Skip to main content

MicroRNA Targets for Asthma Therapy

  • Chapter
  • First Online:
Lung Inflammation in Health and Disease, Volume I

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1303))

Abstract

Asthma is a chronic inflammatory obstructive lung disease that is stratified into endotypes. Th2 high asthma is due to an imbalance of Th1/Th2 signaling leading to abnormally high levels of Th2 cytokines, IL-4, IL-5, and IL-13 and in some cases a reduction in type I interferons. Some asthmatics express Th2 low, Th1/Th17 high phenotypes with or without eosinophilia. Most asthmatics with Th2 high phenotype respond to beta-adrenergic agonists, muscarinic antagonists, and inhaled corticosteroids. However, 5–10% of asthmatics are not well controlled by these therapies despite significant advances in lung immunology and the pathogenesis of severe asthma. This problem is being addressed by developing novel classes of anti-inflammatory agents. Numerous studies have established efficacy of targeting pro-inflammatory microRNAs in mouse models of mild/moderate and severe asthma. Current approaches employ microRNA mimics and antagonists designed for use in vivo. Chemically modified oligonucleotides have enhanced stability in blood, increased cell permeability, and optimized target specificity. Delivery to lung tissue limits clinical applications, but it is a tractable problem. Future studies need to define the most effective microRNA targets and effective delivery systems. Successful oligonucleotide drug candidates must have adequate lung cell uptake, high target specificity, and efficacy with tolerable off-target effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AHR :

airway hyperreactivity

APC:

antigen presenting cell

ASM :

airway smooth muscle

BALF :

bronchoalveolar lavage fluid

CDG :

cyclic diguanosine monophosphate, bis-(3′-5′)-cyclic dimeric GMP

HDM :

house dust mite

IFN :

interferon

IL :

interleukin

LNA :

locked nucleic acid

mAb:

monoclonal antibody

miR :

microRNA

mRNA:

messenger RNA

OVA:

ovalbumin

RISC :

RNA-induced silencing complex

Th1 :

type 1 helper

Th17 :

type 17 helper

Th2 :

type 2 helper

Th2high :

type 2 high

Th2low :

type 2 low

References

  1. Fahy JV. Type 2 inflammation in asthma--present in most, absent in many. Nat Rev Immunol. 2015;15(1):57–65. https://doi.org/10.1038/nri3786.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Levy BD, Noel PJ, Freemer MM, Cloutier MM, Georas SN, Jarjour NN, Ober C, Woodruff PG, Barnes KC, Bender BG, Camargo CA Jr, Chupp GL, Denlinger LC, Fahy JV, Fitzpatrick AM, Fuhlbrigge A, Gaston BM, Hartert TV, Kolls JK, Lynch SV, Moore WC, Morgan WJ, Nadeau KC, Ownby DR, Solway J, Szefler SJ, Wenzel SE, Wright RJ, Smith RA, Erzurum SC. Future research directions in asthma. An NHLBI Working Group report. Am J Respir Crit Care Med. 2015;192(11):1366–72. https://doi.org/10.1164/rccm.201505-0963WS.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Mersha TB, Afanador Y, Johansson E, Proper SP, Bernstein JA, Rothenberg ME, Khurana Hershey GK. Resolving clinical phenotypes into endotypes in allergy: molecular and omics approaches. Clin Rev Allergy Immunol. 2020; https://doi.org/10.1007/s12016-020-08787-5.

  4. Wenzel S. Severe/fatal asthma. Chest. 2003;123(3 Suppl):405S–10S. https://doi.org/10.1378/chest.123.3_suppl.405s-a.

    Article  PubMed  Google Scholar 

  5. Trevor JL, Deshane JS. Refractory asthma: mechanisms, targets, and therapy. Allergy. 2014;69(7):817–27. https://doi.org/10.1111/all.12412.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Gauthier M, Ray A, Wenzel SE. Evolving concepts of asthma. Am J Respir Crit Care Med. 2015;192(6):660–8. https://doi.org/10.1164/rccm.201504-0763PP.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Wenzel S. Severe asthma: from characteristics to phenotypes to endotypes. Clin Exp Allergy. 2012;42(5):650–8. https://doi.org/10.1111/j.1365-2222.2011.03929.x.

    Article  PubMed  CAS  Google Scholar 

  8. Robinson D, Humbert M, Buhl R, Cruz AA, Inoue H, Korom S, Hanania NA, Nair P. Revisiting Type 2-high and Type 2-low airway inflammation in asthma: current knowledge and therapeutic implications. Clin Exp Allergy. 2017;47(2):161–75. https://doi.org/10.1111/cea.12880.

    Article  PubMed  CAS  Google Scholar 

  9. Baines KJ, Simpson JL, Wood LG, Scott RJ, Fibbens NL, Powell H, Cowan DC, Taylor DR, Cowan JO, Gibson PG. Sputum gene expression signature of 6 biomarkers discriminates asthma inflammatory phenotypes. J Allergy Clin Immunol. 2014;133(4):997–1007. https://doi.org/10.1016/j.jaci.2013.12.1091.

    Article  PubMed  CAS  Google Scholar 

  10. Woodruff PG. Subtypes of asthma defined by epithelial cell expression of messenger RNA and microRNA. Ann Am Thorac Soc. 2013;10(Suppl):S186–9. https://doi.org/10.1513/AnnalsATS.201303-070AW.

    Article  PubMed  CAS  Google Scholar 

  11. Chu EK, Drazen JM. Asthma: one hundred years of treatment and onward. Am J Respir Crit Care Med. 2005;171(11):1202–8. https://doi.org/10.1164/rccm.200502-257OE.

    Article  PubMed  Google Scholar 

  12. Crompton G. A brief history of inhaled asthma therapy over the last fifty years. Prim Care Respir J. 2006;15(6):326–31. https://doi.org/10.1016/j.pcrj.2006.09.002.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Loke TK, Sousa AR, Corrigan CJ, Lee TH. Glucocorticoid-resistant asthma. Curr Allergy Asthma Rep. 2002;2(2):144–50. https://doi.org/10.1007/s11882-002-0009-y.

    Article  PubMed  Google Scholar 

  14. McGregor MC, Krings JG, Nair P, Castro M. Role of biologics in asthma. Am J Respir Crit Care Med. 2019;199(4):433–45. https://doi.org/10.1164/rccm.201810-1944CI.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Milgrom H, Fick RB Jr, Su JQ, Reimann JD, Bush RK, Watrous ML, Metzger WJ. Treatment of allergic asthma with monoclonal anti-IgE antibody. rhuMAb-E25 Study Group. N Engl J Med. 1999;341(26):1966–73. https://doi.org/10.1056/NEJM199912233412603.

    Article  PubMed  CAS  Google Scholar 

  16. Busse WW. Anti-immunoglobulin E (omalizumab) therapy in allergic asthma. Am J Respir Crit Care Med. 2001;164(8 Pt 2):S12–7. https://doi.org/10.1164/ajrccm.164.supplement_1.2103026.

    Article  PubMed  CAS  Google Scholar 

  17. Busse W, Corren J, Lanier BQ, McAlary M, Fowler-Taylor A, Cioppa GD, van As A, Gupta N. Omalizumab, anti-IgE recombinant humanized monoclonal antibody, for the treatment of severe allergic asthma. J Allergy Clin Immunol. 2001;108(2):184–90. https://doi.org/10.1067/mai.2001.117880.

    Article  PubMed  CAS  Google Scholar 

  18. Sanderson CJ. Interleukin-5, eosinophils, and disease. Blood. 1992;79(12):3101–9.

    Article  CAS  Google Scholar 

  19. Leckie MJ, ten Brinke A, Khan J, Diamant Z, O’Connor BJ, Walls CM, Mathur AK, Cowley HC, Chung KF, Djukanovic R, Hansel TT, Holgate ST, Sterk PJ, Barnes PJ. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet. 2000;356(9248):2144–8. https://doi.org/10.1016/s0140-6736(00)03496-6.

    Article  PubMed  CAS  Google Scholar 

  20. Haldar P, Brightling CE, Hargadon B, Gupta S, Monteiro W, Sousa A, Marshall RP, Bradding P, Green RH, Wardlaw AJ, Pavord ID. Mepolizumab and exacerbations of refractory eosinophilic asthma. N Engl J Med. 2009;360(10):973–84. https://doi.org/10.1056/NEJMoa0808991.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Schoettler N, Strek ME. Recent advances in severe asthma: from phenotypes to personalized medicine. Chest. 2020;157(3):516–28. https://doi.org/10.1016/j.chest.2019.10.009.

    Article  PubMed  CAS  Google Scholar 

  22. Zhu Z, Homer RJ, Wang Z, Chen Q, Geba GP, Wang J, Zhang Y, Elias JA. Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest. 1999;103(6):779–88. https://doi.org/10.1172/JCI5909.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Yang G, Volk A, Petley T, Emmell E, Giles-Komar J, Shang X, Li J, Das AM, Shealy D, Griswold DE, Li L. Anti-IL-13 monoclonal antibody inhibits airway hyperresponsiveness, inflammation and airway remodeling. Cytokine. 2004;28(6):224–32. https://doi.org/10.1016/j.cyto.2004.08.007.

    Article  PubMed  CAS  Google Scholar 

  24. Wills-Karp M, Luyimbazi J, Xu X, Schofield B, Neben TY, Karp CL, Donaldson DD. Interleukin-13: central mediator of allergic asthma. Science. 1998;282(5397):2258–61. https://doi.org/10.1126/science.282.5397.2258.

    Article  PubMed  CAS  Google Scholar 

  25. Wills-Karp M. Interleukin-13 in asthma pathogenesis. Immunol Rev. 2004;202:175–90. https://doi.org/10.1111/j.0105-2896.2004.00215.x.

    Article  PubMed  CAS  Google Scholar 

  26. De Boever EH, Ashman C, Cahn AP, Locantore NW, Overend P, Pouliquen IJ, Serone AP, Wright TJ, Jenkins MM, Panesar IS, Thiagarajah SS, Wenzel SE. Efficacy and safety of an anti-IL-13 mAb in patients with severe asthma: a randomized trial. J Allergy Clin Immunol. 2014;133(4):989–96. https://doi.org/10.1016/j.jaci.2014.01.002.

    Article  PubMed  CAS  Google Scholar 

  27. Li H, Wang K, Huang H, Cheng W, Liu X. A meta-analysis of anti-interleukin-13 monoclonal antibodies for uncontrolled asthma. PLoS One. 2019;14(1):e0211790. https://doi.org/10.1371/journal.pone.0211790.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Gregory LG, Lloyd CM. Orchestrating house dust mite-associated allergy in the lung. Trends Immunol. 2011;32(9):402–11. https://doi.org/10.1016/j.it.2011.06.006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Piyadasa H, Altieri A, Basu S, Schwartz J, Halayko AJ, Mookherjee N. Biosignature for airway inflammation in a house dust mite-challenged murine model of allergic asthma. Biol Open. 2016;5(2):112–21. https://doi.org/10.1242/bio.014464.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Goplen N, Karim MZ, Liang Q, Gorska MM, Rozario S, Guo L, Alam R. Combined sensitization of mice to extracts of dust mite, ragweed, and Aspergillus species breaks through tolerance and establishes chronic features of asthma. J Allergy Clin Immunol. 2009;123(4):925–32. e911. https://doi.org/10.1016/j.jaci.2009.02.009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Duechs MJ, Tilp C, Tomsic C, Gantner F, Erb KJ. Development of a novel severe triple allergen asthma model in mice which is resistant to dexamethasone and partially resistant to TLR7 and TLR9 agonist treatment. PLoS One. 2014;9(3):e91223. https://doi.org/10.1371/journal.pone.0091223.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Grundstrom J, Saarne T, Kemi C, Gregory JA, Waden K, Pils MC, Adner M, Gafvelin G, van Hage M. Development of a mouse model for chronic cat allergen-induced asthma. Int Arch Allergy Immunol. 2014;165(3):195–205. https://doi.org/10.1159/000369066.

    Article  PubMed  CAS  Google Scholar 

  33. Raundhal M, Morse C, Khare A, Oriss TB, Milosevic J, Trudeau J, Huff R, Pilewski J, Holguin F, Kolls J, Wenzel S, Ray P, Ray A. High IFN-gamma and low SLPI mark severe asthma in mice and humans. J Clin Invest. 2015;125(8):3037–50. https://doi.org/10.1172/JCI80911.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mullane K, Williams M. Animal models of asthma: reprise or reboot? Biochem Pharmacol. 2014;87(1):131–9. https://doi.org/10.1016/j.bcp.2013.06.026.

    Article  PubMed  CAS  Google Scholar 

  35. Kumar RK, Herbert C, Foster PS. The “classical” ovalbumin challenge model of asthma in mice. Curr Drug Targets. 2008;9(6):485–94. https://doi.org/10.2174/138945008784533561.

    Article  PubMed  CAS  Google Scholar 

  36. Melgert BN, Postma DS, Kuipers I, Geerlings M, Luinge MA, van der Strate BW, Kerstjens HA, Timens W, Hylkema MN. Female mice are more susceptible to the development of allergic airway inflammation than male mice. Clin Exp Allergy. 2005;35(11):1496–503. https://doi.org/10.1111/j.1365-2222.2005.02362.x.

    Article  PubMed  CAS  Google Scholar 

  37. Chang HY, Mitzner W. Sex differences in mouse models of asthma. Can J Physiol Pharmacol. 2007;85(12):1226–35. https://doi.org/10.1139/Y07-116.

    Article  PubMed  CAS  Google Scholar 

  38. Yiamouyiannis CA, Schramm CM, Puddington L, Stengel P, Baradaran-Hosseini E, Wolyniec WW, Whiteley HE, Thrall RS. Shifts in lung lymphocyte profiles correlate with the sequential development of acute allergic and chronic tolerant stages in a murine asthma model. Am J Pathol. 1999;154(6):1911–21. https://doi.org/10.1016/S0002-9440(10)65449-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Palmans E, Kips JC, Pauwels RA. Prolonged allergen exposure induces structural airway changes in sensitized rats. Am J Respir Crit Care Med. 2000;161(2 Pt 1):627–35. https://doi.org/10.1164/ajrccm.161.2.9902094.

    Article  PubMed  CAS  Google Scholar 

  40. Jacquet A. Innate immune responses in house dust mite allergy. ISRN Allergy. 2013;2013:735031. https://doi.org/10.1155/2013/735031.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Cates CJ, Jefferson TO, Bara AI, Rowe BH. Vaccines for preventing influenza in people with asthma. Cochrane Database Syst Rev. 2004;2:CD000364. https://doi.org/10.1002/14651858.CD000364.pub2.

    Article  Google Scholar 

  42. Johnson JR, Wiley RE, Fattouh R, Swirski FK, Gajewska BU, Coyle AJ, Gutierrez-Ramos JC, Ellis R, Inman MD, Jordana M. Continuous exposure to house dust mite elicits chronic airway inflammation and structural remodeling. Am J Respir Crit Care Med. 2004;169(3):378–85. https://doi.org/10.1164/rccm.200308-1094OC.

    Article  PubMed  Google Scholar 

  43. Ramelli SC, Comer BS, McLendon JM, Sandy LL, Ferretti AP, Barrington R, Sparks J, Matar M, Fewell J, Gerthoffer WT. Nanoparticle delivery of anti-inflammatory LNA oligonucleotides prevents airway inflammation in a HDM model of asthma. Mol Ther Nucleic Acids. 2020;19:1000–14. https://doi.org/10.1016/j.omtn.2019.12.033.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Barber GN. STING-dependent cytosolic DNA sensing pathways. Trends Immunol. 2014;35(2):88–93. https://doi.org/10.1016/j.it.2013.10.010.

    Article  PubMed  CAS  Google Scholar 

  45. Durham A, Chou PC, Kirkham P, Adcock IM. Epigenetics in asthma and other inflammatory lung diseases. Epigenomics. 2010;2(4):523–37. https://doi.org/10.2217/epi.10.27.

    Article  PubMed  CAS  Google Scholar 

  46. Lovinsky-Desir S, Miller RL. Epigenetics, asthma, and allergic diseases: a review of the latest advancements. Curr Allergy Asthma Rep. 2012;12(3):211–20. https://doi.org/10.1007/s11882-012-0257-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Brook PO, Perry MM, Adcock IM, Durham AL. Epigenome-modifying tools in asthma. Epigenomics. 2015;7(6):1017–32. https://doi.org/10.2217/epi.15.53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Comer BS, Ba M, Singer CA, Gerthoffer WT. Epigenetic targets for novel therapies of lung diseases. Pharmacol Ther. 2015;147:91–110. https://doi.org/10.1016/j.pharmthera.2014.11.006.

    Article  PubMed  CAS  Google Scholar 

  49. Kaczmarek KA, Clifford RL, Knox AJ. Epigenetic changes in airway smooth muscle as a driver of airway inflammation and remodeling in asthma. Chest. 2019;155(4):816–24. https://doi.org/10.1016/j.chest.2018.10.038.

    Article  PubMed  Google Scholar 

  50. Tomari Y, Zamore PD. Perspective: machines for RNAi. Genes Dev. 2005;19(5):517–29. https://doi.org/10.1101/gad.1284105.

    Article  PubMed  CAS  Google Scholar 

  51. Iwakawa HO, Tomari Y. The functions of microRNAs: mRNA decay and translational repression. Trends Cell Biol. 2015;25(11):651–65. https://doi.org/10.1016/j.tcb.2015.07.011.

    Article  PubMed  CAS  Google Scholar 

  52. Popescu FD, Popescu F. A review of antisense therapeutic interventions for molecular biological targets in asthma. Biologics. 2007;1(3):271–83.

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Maes T, Tournoy KG, Joos GF. Gene therapy for allergic airway diseases. Curr Allergy Asthma Rep. 2011;11(2):163–72. https://doi.org/10.1007/s11882-011-0177-8.

    Article  PubMed  CAS  Google Scholar 

  54. Fujita Y, Takeshita F, Kuwano K, Ochiya T. RNAi therapeutic platforms for lung diseases. Pharmaceuticals (Basel). 2013;6(2):223–50. https://doi.org/10.3390/ph6020223.

    Article  CAS  Google Scholar 

  55. Lu TX, Rothenberg ME. Diagnostic, functional, and therapeutic roles of microRNA in allergic diseases. J Allergy Clin Immunol. 2013;132(1):3–13. https://doi.org/10.1016/j.jaci.2013.04.039.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10(10):704–14. https://doi.org/10.1038/nrg2634.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Oak SR, Murray L, Herath A, Sleeman M, Anderson I, Joshi AD, Coelho AL, Flaherty KR, Toews GB, Knight D, Martinez FJ, Hogaboam CM. A micro RNA processing defect in rapidly progressing idiopathic pulmonary fibrosis. PLoS One. 2011;6(6) https://doi.org/10.1371/journal.pone.0021253.

  58. Pandit KV, Milosevic J. MicroRNA regulatory networks in idiopathic pulmonary fibrosis. Biochem Cell Biol. 2015;93(2):129–37. https://doi.org/10.1139/bcb-2014-0101.

    Article  PubMed  CAS  Google Scholar 

  59. Oglesby IK, Chotirmall SH, McElvaney NG, Greene CM. Regulation of cystic fibrosis transmembrane conductance regulator by microRNA-145, -223, and -494 is altered in DeltaF508 cystic fibrosis airway epithelium. J Immunol. 2013;190(7):3354–62. https://doi.org/10.4049/jimmunol.1202960.

    Article  PubMed  CAS  Google Scholar 

  60. Megiorni F, Cialfi S, Dominici C, Quattrucci S, Pizzuti A. Synergistic post-transcriptional regulation of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) by miR-101 and miR-494 specific binding. PLoS One. 2011;6(10):e26601. https://doi.org/10.1371/journal.pone.0026601.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Joshi SR, McLendon JM, Comer BS, Gerthoffer WT. MicroRNAs-control of essential genes: implications for pulmonary vascular disease. Pulm Circ. 2011;1(3):357–64. https://doi.org/10.4103/2045-8932.87301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Dong J, Carey WA, Abel S, Collura C, Jiang G, Tomaszek S, Sutor S, Roden AC, Asmann YW, Prakash YS, Wigle DA. MicroRNA-mRNA interactions in a murine model of hyperoxia-induced bronchopulmonary dysplasia. BMC Genomics. 2012;13:204. https://doi.org/10.1186/1471-2164-13-204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Zhang X, Xu J, Wang J, Gortner L, Zhang S, Wei X, Song J, Zhang Y, Li Q, Feng Z. Reduction of microRNA-206 contributes to the development of bronchopulmonary dysplasia through up-regulation of fibronectin 1. PLoS One. 2013;8(9):e74750. https://doi.org/10.1371/journal.pone.0074750.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Ameis D, Khoshgoo N, Iwasiow BM, Snarr P, Keijzer R. MicroRNAs in lung development and disease. Paediatr Respir Rev. 2017;22:38–43. https://doi.org/10.1016/j.prrv.2016.12.002.

    Article  PubMed  Google Scholar 

  65. Garbacki N, Di Valentin E, Huynh-Thu VA, Geurts P, Irrthum A, Crahay C, Arnould T, Deroanne C, Piette J, Cataldo D, Colige A. MicroRNAs profiling in murine models of acute and chronic asthma: a relationship with mRNAs targets. PLoS One. 2011;6(1):e16509. https://doi.org/10.1371/journal.pone.0016509.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Collison A, Siegle JS, Hansbro NG, Kwok CT, Herbert C, Mattes J, Hitchins M, Foster PS, Kumar RK. Epigenetic changes associated with disease progression in a mouse model of childhood allergic asthma. Dis Model Mech. 2013;6(4):993–1000. https://doi.org/10.1242/dmm.011247.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Jardim MJ, Dailey L, Silbajoris R, Diaz-Sanchez D. Distinct microRNA expression in human airway cells of asthmatic donors identifies a novel asthma-associated gene. Am J Respir Cell Mol Biol. 2012;47(4):536–42. https://doi.org/10.1165/rcmb.2011-0160OC.

    Article  PubMed  CAS  Google Scholar 

  68. Williams AE, Larner-Svensson H, Perry MM, Campbell GA, Herrick SE, Adcock IM, Erjefalt JS, Chung KF, Lindsay MA. MicroRNA expression profiling in mild asthmatic human airways and effect of corticosteroid therapy. PLoS One. 2009;4(6):e5889. https://doi.org/10.1371/journal.pone.0005889.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Collison A, Herbert C, Siegle JS, Mattes J, Foster PS, Kumar RK. Altered expression of microRNA in the airway wall in chronic asthma: miR-126 as a potential therapeutic target. BMC Pulm Med. 2011;11:29. https://doi.org/10.1186/1471-2466-11-29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Heffler E, Allegra A, Pioggia G, Picardi G, Musolino C, Gangemi S. MicroRNA profiling in asthma: potential biomarkers and therapeutic targets. Am J Respir Cell Mol Biol. 2017;57(6):642–50. https://doi.org/10.1165/rcmb.2016-0231TR.

    Article  PubMed  CAS  Google Scholar 

  71. Perry MM, Baker JE, Gibeon DS, Adcock IM, Chung KF. Airway smooth muscle hyperproliferation is regulated by microRNA-221 in severe asthma. Am J Respir Cell Mol Biol. 2014;50(1):7–17. https://doi.org/10.1165/rcmb.2013-0067OC.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Comer BS, Camoretti-Mercado B, Kogut PC, Halayko AJ, Solway J, Gerthoffer WT. Cyclooxygenase-2 and microRNA-155 expression are elevated in asthmatic airway smooth muscle cells. Am J Respir Cell Mol Biol. 2015;52(4):438–47. https://doi.org/10.1165/rcmb.2014-0129OC.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Comer BS, Camoretti-Mercado B, Kogut PC, Halayko AJ, Solway J, Gerthoffer WT. MicroRNA-146a and microRNA-146b expression and anti-inflammatory function in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2014;307(9):L727–34. https://doi.org/10.1152/ajplung.00174.2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Troy NM, Hollams EM, Holt PG, Bosco A. Differential gene network analysis for the identification of asthma-associated therapeutic targets in allergen-specific T-helper memory responses. BMC Med Genet. 2016;9:9. https://doi.org/10.1186/s12920-016-0171-z.

    Article  CAS  Google Scholar 

  75. Martinez-Nunez RT, Rupani H, Plate M, Niranjan M, Chambers RC, Howarth PH, Sanchez-Elsner T. Genome-wide posttranscriptional dysregulation by microRNAs in human asthma as revealed by Frac-seq. J Immunol. 2018;201(1):251–63. https://doi.org/10.4049/jimmunol.1701798.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Midyat L, Gulen F, Karaca E, Ozkinay F, Tanac R, Demir E, Cogulu O, Aslan A, Ozkinay C, Onay H, Atasever M. MicroRNA expression profiling in children with different asthma phenotypes. Pediatr Pulmonol. 2016;51(6):582–7. https://doi.org/10.1002/ppul.23331.

    Article  PubMed  Google Scholar 

  77. Maes T, Cobos FA, Schleich F, Sorbello V, Henket M, De Preter K, Bracke KR, Conickx G, Mesnil C, Vandesompele J, Lahousse L, Bureau F, Mestdagh P, Joos GF, Ricciardolo FL, Brusselle GG, Louis R. Asthma inflammatory phenotypes show differential microRNA expression in sputum. J Allergy Clin Immunol. 2016;137(5):1433–46. https://doi.org/10.1016/j.jaci.2016.02.018.

    Article  PubMed  CAS  Google Scholar 

  78. van den Berge M, Tasena H. Role of microRNAs and exosomes in asthma. Curr Opin Pulm Med. 2019;25(1):87–93. https://doi.org/10.1097/MCP.0000000000000532.

    Article  PubMed  CAS  Google Scholar 

  79. Taka S, Tzani-Tzanopoulou P, Wanstall H, Papadopoulos NG. MicroRNAs in asthma and respiratory infections: identifying common pathways. Allergy Asthma Immunol Res. 2020;12(1):4–23. https://doi.org/10.4168/aair.2020.12.1.4.

    Article  PubMed  CAS  Google Scholar 

  80. Li JJ, Tay HL, Maltby S, Xiang Y, Eyers F, Hatchwell L, Zhou H, Toop HD, Morris JC, Nair P, Mattes J, Foster PS, Yang M. MicroRNA-9 regulates steroid-resistant airway hyperresponsiveness by reducing protein phosphatase 2A activity. J Allergy Clin Immunol. 2015;136(2):462–73. https://doi.org/10.1016/j.jaci.2014.11.044.

    Article  PubMed  CAS  Google Scholar 

  81. Nakano T, Inoue Y, Shimojo N, Yamaide F, Morita Y, Arima T, Tomiita M, Kohno Y. Lower levels of hsa-mir-15a, which decreases VEGFA, in the CD4+ T cells of pediatric patients with asthma. J Allergy Clin Immunol. 2013;132(5):1224–7. https://doi.org/10.1016/j.jaci.2013.06.041.

    Article  PubMed  CAS  Google Scholar 

  82. Yu B, Yao L, Liu C, Tang L, Xing T. Upregulation of microRNA16 alters the response to inhaled betaagonists in patients with asthma though modulating expression of ADRB2. Mol Med Rep. 2019;19(5):4027–34. https://doi.org/10.3892/mmr.2019.10097.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Haj-Salem I, Fakhfakh R, Berube JC, Jacques E, Plante S, Simard MJ, Bosse Y, Chakir J. MicroRNA-19a enhances proliferation of bronchial epithelial cells by targeting TGFbetaR2 gene in severe asthma. Allergy. 2015;70(2):212–9. https://doi.org/10.1111/all.12551.

    Article  PubMed  CAS  Google Scholar 

  84. Lu TX, Munitz A, Rothenberg ME. MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol (Baltimore, Md: 1950). 2009;182(8):4994–5002. https://doi.org/10.4049/jimmunol.0803560.

    Article  CAS  Google Scholar 

  85. Wu XB, Wang MY, Zhu HY, Tang SQ, You YD, Xie YQ. Overexpression of microRNA-21 and microRNA-126 in the patients of bronchial asthma. Int J Clin Exp Med. 2014;7(5):1307–12.

    PubMed  PubMed Central  CAS  Google Scholar 

  86. Kim RY, Horvat JC, Pinkerton JW, Starkey MR, Essilfie AT, Mayall JR, Nair PM, Hansbro NG, Jones B, Haw TJ, Sunkara KP, Nguyen TH, Jarnicki AG, Keely S, Mattes J, Adcock IM, Foster PS, Hansbro PM. MicroRNA-21 drives severe, steroid-insensitive experimental asthma by amplifying phosphoinositide 3-kinase-mediated suppression of histone deacetylase 2. J Allergy Clin Immunol. 2017;139(2):519–32. https://doi.org/10.1016/j.jaci.2016.04.038.

    Article  PubMed  CAS  Google Scholar 

  87. Jin A, Bao R, Roth M, Liu L, Yang X, Tang X, Yang X, Sun Q, Lu S. microRNA-23a contributes to asthma by targeting BCL2 in airway epithelial cells and CXCL12 in fibroblasts. J Cell Physiol. 2019;234(11):21153–65. https://doi.org/10.1002/jcp.28718.

    Article  PubMed  CAS  Google Scholar 

  88. Solberg OD, Ostrin EJ, Love MI, Peng JC, Bhakta NR, Hou L, Nguyen C, Solon M, Nguyen C, Barczak AJ, Zlock LT, Blagev DP, Finkbeiner WE, Ansel KM, Arron JR, Erle DJ, Woodruff PG. Airway epithelial miRNA expression is altered in asthma. Am J Respir Crit Care Med. 2012;186(10):965–74. https://doi.org/10.1164/rccm.201201-0027OC.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Sharma A, Kumar M, Ahmad T, Mabalirajan U, Aich J, Agrawal A, Ghosh B. Antagonism of mmu-mir-106a attenuates asthma features in allergic murine model. J Appl Physiol (1985). 2012;113(3):459–64. https://doi.org/10.1152/japplphysiol.00001.2012.

    Article  CAS  Google Scholar 

  90. Mattes J, Collison A, Plank M, Phipps S, Foster PS. Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease. Proc Natl Acad Sci U S A. 2009;106(44):18704–9. https://doi.org/10.1073/pnas.0905063106.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Chiba Y, Tanabe M, Goto K, Sakai H, Misawa M. Down-regulation of miR-133a contributes to up-regulation of Rhoa in bronchial smooth muscle cells. Am J Respir Crit Care Med. 2009;180(8):713–9. https://doi.org/10.1164/rccm.200903-0325OC.

    Article  PubMed  CAS  Google Scholar 

  92. Collison A, Mattes J, Plank M, Foster PS. Inhibition of house dust mite-induced allergic airways disease by antagonism of microRNA-145 is comparable to glucocorticoid treatment. J Allergy Clin Immunol. 2011;128(1):160–7. https://doi.org/10.1016/j.jaci.2011.04.005.

    Article  PubMed  CAS  Google Scholar 

  93. Fan L, Wang X, Fan L, Chen Q, Zhang H, Pan H, Xu A, Wang H, Yu Y. MicroRNA-145 influences the balance of Th1/Th2 via regulating RUNX3 in asthma patients. Exp Lung Res. 2016;42(8–10):417–24. https://doi.org/10.1080/01902148.2016.1256452.

    Article  PubMed  CAS  Google Scholar 

  94. Faiz A, Weckmann M, Tasena H, Vermeulen CJ, Van den Berge M, Ten Hacken NHT, Halayko AJ, Ward JPT, Lee TH, Tjin G, Black JL, Haghi M, Xu CJ, King GG, Farah CS, Oliver BG, Heijink IH, Burgess JK. Profiling of healthy and asthmatic airway smooth muscle cells following interleukin-1beta treatment: a novel role for CCL20 in chronic mucus hypersecretion. Eur Respir J. 2018;52(2):1800310. https://doi.org/10.1183/13993003.00310-2018.

    Article  PubMed  CAS  Google Scholar 

  95. Malmhall C, Alawieh S, Lu Y, Sjostrand M, Bossios A, Eldh M, Radinger M. MicroRNA-155 is essential for T(H)2-mediated allergen-induced eosinophilic inflammation in the lung. J Allergy Clin Immunol. 2014;133(5):1429–38. https://doi.org/10.1016/j.jaci.2013.11.008.

    Article  PubMed  CAS  Google Scholar 

  96. Qiu L, Zhang Y, Do DC, Ke X, Zhang S, Lambert K, Kumar S, Hu C, Zhou Y, Ishmael FT, Gao P. miR-155 modulates cockroach allergen- and oxidative stress-induced cyclooxygenase-2 in asthma. J Immunol. 2018;201(3):916–29. https://doi.org/10.4049/jimmunol.1701167.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Huo X, Zhang K, Yi L, Mo Y, Liang Y, Zhao J, Zhang Z, Xu Y, Zhen G. Decreased epithelial and plasma miR-181b-5p expression associates with airway eosinophilic inflammation in asthma. Clin Exp Allergy. 2016;46(10):1281–90. https://doi.org/10.1111/cea.12754.

    Article  PubMed  CAS  Google Scholar 

  98. Zhang K, Liang Y, Feng Y, Wu W, Zhang H, He J, Hu Q, Zhao J, Xu Y, Liu Z, Zhen G. Decreased epithelial and sputum miR-221-3p associates with airway eosinophilic inflammation and CXCL17 expression in asthma. Am J Physiol Lung Cell Mol Physiol. 2018;315(2):L253–64. https://doi.org/10.1152/ajplung.00567.2017.

    Article  PubMed  CAS  Google Scholar 

  99. Liang Y, Feng Y, Wu W, Chang C, Chen D, Chen S, Zhen G. microRNA-218-5p plays a protective role in eosinophilic airway inflammation via targeting delta-catenin, a novel catenin in asthma. Clin Exp Allergy. 2020;50(1):29–40. https://doi.org/10.1111/cea.13498.

    Article  PubMed  CAS  Google Scholar 

  100. van Rooij E, Purcell AL, Levin AA. Developing microRNA therapeutics. Circ Res. 2012;110(3):496–507. https://doi.org/10.1161/CIRCRESAHA.111.247916.

    Article  PubMed  CAS  Google Scholar 

  101. Zhang Y, Wang Z, Gemeinhart RA. Progress in microRNA delivery. J Control Release. 2013;172(3):962–74. https://doi.org/10.1016/j.jconrel.2013.09.015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Jepsen JS, Sorensen MD, Wengel J. Locked nucleic acid: a potent nucleic acid analog in therapeutics and biotechnology. Oligonucleotides. 2004;14(2):130–46. https://doi.org/10.1089/1545457041526317.

    Article  PubMed  CAS  Google Scholar 

  103. Geary RS, Yu RZ, Levin AA. Pharmacokinetics of phosphorothioate antisense oligodeoxynucleotides. Curr Opin Investig Drugs. 2001;2(4):562–73.

    PubMed  CAS  Google Scholar 

  104. Crooke ST, Vickers TA, Liang XH. Phosphorothioate modified oligonucleotide-protein interactions. Nucleic Acids Res. 2020;48:5235. https://doi.org/10.1093/nar/gkaa299.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Luo Y, Pang Z, Zhu Q, Cai X, Yin Y, Wang M, Zhu J, Chen J, Zeng K, Zhang C, Zhang J. Locally instilled tumor necrosis factor-alpha antisense oligonucleotide inhibits allergic inflammation via the induction of Tregs. J Gene Med. 2012;14(6):374–83. https://doi.org/10.1002/jgm.2631.

    Article  PubMed  CAS  Google Scholar 

  106. Tian XR, Tian XL, Bo JP, Li SG, Liu ZL, Niu B. Inhibition of allergic airway inflammation by antisense-induced blockade of STAT6 expression. Chin Med J. 2011;124(1):26–31.

    PubMed  CAS  Google Scholar 

  107. Duan W, Chan JH, McKay K, Crosby JR, Choo HH, Leung BP, Karras JG, Wong WS. Inhaled p38alpha mitogen-activated protein kinase antisense oligonucleotide attenuates asthma in mice. Am J Respir Crit Care Med. 2005;171(6):571–8. https://doi.org/10.1164/rccm.200408-1006OC.

    Article  PubMed  Google Scholar 

  108. Zafra MP, Mazzeo C, Gamez C, Rodriguez Marco A, de Zulueta A, Sanz V, Bilbao I, Ruiz-Cabello J, Zubeldia JM, del Pozo V. Gene silencing of SOCS3 by siRNA intranasal delivery inhibits asthma phenotype in mice. PLoS One. 2014;9(3):e91996. https://doi.org/10.1371/journal.pone.0091996.

    Article  PubMed  CAS  Google Scholar 

  109. Rai K, Takigawa N, Ito S, Kashihara H, Ichihara E, Yasuda T, Shimizu K, Tanimoto M, Kiura K. Liposomal delivery of MicroRNA-7-expressing plasmid overcomes epidermal growth factor receptor tyrosine kinase inhibitor-resistance in lung cancer cells. Mol Cancer Ther. 2011;10(9):1720–7. https://doi.org/10.1158/1535-7163.mct-11-0220.

    Article  PubMed  CAS  Google Scholar 

  110. Sparks J, Slobodkin G, Matar M, Congo R, Ulkoski D, Rea-Ramsey A, Pence C, Rice J, McClure D, Polach KJ, Brunhoeber E, Wilkinson L, Wallace K, Anwer K, Fewell JG. Versatile cationic lipids for siRNA delivery. J Control Release. 2012;158(2):269–76. https://doi.org/10.1016/j.jconrel.2011.11.006.

    Article  PubMed  CAS  Google Scholar 

  111. Schlegel A, Largeau C, Bigey P, Bessodes M, Lebozec K, Scherman D, Escriou V. Anionic polymers for decreased toxicity and enhanced in vivo delivery of siRNA complexed with cationic liposomes. J Control Release. 2011;152(3):393–401. https://doi.org/10.1016/j.jconrel.2011.03.031.

    Article  PubMed  CAS  Google Scholar 

  112. Shi S, Han L, Gong T, Zhang Z, Sun X. Systemic delivery of microRNA-34a for cancer stem cell therapy. Angew Chem Int Ed Engl. 2013;52(14):3901–5. https://doi.org/10.1002/anie.201208077.

    Article  PubMed  CAS  Google Scholar 

  113. Canas JA, Sastre B, Rodrigo-Munoz JM, Del Pozo V. Exosomes: a new approach to asthma pathology. Clin Chim Acta. 2019;495:139–47. https://doi.org/10.1016/j.cca.2019.04.055.

    Article  PubMed  CAS  Google Scholar 

  114. Rytting E, Nguyen J, Wang X, Kissel T. Biodegradable polymeric nanocarriers for pulmonary drug delivery. Expert Opin Drug Deliv. 2008;5(6):629–39. https://doi.org/10.1517/17425247.5.6.629.

    Article  PubMed  CAS  Google Scholar 

  115. Roy I, Vij N. Nanodelivery in airway diseases: challenges and therapeutic applications. Nanomedicine. 2010;6(2):237–44. https://doi.org/10.1016/j.nano.2009.07.001.

    Article  PubMed  CAS  Google Scholar 

  116. Gunther M, Lipka J, Malek A, Gutsch D, Kreyling W, Aigner A. Polyethylenimines for RNAi-mediated gene targeting in vivo and siRNA delivery to the lung. Eur J Pharm Biopharm. 2011;77(3):438–49. https://doi.org/10.1016/j.ejpb.2010.11.007.

    Article  PubMed  CAS  Google Scholar 

  117. Liao W, Dong J, Peh HY, Tan LH, Lim KS, Li L, Wong WF. Oligonucleotide therapy for obstructive and restrictive respiratory diseases. Molecules. 2017;22(1) https://doi.org/10.3390/molecules22010139.

  118. Card JW, Zeldin DC, Bonner JC, Nestmann ER. Pulmonary applications and toxicity of engineered nanoparticles. Am J Physiol Lung Cell Mol Physiol. 2008;295(3):L400–11. https://doi.org/10.1152/ajplung.00041.2008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Hayes AJ, Bakand S. Toxicological perspectives of inhaled therapeutics and nanoparticles. Expert Opin Drug Metab Toxicol. 2014;10(7):933–47. https://doi.org/10.1517/17425255.2014.916276.

    Article  PubMed  CAS  Google Scholar 

  120. Weber S, Zimmer A, Pardeike J. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for pulmonary application: a review of the state of the art. Eur J Pharm Biopharm. 2014;86(1):7–22. https://doi.org/10.1016/j.ejpb.2013.08.013.

    Article  PubMed  CAS  Google Scholar 

  121. Sarvestani ST, Stunden HJ, Behlke MA, Forster SC, McCoy CE, Tate MD, Ferrand J, Lennox KA, Latz E, Williams BR, Gantier MP. Sequence-dependent off-target inhibition of TLR7/8 sensing by synthetic microRNA inhibitors. Nucleic Acids Res. 2015;43(2):1177–88. https://doi.org/10.1093/nar/gku1343.

    Article  PubMed  CAS  Google Scholar 

  122. Look M, Saltzman WM, Craft J, Fahmy TM. The nanomaterial-dependent modulation of dendritic cells and its potential influence on therapeutic immunosuppression in lupus. Biomaterials. 2014;35(3):1089–95. https://doi.org/10.1016/j.biomaterials.2013.10.046.

    Article  PubMed  CAS  Google Scholar 

  123. Kraft JC, Freeling JP, Wang Z, Ho RJ. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J Pharm Sci. 2014;103(1):29–52. https://doi.org/10.1002/jps.23773.

    Article  PubMed  CAS  Google Scholar 

  124. Obad S, dos Santos CO, Petri A, Heidenblad M, Broom O, Ruse C, Fu C, Lindow M, Stenvang J, Straarup EM, Hansen HF, Koch T, Pappin D, Hannon GJ, Kauppinen S. Silencing of microRNA families by seed-targeting tiny LNAs. Nat Genet. 2011;43(4):371–8. https://doi.org/10.1038/ng.786.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Lee HY, Lee HY, Choi JY, Hur J, Kim IK, Kim YK, Kang JY, Lee SY. Inhibition of MicroRNA-21 by an antagomir ameliorates allergic inflammation in a mouse model of asthma. Exp Lung Res. 2017;43(3):109–19. https://doi.org/10.1080/01902148.2017.1304465.

    Article  PubMed  CAS  Google Scholar 

  126. Plank MW, Maltby S, Tay HL, Stewart J, Eyers F, Hansbro PM, Foster PS. MicroRNA expression is altered in an ovalbumin-induced asthma model and targeting miR-155 with antagomirs reveals cellular specificity. PLoS One. 2015;10(12):e0144810. https://doi.org/10.1371/journal.pone.0144810.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Kumar M, Ahmad T, Sharma A, Mabalirajan U, Kulshreshtha A, Agrawal A, Ghosh B. Let-7 microRNA-mediated regulation of IL-13 and allergic airway inflammation. J Allergy Clin Immunol. 2011;128(5):1077–85. https://doi.org/10.1016/j.jaci.2011.04.034.

    Article  PubMed  CAS  Google Scholar 

  128. Shao X, Kong WX, Li YT. MiR-133 inhibits kidney injury in rats with diabetic nephropathy via MAPK/ERK pathway. Eur Rev Med Pharmacol Sci. 2019;23(24):10957–63. https://doi.org/10.26355/eurrev_201912_19799.

    Article  PubMed  CAS  Google Scholar 

  129. Chen H, Xu X, Cheng S, Xu Y, Xuefei Q, Cao Y, Xie J, Wang CY, Xu Y, Xiong W. Small interfering RNA directed against microRNA-155 delivered by a lentiviral vector attenuates asthmatic features in a mouse model of allergic asthma. Exp Ther Med. 2017;14(5):4391–6. https://doi.org/10.3892/etm.2017.5093.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

Preparation of this manuscript was supported by a grant to WTG from the National Institute of Allergy and Infectious Diseases (AI116985).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William T. Gerthoffer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramelli, S.C., Gerthoffer, W.T. (2021). MicroRNA Targets for Asthma Therapy. In: Wang, YX. (eds) Lung Inflammation in Health and Disease, Volume I. Advances in Experimental Medicine and Biology, vol 1303. Springer, Cham. https://doi.org/10.1007/978-3-030-63046-1_6

Download citation

Publish with us

Policies and ethics