjee K, Cu Y, Beard CW, Brito LA, Krucker T (2012) Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci 109(36):14604–14609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Geisbert TW, Feldmann H (2011) Recombinant vesicular stomatitis virus–based vaccines against ebola and marburg virus infections. J Infect Dis 204(Suppl_3):S1075–S1081. https://doi.org/10.1093/infdis/jir349

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gerlach C, Moseman EA, Loughhead SM, Alvarez D, Zwijnenburg AJ, Waanders L, Garg R, Juan C, von Andrian UH (2016) The chemokine receptor CX3CR1 defines three antigen-experienced CD8 T cell subsets with distinct roles in immune surveillance and homeostasis. Immunity 45(6):1270–1284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gilbert PB, Luedtke AR (2018) Statistical learning methods to determine immune correlates of herpes zoster in vaccine efficacy trials. J Infect Dis 218(Suppl_2):S99–S101. https://doi.org/10.1093/infdis/jiy421

    Article  PubMed  PubMed Central  Google Scholar 

  • Girard MP, Tam JS, Assossou OM, Kieny MP (2010) The 2009 A (H1N1) influenza virus pandemic: a review. Vaccine 28(31):4895–4902

    Article  PubMed  Google Scholar 

  • Glenny A, Hopkins BE (1923) Diphtheria toxoid as an immunising agent. Br J Exp Pathol 4(5):283

    PubMed Central  CAS  Google Scholar 

  • Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, Haagmans BL, Lauber C, Leontovich AM, Neuman BW, Penzar D, Perlman S, LLM P, Samborskiy DV, Sidorov IA, Sola I, Ziebuhr J, Coronaviridae Study Group of the International Committee on Taxonomy of V (2020) The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 5(4):536–544. https://doi.org/10.1038/s41564-020-0695-z

    Article  CAS  Google Scholar 

  • Gotschlich EC, Liu TY, Artenstein MS (1969) Human immunity to the meningococcus: III. Preparation and immunochemical properties of the group A, group B, and group C meningococcal polysaccharides. J Exp Med 129(6):1349–1365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Graham BS (2020) Rapid COVID-19 vaccine development. Science 368(6494):945–946

    Article  CAS  PubMed  Google Scholar 

  • Gretebeck LM, Subbarao K (2015) Animal models for SARS and MERS coronaviruses. Curr Opin Virol 13:123–129. https://doi.org/10.1016/j.coviro.2015.06.009

    Article  PubMed  PubMed Central  Google Scholar 

  • Grunwald T, Ulbert S (2015) Improvement of DNA vaccination by adjuvants and sophisticated delivery devices: vaccine-platforms for the battle against infectious diseases. Clin Exp Vaccin Res 4(1):1. https://doi.org/10.7774/cevr.2015.4.1.1

    Article  Google Scholar 

  • Gu H, Chen Q, Yang G, He L, Fan H, Deng Y-Q, Wang Y, Teng Y, Zhao Z, Cui Y (2020) Rapid adaptation of SARS-CoV-2 in BALB/c mice: Novel mouse model for vaccine efficacy. bioRxiv

    Google Scholar 

  • Guy B, Barrere B, Malinowski C, Saville M, Teyssou R, Lang J (2011) From research to phase III: preclinical, industrial and clinical development of the Sanofi Pasteur tetravalent dengue vaccine. Vaccine 29(42):7229–7241. https://doi.org/10.1016/j.vaccine.2011.06.094

    Article  PubMed  CAS  Google Scholar 

  • Guzman MG, Vazquez S (2010) The complexity of antibody-dependent enhancement of dengue virus infection. Viruses 2(12):2649–2662. https://doi.org/10.3390/v2122649

    Article  PubMed  PubMed Central  Google Scholar 

  • Haagmans BL, van den Brand JMA, Raj VS, Volz A, Wohlsein P, Smits SL, Schipper D, Bestebroer TM, Okba N, Fux R, Bensaid A, Solanes Foz D, Kuiken T, Baumgartner W, Segales J, Sutter G, Osterhaus ADME (2016) An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels. Science 351(6268):77–81. https://doi.org/10.1126/science.aad1283

    Article  PubMed  CAS  Google Scholar 

  • Halstead SB (2003) Neutralization and antibody-dependent enhancement of dengue viruses. Adv Virus Res 60:421–467. https://doi.org/10.1016/s0065-3527(03)60011-4

    Article  PubMed  CAS  Google Scholar 

  • Hannoun C (2013) The evolving history of influenza viruses and influenza vaccines. Expert Rev Vaccines 12(9):1085–1094. https://doi.org/10.1586/14760584.2013.824709

    Article  PubMed  CAS  Google Scholar 

  • He Y, Zhou Y, Liu S, Kou Z, Li W, Farzan M, Jiang S (2004) Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: implication for developing subunit vaccine. Biochem Biophys Res Commun 324(2):773–781. https://doi.org/10.1016/j.bbrc.2004.09.106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heidelberger M, MacLeod CM, Di Lapi MM (1948) The human antibody response to simultaneous injection of six specific polysaccharides of pneumococcus. J Exp Med 88(3):369–372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hekele A, Bertholet S, Archer J, Gibson DG, Palladino G, Brito LA, Otten GR, Brazzoli M, Buccato S, Bonci A, Casini D, Maione D, Qi Z-Q, Gill JE, Caiazza NC, Urano J, Hubby B, Gao GF, Shu Y, De Gregorio E, Mandl CW, Mason PW, Settembre EC, Ulmer JB, Craig Venter J, Dormitzer PR, Rappuoli R, Geall AJ (2013) Rapidly produced SAM® vaccine against H7N9 influenza is immunogenic in mice. Emerg Microbes Infect 2(1):1–7. https://doi.org/10.1038/emi.2013.54

    Article  Google Scholar 

  • Henao-Restrepo AM, Camacho A, Longini IM, Watson CH, Edmunds WJ, Egger M, Carroll MW, Dean NE, Diatta I, Doumbia M, Draguez B, Duraffour S, Enwere G, Grais R, Gunther S, Gsell P-S, Hossmann S, Watle SV, Kondé MK, Kéïta S, Kone S, Kuisma E, Levine MM, Mandal S, Mauget T, Norheim G, Riveros X, Soumah A, Trelle S, Vicari AS, Røttingen J-A, Kieny M-P (2017) Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!). Lancet 389(10068):505–518. https://doi.org/10.1016/S0140-6736(16)32621-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hilleman MR, Weibel RE, Buynak EB, Stokes J Jr, Whitman JE Jr (1967) Live, attenuated mumps-virus vaccine: protective efficacy as measured in a field evaluation. N Engl J Med 276(5):252–258

    Article  PubMed  CAS  Google Scholar 

  • Hilleman MR, McAleer WJ, Buynak EB, McLean AA (1983) The preparation and safety of hepatitis B vaccine. J Infect 7:3–8. https://doi.org/10.1016/S0163-4453(83)96465-4

    Article  PubMed  Google Scholar 

  • Hohdatsu T, Yamada M, Tominaga R, Makino K, Kida K, Koyama H (1998) Antibody-dependent enhancement of feline infectious peritonitis virus infection in feline alveolar macrophages and human monocyte cell line U937 by serum of cats experimentally or naturally infected with feline coronavirus. J Vet Med Sci 60(1):49–55. https://doi.org/10.1292/jvms.60.49

    Article  PubMed  CAS  Google Scholar 

  • Honda-Okubo Y, Barnard D, Ong CH, Peng B-H, Tseng C-TK, Petrovsky N (2015) Severe acute respiratory syndrome-associated coronavirus vaccines formulated with delta inulin adjuvants provide enhanced protection while ameliorating lung eosinophilic immunopathology. J Virol 89(6):2995–3007. https://doi.org/10.1128/JVI.02980-14

    Article  PubMed  CAS  Google Scholar 

  • Houser KV, Broadbent AJ, Gretebeck L, Vogel L, Lamirande EW, Sutton T, Bock KW, Minai M, Orandle M, Moore IN, Subbarao K (2017) Enhanced inflammation in New Zealand white rabbits when MERS-CoV reinfection occurs in the absence of neutralizing antibody. PLoS Pathog 13(8):e1006565. https://doi.org/10.1371/journal.ppat.1006565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • ICTV (2020) International Committee on Taxonomy of Viruses – Virus Taxonomy: 2019 Release. EC 51, Berlin, Germany, July 2019, Email ratification March 2020 (MSL #35). https://talk.ictvonline.org/taxonomy/. Accessed 10 June 2020

  • Jackson DA, Symons RH, Berg P (1972) Biochemical method for inserting new genetic information into DNA of simian virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc Natl Acad Sci 69(10):2904–2909. https://doi.org/10.1073/pnas.69.10.2904

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jameson SC, Masopust D (2018) Understanding subset diversity in T cell memory. Immunity 48(2):214–226. https://doi.org/10.1016/j.immuni.2018.02.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jaume M, Yip MS, Cheung CY, Leung HL, Li PH, Kien F, Dutry I, Callendret B, Escriou N, Altmeyer R, Nal B, Daeron M, Bruzzone R, Peiris JSM (2011) Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH- and cysteine protease-independent Fc R pathway. J Virol 85(20):10582–10597. https://doi.org/10.1128/JVI.00671-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang S, He Y, Liu S (2005) SARS vaccine development. Emerg Infect Dis 11(7):1016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson KM, Peralta PH, Vogel JE (1966) Clinical and serological response to laboratory-acquired human infection by Indiana type vesicular stomatitis virus (VSV). Am J Trop Med Hyg 15(2):244–246. https://doi.org/10.4269/ajtmh.1966.15.244

    Article  PubMed  CAS  Google Scholar 

  • Kareko BW, Booty BL, Nix CD, Lyski ZL, Slifka MK, Amanna IJ, Messer WB (2019) Persistence of neutralizing antibody responses among yellow fever virus 17D vaccinees living in a nonendemic setting. J Infect Dis. https://doi.org/10.1093/infdis/jiz374

  • Katz SL, Kempe CH, Black FL, Lepow ML, Krugman S, Haggerty RJ, Enders JF (1960) Studies on an attenuated measles-virus vaccine: VIII. General summary and evaluation of the results of vaccination. Am J Dis Child 100(6):942–946

    Article  PubMed  CAS  Google Scholar 

  • Khandia R, Munjal A, Dhama K, Karthik K, Tiwari R, Malik YS, Singh RK, Chaicumpa W (2018) Modulation of dengue/zika virus pathogenicity by antibody-dependent enhancement and strategies to protect against enhancement in zika virus infection. Front Immunol 9:597. https://doi.org/10.3389/fimmu.2018.00597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim Y-I, Kim S-G, Kim S-M, Kim E-H, Park S-J, Yu K-M, Chang J-H, Kim EJ, Lee S, Casel MAB, Um J, Song M-S, Jeong HW, Lai VD, Kim Y, Chin BS, Park J-S, Chung K-H, Foo S-S, Poo H, Mo I-P, Lee O-J, Webby RJ, Jung JU, Choi YK (2020) Infection and rapid transmission of SARS-CoV-2 in ferrets. Cell Host Microbe 27(5):704–709.e702. https://doi.org/10.1016/j.chom.2020.03.023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kirnbauer R, Booy F, Cheng N, Lowy DR, Schiller JT (1992) Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc Natl Acad Sci 89(24):12180–12184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koch T, Dahlke C, Fathi A, Kupke A, Krähling V, Okba NMA, Halwe S, Rohde C, Eickmann M, Volz A, Hesterkamp T, Jambrecina A, Borregaard S, Ly ML, Zinser ME, Bartels E, Poetsch JSH, Neumann R, Fux R, Schmiedel S, Lohse AW, Haagmans BL, Sutter G, Becker S, Addo MM (2020) Safety and immunogenicity of a modified vaccinia virus Ankara vector vaccine candidate for Middle East respiratory syndrome: an open-label, phase 1 trial. Lancet Infect Dis:S1473309920302486. https://doi.org/10.1016/S1473-3099(20)30248-6

  • Korber B, Fischer W, Gnanakaran SG, Yoon H, Theiler J, Abfalterer W, Foley B, Giorgi EE, Bhattacharya T, Parker MD (2020) Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2. bioRxiv

    Google Scholar 

  • Kretschmer K, Apostolou I, Hawiger D, Khazaie K, Nussenzweig MC, von Boehmer H (2005) Inducing and expanding regulatory T cell populations by foreign antigen. Nat Immunol 6(12):1219–1227

    Article  PubMed  CAS  Google Scholar 

  • Kurosaki T, Kometani K, Ise W (2015) Memory B cells. Nat Rev Immunol 15(3):149–159

    Article  PubMed  CAS  Google Scholar 

  • Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L (2020) Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature:1–6

    Google Scholar 

  • Landy M, Gaines S, Seal JR, Whiteside JE (1954) Antibody responses of man to three types of antityphoid immunizing agents: heat-phenol fluid vaccine, acetone-dehydrated vaccine, and isolated Vi and 0 antigens. Am J Public Health Nations Health 44(12):1572–1579

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leung AKC (2011) “Variolation” and vaccination in late imperial China, Ca 1570–1911. In: Plotkin SA (ed) History of vaccine development. Springer New York, New York, pp 5–12

    Chapter  Google Scholar 

  • Lewnard J, Cobey S (2018) Immune history and influenza vaccine effectiveness. Vaccine 6(2):28. https://doi.org/10.3390/vaccines6020028

    Article  CAS  Google Scholar 

  • Li T, Xie J, He Y, Fan H, Baril L, Qiu Z, Han Y, Xu W, Zhang W, You H, Zuo Y, Fang Q, Yu J, Chen Z, Zhang L (2006) Long-term persistence of robust antibody and cytotoxic T cell responses in recovered patients infected with SARS coronavirus. PLoS One 1(1):e24. https://doi.org/10.1371/journal.pone.0000024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin J-T, Zhang J-S, Su N, Xu J-G, Wang N, Chen J-T, Chen X, Liu Y-X, Gao H, Jia Y-P, Liu Y, Sun R-H, Wang X, Yu D-Z, Hai R, Gao Q, Ning Y, Wang H-X, Li M-C, Kan B, Dong G-M, An Q, Wang Y-Q, Han J, Qin C, Yin W-D, Dongs X-P (2007) Safety and immunogenicity from a phase I trial of inactivated severe acute respiratory syndrome coronavirus vaccine. Antivir Ther (Lond) 12(7):1107–1113

    Article  CAS  Google Scholar 

  • Liu W, Fontanet A, Zhang PH, Zhan L, Xin ZT, Baril L, Tang F, Lv H, Cao WC (2006) Two-year prospective study of the humoral immune response of patients with severe acute respiratory syndrome. J Infect Dis 193(6):792–795. https://doi.org/10.1086/500469

    Article  PubMed  Google Scholar 

  • Liu WJ, Lan J, Liu K, Deng Y, Yao Y, Wu S, Chen H, Bao L, Zhang H, Zhao M, Wang Q, Han L, Chai Y, Qi J, Zhao J, Meng S, Qin C, Gao GF, Tan W (2017) Protective T cell responses featured by concordant recognition of middle east respiratory syndrome coronavirus–derived CD8 <sup>+</sup> T cell epitopes and host MHC. J Immunol 198(2):873–882. https://doi.org/10.4049/jimmunol.1601542

    Article  PubMed  CAS  Google Scholar 

  • Lopez AL, Gonzales MLA, Aldaba JG, Nair GB (2014) Killed oral cholera vaccines: history, development and implementation challenges. Ther Adv Vaccines 2(5):123–136. https://doi.org/10.1177/2051013614537819

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mackett M, Smith GL, Moss B (1982) Vaccinia virus: a selectable eukaryotic cloning and expression vector. Proc Natl Acad Sci 79(23):7415–7419. https://doi.org/10.1073/pnas.79.23.7415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martin JE, Louder MK, Holman LA, Gordon IJ, Enama ME, Larkin BD, Andrews CA, Vogel L, Koup RA, Roederer M, Bailer RT, Gomez PL, Nason M, Mascola JR, Nabel GJ, Graham BS (2008) A SARS DNA vaccine induces neutralizing antibody and cellular immune responses in healthy adults in a phase I clinical trial. Vaccine 26(50):6338–6343. https://doi.org/10.1016/j.vaccine.2008.09.026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mayr A, Stickl H, Müller H, Danner K, Singer H (1978) The smallpox vaccination strain MVA: marker, genetic structure, experience gained with the parenteral vaccination and behaviour in organisms with a debilitated defence mechanism. Zentralblatt fur Bacteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene 1 (5/6):375-390. PMID: 219640

    Google Scholar 

  • Medaglini D, Santoro F, Siegrist C-A (2018) Correlates of vaccine-induced protective immunity against Ebola virus disease. Semin Immunol 39:65–72. https://doi.org/10.1016/j.smim.2018.07.003

    Article  PubMed  CAS  Google Scholar 

  • Meyer M, Malherbe DC, Bukreyev A (2019) Can ebola virus vaccines have universal immune correlates of protection? Trends Microbiol 27(1):8–16. https://doi.org/10.1016/j.tim.2018.08.008

    Article  PubMed  CAS  Google Scholar 

  • Modjarrad K, Roberts CC, Mills KT, Castellano AR, Paolino K, Muthumani K, Reuschel EL, Robb ML, Racine T, Oh M-d, Lamarre C, Zaidi FI, Boyer J, Kudchodkar SB, Jeong M, Darden JM, Park YK, Scott PT, Remigio C, Parikh AP, Wise MC, Patel A, Duperret EK, Kim KY, Choi H, White S, Bagarazzi M, May JM, Kane D, Lee H, Kobinger G, Michael NL, Weiner DB, Thomas SJ, Maslow JN (2019) Safety and immunogenicity of an anti-Middle East respiratory syndrome coronavirus DNA vaccine: a phase 1, open-label, single-arm, dose-escalation trial. Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(19)30266-X

  • Morris SJ, Sebastian S, Spencer AJ, Gilbert SC (2016) Simian adenoviruses as vaccine vectors. Futur Virol 11(9):649–659. https://doi.org/10.2217/fvl-2016-0070

    Article  CAS  Google Scholar 

  • Munster VJ, Wells D, Lambe T, Wright D, Fischer RJ, Bushmaker T, Saturday G, van Doremalen N, Gilbert SC, de Wit E, Warimwe GM (2017) Protective efficacy of a novel simian adenovirus vaccine against lethal MERS-CoV challenge in a transgenic human DPP4 mouse model. npj Vaccines 2(1):28. https://doi.org/10.1038/s41541-017-0029-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murphy B, Prince G, Walsh E, Kim H, Parrott R, Hemming V, Rodriguez W, Chanock R (1986) Dissociation between serum neutralizing and glycoprotein antibody responses of infants and children who received inactivated respiratory syncytial virus vaccine. J Clin Microbiol 24(2):197–202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nair H, Nokes DJ, Gessner BD, Dherani M, Madhi SA, Singleton RJ, O'Brien KL, Roca A, Wright PF, Bruce N (2010) Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet 375(9725):1545–1555

    Article  PubMed  PubMed Central  Google Scholar 

  • Netland J, DeDiego ML, Zhao J, Fett C, Álvarez E, Nieto-Torres JL, Enjuanes L, Perlman S (2010) Immunization with an attenuated severe acute respiratory syndrome coronavirus deleted in E protein protects against lethal respiratory disease. Virology 399(1):120–128. https://doi.org/10.1016/j.virol.2010.01.004

    Article  PubMed  CAS  Google Scholar 

  • Newell EW, Cheng Y (2016) Mass cytometry: blessed with the curse of dimensionality. Nat Immunol 17(8):890

    Article  PubMed  CAS  Google Scholar 

  • Nichols WW, Ledwith BJ, Manam SV, Troilo PJ (1995) Potential DNA vaccine integration into host cell genome. Ann N Y Acad Sci 772(1 DNA Vaccines):30–39. https://doi.org/10.1111/j.1749-6632.1995.tb44729.x

    Article  PubMed  CAS  Google Scholar 

  • Openshaw PJ, Culley FJ, Olszewska W (2001) Immunopathogenesis of vaccine-enhanced RSV disease. Vaccine 20:S27–S31

    Article  PubMed  CAS  Google Scholar 

  • Padron-Regalado E (2020) Vaccines for SARS-CoV-2: lessons from other coronavirus strains

    Google Scholar 

  • Pasteur L (1885) Méthode pour prévenir la rage après morsure

    Google Scholar 

  • Payne DC, Iblan I, Rha B, Alqasrawi S, Haddadin A, Al Nsour M, Alsanouri T, Ali SS, Harcourt J, Miao C, Tamin A, Gerber SI, Haynes LM, Al Abdallat MM (2016) Persistence of antibodies against middle east respiratory syndrome coronavirus. Emerg Infect Dis 22(10):1824–1826. https://doi.org/10.3201/eid2210.160706

    Article  PubMed  PubMed Central  Google Scholar 

  • Petsch B, Schnee M, Vogel AB, Lange E, Hoffmann B, Voss D, Schlake T, Thess A, Kallen K-J, Stitz L, Kramps T (2012) Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat Biotechnol 30(12):1210–1216. https://doi.org/10.1038/nbt.2436

    Article  CAS  PubMed  Google Scholar 

  • Pierson TC, Fremont DH, Kuhn RJ, Diamond MS (2008) Structural insights into the mechanisms of antibody-mediated neutralization of flavivirus infection: implications for vaccine development. Cell Host Microbe 4(3):229–238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Plotkin SA (2013) Complex correlates of protection after vaccination. Clin Infect Dis 56(10):1458–1465. https://doi.org/10.1093/cid/cit048

    Article  PubMed  CAS  Google Scholar 

  • Plotkin SA, Gilbert PB (2012) Nomenclature for immune correlates of protection after vaccination. Clin Infect Dis 54(11):1615–1617. https://doi.org/10.1093/cid/cis238

    Article  PubMed  PubMed Central  Google Scholar 

  • Plotkin SA, Farquhar JD, Katz M, Buser F (1969) Attenuation of RA 27/3 rubella virus in WI-38 human diploid cells. Am J Dis Child 118(2):178–185

    PubMed  CAS  Google Scholar 

  • Purcell AW, McCluskey J, Rossjohn J (2007) More than one reason to rethink the use of peptides in vaccine design. Nat Rev Drug Discov 6(5):404–414. https://doi.org/10.1038/nrd2224

    Article  PubMed  CAS  Google Scholar 

  • Qiu H, Wu J, Hong L, Luo Y, Song Q, Chen D (2020) Clinical and epidemiological features of 36 children with coronavirus disease 2019 (COVID-19) in Zhejiang, China: an observational cohort study. Lancet Infect Dis

    Google Scholar 

  • Rappuoli R (2000) Reverse vaccinology. Curr Opin Microbiol 3(5):445–450. https://doi.org/10.1016/S1369-5274(00)00119-3

    Article  PubMed  CAS  Google Scholar 

  • Rossey I, Saelens X (2019) Vaccines against human respiratory syncytial virus in clinical trials, where are we now? Expert Rev Vaccines 18(10):1053–1067

    Article  PubMed  CAS  Google Scholar 

  • Schneerson R, Barrera O, Sutton A, Robbins JB (1980) Preparation, characterization, and immunogenicity of Haemophilus influenzae type b polysaccharide-protein conjugates. J Exp Med 152(2):361–376

    Article  PubMed  CAS  Google Scholar 

  • Sekaly R-P (2008) The failed HIV Merck vaccine study: a step back or a launching point for future vaccine development? J Exp Med 205(1):7–12. https://doi.org/10.1084/jem.20072681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi J, Wen Z, Zhong G, Yang H, Wang C, Huang B, Liu R, He X, Shuai L, Sun Z, Zhao Y, Liu P, Liang L, Cui P, Wang J, Zhang X, Guan Y, Tan W, Wu G, Chen H, Bu Z (2020) Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS–coronavirus 2. Science:eabb7015. https://doi.org/10.1126/science.abb7015

  • Sia SF, Yan L-M, Chin AW, Fung K, Choy K-T, Wong AY, Kaewpreedee P, Perera RA, Poon LL, Nicholls JM (2020) Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature:1–7

    Google Scholar 

  • Silva ML, Espírito-Santo LR, Martins MA, Silveira-Lemos D, Peruhype-Magalhães V, Caminha RC, de Andrade Maranhão-Filho P, Auxiliadora-Martins M, de Menezes Martins R, Galler R, da Silva Freire M, Marcovistz R, Homma A, Teuwen DE, Elói-Santos SM, Andrade MC, Teixeira-Carvalho A, Martins-Filho OA (2010) Clinical and immunological insights on severe, adverse neurotropic and viscerotropic disease following 17D yellow fever vaccination. Clin Vaccine Immunol 17(1):118–126. https://doi.org/10.1128/CVI.00369-09

    Article  PubMed  CAS  Google Scholar 

  • Smith AJ, Wietgrefe SW, Shang L, Reilly CS, Southern PJ, Perkey KE, Duan L, Kohler H, Müller S, Robinson J, Carlis JV, Li Q, Johnson RP, Haase AT (2014) Live simian immunodeficiency virus vaccine correlate of protection: immune complex–inhibitory fc receptor interactions that reduce target cell availability. J Immunol 193(6):3126–3133. https://doi.org/10.4049/jimmunol.1400822

    Article  PubMed  CAS  Google Scholar 

  • Smith TR, Patel A, Ramos S, Elwood D, Zhu X, Yan J, Gary EN, Walker SN, Schultheis K, Purwar M (2020) Immunogenicity of a DNA vaccine candidate for COVID-19. Nat Commun 11(1):1–13

    Article  Google Scholar 

  • Song Z, Xu Y, Bao L, Zhang L, Yu P, Qu Y, Zhu H, Zhao W, Han Y, Qin C (2019) From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses 11(1):59

    Article  PubMed Central  CAS  Google Scholar 

  • Soto-Perez-de-Celis E (2008) The royal philanthropic expedition of the vaccine: a landmark in the history of public health. Postgrad Med J 84(997):599–602. https://doi.org/10.1136/pgmj.2008.069450

    Article  PubMed  CAS  Google Scholar 

  • Sridhar S, Luedtke A, Langevin E, Zhu M, Bonaparte M, Machabert T, Savarino S, Zambrano B, Moureau A, Khromava A, Moodie Z, Westling T, Mascareñas C, Frago C, Cortés M, Chansinghakul D, Noriega F, Bouckenooghe A, Chen J, Ng S-P, Gilbert PB, Gurunathan S, DiazGranados CA (2018) Effect of dengue serostatus on dengue vaccine safety and efficacy. N Engl J Med 379(4):327–340. https://doi.org/10.1056/NEJMoa1800820

    Article  PubMed  Google Scholar 

  • Steinbrook R (2007) One step forward, two steps back – will there ever be an AIDS vaccine? N Engl J Med 357(26):2653–2655

    Article  PubMed  CAS  Google Scholar 

  • Subbarao K, Roberts A (2006) Is there an ideal animal model for SARS? Trends Microbiol 14(7):299–303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sutter G, Staib C (2003) Vaccinia vectors as candidate vaccines: the development of modified vaccinia virus ankara for antigen delivery. CDTID 3(3):263–271. https://doi.org/10.2174/1568005033481123

    Article  CAS  Google Scholar 

  • Sutton TC, Subbarao K (2015) Development of animal models against emerging coronaviruses: from SARS to MERS coronavirus. Virology 479–480:247–258. https://doi.org/10.1016/j.virol.2015.02.030

    Article  PubMed  CAS  Google Scholar 

  • Tang D-C, DeVit M, Johnston SA (1992) Genetic immunization is a simple method for eliciting an immune response. Nature 356(6365):152–154

    Article  PubMed  CAS  Google Scholar 

  • Tang F, Quan Y, Xin Z-T, Wrammert J, Ma M-J, Lv H, Wang T-B, Yang H, Richardus JH, Liu W, Cao W-C (2011) Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study. J Immunol 186(12):7264–7268. https://doi.org/10.4049/jimmunol.0903490

    Article  PubMed  CAS  Google Scholar 

  • Taylor MW (2014) A history of cell culture. In: Viruses and man: a history of interactions. Springer, Cham, pp 41–52

    Chapter  Google Scholar 

  • Tetro JA (2020) Is COVID-19 receiving ADE from other coronaviruses? Microbes Infect 22(2):72–73. https://doi.org/10.1016/j.micinf.2020.02.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thanh Le T, Andreadakis Z, Kumar A, Gomez Roman R, Tollefsen S, Saville M, Mayhew S (2020) The COVID-19 vaccine development landscape. Nat Rev Drug Discov 19(5):305–306. https://doi.org/10.1038/d41573-020-00073-5

    Article  PubMed  CAS  Google Scholar 

  • Theiler M, Smith HH (1937) The use of yellow fever virus modified by in vitro cultivation for human immunization. J Exp Med 65(6):787–800. https://doi.org/10.1084/jem.65.6.787

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tian X, Li C, Huang A, Xia S, Lu S, Shi Z, Lu L, Jiang S, Yang Z, Wu Y, Ying T (2020) Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect 9(1):382–385. https://doi.org/10.1080/22221751.2020.1729069

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ulmer JB, Donnelly JJ, Parker SE, Rhodes GH, Felgner PL, Dwarki VJ, Gromkowski SH, Deck RR, DeWitt CM, Friedman A (1993) Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259(5102):1745–1749

    Article  PubMed  CAS  Google Scholar 

  • Ura T, Okuda K, Shimada M (2014) Developments in viral vector-based vaccines. Vaccine 2(3):624–641. https://doi.org/10.3390/vaccines2030624

    Article  CAS  Google Scholar 

  • Valenzuela P, Medina A, Rutter WJ, Ammerer G, Hall BD (1982) Synthesis and assembly of hepatitis B virus surface antigen particles in yeast. Nature 298(5872):347–350. https://doi.org/10.1038/298347a0

    Article  PubMed  CAS  Google Scholar 

  • van Doremalen N, Lambe T, Spencer A, Belij-Rammerstorfer S, Purushotham J, Port J, Avanzato V, Bushmaker T, Flaxman A, Ulaszewska M (2020) ChAdOx1 nCoV-19 vaccination prevents SARS-CoV-2 pneumonia in rhesus macaques. bioRxiv

    Google Scholar 

  • Vargas-Inchaustegui D, Robert-Guroff M (2013) Fc receptor-mediated immune responses: new tools but increased complexity in HIV prevention. CHR 11(5):407–420. https://doi.org/10.2174/1570162X113116660063

    Article  CAS  Google Scholar 

  • Vennema H, de Groot RJ, Harbour DA, Dalderup M, Gruffydd-Jones T, Horzinek MC, Spaan WJ (1990) Early death after feline infectious peritonitis virus challenge due to recombinant vaccinia virus immunization. J Virol 64(3):1407–1409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vidarsson G, Dekkers G, Rispens T (2014) IgG subclasses and allotypes: from structure to effector functions. Front Immunol 5:520. https://doi.org/10.3389/fimmu.2014.00520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang L, Shi W, Joyce MG, Modjarrad K, Zhang Y, Leung K, Lees CR, Zhou T, Yassine HM, Kanekiyo M, Yang Z-y, Chen X, Becker MM, Freeman M, Vogel L, Johnson JC, Olinger G, Todd JP, Bagci U, Solomon J, Mollura DJ, Hensley L, Jahrling P, Denison MR, Rao SS, Subbarao K, Kwong PD, Mascola JR, Kong W-P, Graham BS (2015) Evaluation of candidate vaccine approaches for MERS-CoV. Nat Commun 6:7712. https://doi.org/10.1038/ncomms8712

    Article  PubMed  CAS  Google Scholar 

  • Weinberg A, Zhang JH, Oxman MN, Johnson GR, Hayward AR, Caulfield MJ, Irwin MR, Clair J, Smith JG, Stanley H (2009) Varicella-zoster virus–specific immune responses to herpes zoster in elderly participants in a trial of a clinically effective zoster vaccine. J Infect Dis 200(7):1068–1077

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • WHO (2007) Rabies vaccines WHO position paper. https://www.who.int/wer/2010/wer8532.pdf?ua=1. Accessed 09 June 2020

  • WHO (2016) Polio vaccines: WHO position paper – March, 2016. https://www.who.int/wer/2016/wer9112.pdf. Accessed 09 June 2020

  • WHO (2019) List of Blueprint priority diseases. http://www.who.int/blueprint/priority-diseases/en/. Accessed 09 June 2020

  • WHO (2020a) DRAFT landscape of COVID-19 candidate vaccines. https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines. Accessed 29 June 2020

  • WHO (2020b) Report of the WHO-China joint mission on coronavirus disease 2019 (COVID-19). Geneva. https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf. Accessed 09 June 2020

  • Wilkinson TM, Li CKF, Chui CSC, Huang AKY, Perkins M, Liebner JC, Lambkin-Williams R, Gilbert A, Oxford J, Nicholas B, Staples KJ, Dong T, Douek DC, McMichael AJ, Xu X-N (2012) Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nat Med 18(2):274–280. https://doi.org/10.1038/nm.2612

    Article  PubMed  CAS  Google Scholar 

  • Wines BD, Billings H, McLean MR, Kent SJ, Hogarth PM (2017) Antibody functional assays as measures of fc receptor-mediated immunity to HIV – new technologies and their impact on the HIV vaccine field. CHR 15(3). https://doi.org/10.2174/1570162X15666170320112247

  • Woo P, Lau S, Fan R, Lau C, Wong E, Joseph S, Tsang A, Wernery R, Yip C, Tsang C-C, Wernery U, Yuen K-Y (2016) Isolation and characterization of dromedary camel coronavirus UAE-HKU23 from dromedaries of the middle east: minimal serological cross-reactivity between MERS coronavirus and dromedary camel coronavirus UAE-HKU23. IJMS 17(5):691. https://doi.org/10.3390/ijms17050691

    Article  PubMed Central  CAS  Google Scholar 

  • Wu Z, McGoogan JM (2020) Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA 323(13):1239–1242

    Article  PubMed  CAS  Google Scholar 

  • Yasui F, Kai C, Kitabatake M, Inoue S, Yoneda M, Yokochi S, Kase R, Sekiguchi S, Morita K, Hishima T, Suzuki H, Karamatsu K, Yasutomi Y, Shida H, Kidokoro M, Mizuno K, Matsushima K, Kohara M (2008) Prior immunization with severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) nucleocapsid protein causes severe pneumonia in mice infected with SARS-CoV. J Immunol 181(9):6337–6348. https://doi.org/10.4049/jimmunol.181.9.6337

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Tostanoski LH, Peter L, Mercado NB, McMahan K, Mahrokhian SH, Nkolola JP, Liu J, Li Z, Chandrashekar A (2020) DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science

    Google Scholar 

  • Zhao J, Zhao J, Perlman S (2010) T cell responses are required for protection from clinical disease and for virus clearance in severe acute respiratory syndrome coronavirus-infected mice. J Virol 84(18):9318–9325. https://doi.org/10.1128/JVI.01049-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao J, Alshukairi AN, Baharoon SA, Ahmed WA, Bokhari AA, Nehdi AM, Layqah LA, Alghamdi MG, Al Gethamy MM, Dada AM, Khalid I, Boujelal M, Al Johani SM, Vogel L, Subbarao K, Mangalam A, Wu C, Ten Eyck P, Perlman S, Zhao J (2017) Recovery from the Middle East respiratory syndrome is associated with antibody and T-cell responses. Sci Immunol 2(14). https://doi.org/10.1126/sciimmunol.aan5393

  • Zhu J, Paul WE (2008) CD4 T cells: fates, functions, and faults. Blood 112(5):1557–1569. https://doi.org/10.1182/blood-2008-05-078154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu J, Martinez J, Huang X, Yang Y (2007a) Innate immunity against vaccinia virus is mediated by TLR2 and requires TLR-independent production of IFN-beta. Blood 109(2):619–625. https://doi.org/10.1182/blood-2006-06-027136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu Z, Chakraborti S, He Y, Roberts A, Sheahan T, Xiao X, Hensley LE, Prabakaran P, Rockx B, Sidorov IA, Corti D, Vogel L, Feng Y, Kim JO, Wang LF, Baric R, Lanzavecchia A, Curtis KM, Nabel GJ, Subbarao K, Jiang S, Dimitrov DS (2007b) Potent cross-reactive neutralization of SARS coronavirus isolates by human monoclonal antibodies. Proc Natl Acad Sci 104(29):12123–12128. https://doi.org/10.1073/pnas.0701000104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu F-C, Li Y-H, Guan X-H, Hou L-H, Wang W-J, Li J-X, Wu S-P, Wang B-S, Wang Z, Wang L (2020) Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Till Koch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koch, T., Fathi, A., Addo, M.M. (2021). The COVID-19 Vaccine Landscape. In: Rezaei, N. (eds) Coronavirus Disease - COVID-19. Advances in Experimental Medicine and Biology, vol 1318. Springer, Cham. https://doi.org/10.1007/978-3-030-63761-3_31

Download citation

Publish with us

Policies and ethics