Skip to main content

Environmental Factors Responsible for Obesity and Insulin Resistance in Polycystic Ovary Syndrome

  • Chapter
  • First Online:
Impact of Polycystic Ovary, Metabolic Syndrome and Obesity on Women Health

Part of the book series: ISGE Series ((ISGE))

  • 527 Accesses

Abstract

It has been shown that environmental factors play a role in the development of obesity and insulin resistance in PCOS women. There is a bulk of evidence that endocrine-disrupting chemicals, advanced glycated end products, and vitamin D deficiency contribute to these disorders. The results of in vitro and in vivo studies have demonstrated different mechanisms involved in the development of these conditions. They suggest new ways of treatment. In addition, they point to the importance of avoidance of exposure to deleterious environmental factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International evidence based guideline for the assessment and management of polycystic ovary syndrome. Copyright Monash University, Melbourne Australia; 2018.

    Google Scholar 

  2. He C, Lin Z, Robb SW, Ezeamama AE. Serum vitamin D levels and polycystic ovary syndrome: a systematic review and meta-analysis. Nutrients. 2015;7(6):4555–77. https://doi.org/10.3390/nu7064555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rutkowska AZ, Diamanti-Kandarakis E. Polycystic ovary syndrome and environmental toxins. Fertil Steril. 2016;106(4):948–58. https://doi.org/10.1016/j.fertnstert.2016.08.031.

    Article  CAS  PubMed  Google Scholar 

  4. Patra SK, Nasrat H, Goswami B, Jain A. Vitamin D as a predictor of insulin resistance in polycystic ovarian syndrome. Diabetes Metab Syndr. 2012;6(3):146–9. https://doi.org/10.1016/j.dsx.2012.09.006.

    Article  PubMed  Google Scholar 

  5. Li HW, Brereton RE, Anderson RA, Wallace AM, Ho CK. Vitamin D deficiency is common and associated with metabolic risk factors in patients with polycystic ovary syndrome. Metabolism. 2011;60(10):1475–81. https://doi.org/10.1016/j.metabol.2011.03.002.

    Article  CAS  PubMed  Google Scholar 

  6. Endo News April 2015.

    Google Scholar 

  7. Gore AC. Endocrine-disrupting chemicals. JAMA Intern Med. 2016;176(11):1705–6. https://doi.org/10.1001/jamainternmed.2016.5766.

    Article  PubMed  Google Scholar 

  8. Gore AC, Chappell VA, Fenton SE, et al. EDC-2: the Endocrine Society's second scientific statement on endocrine-disrupting chemicals. Endocr Rev. 2015;36(6):E1–E150. https://doi.org/10.1210/er.2015-1010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV. Human exposure to bisphenol a (BPA). Reprod Toxicol. 2007;24(2):139–77. https://doi.org/10.1016/j.reprotox.2007.07.010.

    Article  CAS  PubMed  Google Scholar 

  10. Pjanic M. The role of polycarbonate monomer bisphenol-a in insulin resistance. PeerJ. 2017;5:e3809. https://doi.org/10.7717/peerj.3809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Le Magueresse-Battistoni B, Multigner L, Beausoleil C, Rousselle C. Effects of bisphenol a on metabolism and evidences of a mode of action mediated through endocrine disruption. Mol Cell Endocrinol. 2018;475:74–91. https://doi.org/10.1016/j.mce.2018.02.009.

    Article  CAS  PubMed  Google Scholar 

  12. Le Magueresse-Battistoni B, Labaronne E, Vidal H, Naville D. Endocrine disrupting chemicals in mixture and obesity, diabetes and related metabolic disorders. World J Biol Chem. 2017;8(2):108–19. https://doi.org/10.4331/wjbc.v8.i2.108.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ben-Jonathan N, Hugo ER, Brandebourg TD. Effects of bisphenol a on adipokine release from human adipose tissue: implications for the metabolic syndrome. Mol Cell Endocrinol. 2009;304(1–2):49–54. https://doi.org/10.1016/j.mce.2009.02.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wells EM, Jackson LW, Koontz MB. Association between bisphenol a and waist-to-height ratio among children: National Health and nutrition examination survey, 2003-2010. Ann Epidemiol. 2014;24(2):165–7. https://doi.org/10.1016/j.annepidem.2013.06.002.

    Article  PubMed  Google Scholar 

  15. Hong SH, Sung YA, Hong YS, et al. Urinary bisphenol a is associated with insulin resistance and obesity in reproductive-aged women. Clin Endocrinol. 2017;86(4):506–12. https://doi.org/10.1111/cen.13270.

    Article  CAS  Google Scholar 

  16. Jayashree S, Indumathi D, Akilavalli N, Sathish S, Selvaraj J, Balasubramanian K. Effect of Bisphenol-A on insulin signal transduction and glucose oxidation in liver of adult male albino rat. Environ Toxicol Pharmacol. 2013;35(2):300–10. https://doi.org/10.1016/j.etap.2012.12.016.

  17. Menale C, Piccolo MT, Cirillo G, Calogero RA, Papparella A, Mita L, Del Giudice EM, Diano N, Crispi S, Mita DG. Bisphenol A effects on gene expression in adipocytes from children: association with metabolic disorders. J Mol Endocrinol. 2015;54(3):289–303. https://doi.org/10.1530/JME-14-0282.

  18. Wang T, Li M, Chen B, et al. Urinary bisphenol a (BPA) concentration associates with obesity and insulin resistance. J Clin Endocrinol Metab. 2012;97(2):E223–7. https://doi.org/10.1210/jc.2011-1989.

  19. Ko A, Hwang MS, Park JH, Kang HS, Lee HS, Hong JH. Association between urinary bisphenol a and waist circumference in Korean adults. Toxicol Res. 2014;30(1):39–44. https://doi.org/10.5487/TR.2014.30.1.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Teppala S, Madhavan S, Shankar A. Bisphenol a and metabolic syndrome: results from NHANES. Int J Endocrinol. 2012;2012:598180. https://doi.org/10.1155/2012/598180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kandaraki E, Chatzigeorgiou A, Livadas S, et al. Endocrine disruptors and polycystic ovary syndrome (PCOS): elevated serum levels of bisphenol a in women with PCOS. J Clin Endocrinol Metab. 2011;96(3):E480–4. https://doi.org/10.1210/jc.2010-1658.

    Article  CAS  PubMed  Google Scholar 

  22. Hu Y, Wen S, Yuan D, et al. The association between the environmental endocrine disruptor bisphenol a and polycystic ovary syndrome: a systematic review and meta-analysis. Gynecol Endocrinol. 2018;34(5):370–7. https://doi.org/10.1080/09513590.2017.1405931.

    Article  CAS  PubMed  Google Scholar 

  23. Liao Y, Huang R, Sun Y, et al. An inverse association between serum soluble receptor of advanced glycation end products and hyperandrogenism and potential implication in polycystic ovary syndrome patients. Reprod Biol Endocrinol. 2017;15(1):9. https://doi.org/10.1186/s12958-017-0227-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Merhi Z, Kandaraki EA, Diamanti-Kandarakis E. Implications and future perspectives of AGEs in PCOS pathophysiology. Trends Endocrinol Metab. 2019;30(3):150–62. https://doi.org/10.1016/j.tem.2019.01.005.

    Article  CAS  PubMed  Google Scholar 

  25. Tantalaki E, Piperi C, Livadas S, et al. Impact of dietary modification of advanced glycation end products (AGEs) on the hormonal and metabolic profile of women with polycystic ovary syndrome (PCOS). Hormones (Athens). 2014;13(1):65–73. https://doi.org/10.1007/BF03401321.

    Article  Google Scholar 

  26. Diamanti-Kandarakis E, Piperi C, Kalofoutis A, Creatsas G. Increased levels of serum advanced glycation end-products in women with polycystic ovary syndrome. Clin Endocrinol. 2005;62(1):37–43. https://doi.org/10.1111/j.1365-2265.2004.02170.x.

    Article  CAS  Google Scholar 

  27. Garg D, Merhi Z. Relationship between advanced glycation end products and steroidogenesis in PCOS. Reprod Biol Endocrinol. 2016;14(1):71. https://doi.org/10.1186/s12958-016-0205-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Uribarri J, Cai W, Peppa M, et al. Circulating glycotoxins and dietary advanced glycation endproducts: two links to inflammatory response, oxidative stress, and aging. J Gerontol A Biol Sci Med Sci. 2007;62(4):427–33. https://doi.org/10.1093/gerona/62.4.427.

    Article  PubMed  Google Scholar 

  29. Gaens KH, Stehouwer CD, Schalkwijk CG. Advanced glycation endproducts and its receptor for advanced glycation endproducts in obesity. Curr Opin Lipidol. 2013;24(1):4–11. https://doi.org/10.1097/MOL.0b013e32835aea13.

    Article  CAS  PubMed  Google Scholar 

  30. Jia X, Chang T, Wilson TW, Wu L. Methylglyoxal mediates adipocyte proliferation by increasing phosphorylation of Akt1. PLoS One. 2012;7(5):e36610. https://doi.org/10.1371/journal.pone.0036610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thomson RL, Spedding S, Buckley JD. Vitamin D in the aetiology and management of polycystic ovary syndrome. Clin Endocrinol. 2012;77(3):343–50. https://doi.org/10.1111/j.1365-2265.2012.04434.x.

    Article  CAS  Google Scholar 

  32. Rojas-Rivera J, De La Piedra C, Ramos A, Ortiz A, Egido J. The expanding spectrum of biological actions of vitamin D. Nephrol Dial Transplant. 2010;25(9):2850–65. https://doi.org/10.1093/ndt/gfq313.

    Article  CAS  PubMed  Google Scholar 

  33. Teegarden D, Donkin SS. Vitamin D: emerging new roles in insulin sensitivity. Nutr Res Rev. 2009;22(1):82–92. https://doi.org/10.1017/S0954422409389301.

    Article  CAS  PubMed  Google Scholar 

  34. Pittas AG, Lau J, Hu FB, Dawson-Hughes B. The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J Clin Endocrinol Metab. 2007;92(6):2017–29. https://doi.org/10.1210/jc.2007-0298.

    Article  CAS  PubMed  Google Scholar 

  35. Vimaleswaran KS, Berry DJ, Lu C, et al. Causal relationship between obesity and vitamin D status: bi-directional Mendelian randomization analysis of multiple cohorts. PLoS Med. 2013;10(2):e1001383. https://doi.org/10.1371/journal.pmed.1001383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Scragg R, Sowers M. Bell C; third National Health and nutrition examination survey. Serum 25-hydroxyvitamin D, diabetes, and ethnicity in the third National Health and nutrition examination survey. Diabetes Care. 2004;27(12):2813–8. https://doi.org/10.2337/diacare.27.12.2813.

    Article  CAS  PubMed  Google Scholar 

  37. Drincic A, Fuller E, Heaney RP, Armas LA. 25-Hydroxyvitamin D response to graded vitamin D3 supplementation among obese adults. J Clin Endocrinol Metab. 2013;98(12):4845–51. https://doi.org/10.1210/jc.2012-4103.

    Article  CAS  PubMed  Google Scholar 

  38. Tsakova AD, Gateva AT, Kamenov ZA. 25(OH) vitamin D levels in premenopausal women with polycystic ovary syndrome and/or obesity. Int J Vitam Nutr Res. 2012;82(6):399–404. https://doi.org/10.1024/0300-9831/a000137.

    Article  CAS  PubMed  Google Scholar 

  39. Forouhi NG, Luan J, Cooper A, Boucher BJ, Wareham NJ. Baseline serum 25-hydroxy vitamin d is predictive of future glycemic status and insulin resistance: the Medical Research Council Ely prospective study 1990-2000. Diabetes. 2008;57(10):2619–25. https://doi.org/10.2337/db08-0593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ngo DT, Chan WP, Rajendran S, et al. Determinants of insulin responsiveness in young women: impact of polycystic ovarian syndrome, nitric oxide, and vitamin D. Nitric Oxide. 2011;25(3):326–30. https://doi.org/10.1016/j.niox.2011.06.005.

    Article  CAS  PubMed  Google Scholar 

  41. Asemi Z, Foroozanfard F, Hashemi T, Bahmani F, Jamilian M, Esmaillzadeh A. Calcium plus vitamin D supplementation affects glucose metabolism and lipid concentrations in overweight and obese vitamin D deficient women with polycystic ovary syndrome. Clin Nutr. 2015;34(4):586–92. https://doi.org/10.1016/j.clnu.2014.09.015.

    Article  CAS  PubMed  Google Scholar 

  42. Irani M, Minkoff H, Seifer DB, Merhi Z. Vitamin D increases serum levels of the soluble receptor for advanced glycation end products in women with PCOS. J Clin Endocrinol Metab. 2014;99(5):E886–90. https://doi.org/10.1210/jc.2013-4374.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Milewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 International Society of Gynecological Endocrinology

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Milewicz, A., Urbanovych, A., Brona, A. (2021). Environmental Factors Responsible for Obesity and Insulin Resistance in Polycystic Ovary Syndrome. In: Genazzani, A.R., Ibáñez, L., Milewicz, A., Shah, D. (eds) Impact of Polycystic Ovary, Metabolic Syndrome and Obesity on Women Health. ISGE Series. Springer, Cham. https://doi.org/10.1007/978-3-030-63650-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63650-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63649-4

  • Online ISBN: 978-3-030-63650-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics