Skip to main content

CXCL13 Signaling in the Tumor Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1302))

Abstract

Chemokines have emerged as important players in tumorigenic process. An extensive body of literature generated over the last two or three decades strongly implicate abnormally activated or functionally disrupted chemokine signaling in liaising most—if not all—hallmark processes of cancer. It is well-known that chemokine signaling networks within the tumor microenvironment are highly versatile and context-dependent: exert both pro-tumoral and antitumoral activities. The C-X-C motif chemokine ligand 13 (CXCL13), and its cognate receptor CXCR5, represents an emerging example of chemokine signaling axes, which express the ability to modulate tumor growth and progression in either way. Collateral evidence indicate that CXCL13-CXCR5 axis may directly modulate tumor growth by inducing proliferation of cancer cells, as well as promoting invasive phenotypes and preventing their apoptosis. In addition, CXCL13-CXCR5 axis may also indirectly modulate tumor growth by regulating noncancerous cells, particularly the immune cells, within the tumor microenvironment. Here, we review the role of CXCL13, together with CXCR5, in the human tumor microenvironment. We first elaborate their patterns of expression, regulation, and biological functions in normal physiology. We then consider how their aberrant activity, as a result of differential overexpression or co-expression, may directly or indirectly modulate the growth of tumors through effects on both cancerous and noncancerous cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Emon B, Bauer J, Jain Y, Jung B, Saif T (2018) Biophysics of tumor microenvironment and cancer metastasis – a mini review. Comput Struct Biotechnol J 16:279–287. https://doi.org/10.1016/j.csbj.2018.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chow MT, Luster AD (2014) Chemokines in cancer. Cancer Immunol Res 2:1125–1131. https://doi.org/10.1158/2326-6066.CIR-14-0160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mukaida N, Sasaki S, Baba T (2014) Chemokines in cancer development and progression and their potential as targeting molecules for cancer treatment. Mediat Inflamm 2014:170381. https://doi.org/10.1155/2014/170381

    Article  CAS  Google Scholar 

  4. Lacalle RA et al (2017) Chemokine receptor signaling and the hallmarks of cancer. Int Rev Cell Mol Biol 331:181–244. https://doi.org/10.1016/bs.ircmb.2016.09.011

    Article  CAS  PubMed  Google Scholar 

  5. Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12:121–127

    Article  CAS  PubMed  Google Scholar 

  6. Sallusto F, Baggiolini M (2008) Chemokines and leukocyte traffic. Nat Immunol 9:949–952. https://doi.org/10.1038/ni.f.214

    Article  CAS  PubMed  Google Scholar 

  7. Weitzenfeld P, Ben-Baruch A (2014) The chemokine system, and its CCR5 and CXCR4 receptors, as potential targets for personalized therapy in cancer. Cancer Lett 352:36–53. https://doi.org/10.1016/j.canlet.2013.10.006

    Article  CAS  PubMed  Google Scholar 

  8. Hussain M et al (2019) CXCL13/CXCR5 signaling axis in cancer. Life Sci 227:175–186. https://doi.org/10.1016/j.lfs.2019.04.053

    Article  CAS  PubMed  Google Scholar 

  9. Kazanietz MG, Durando M, Cooke M (2019) CXCL13 and its receptor CXCR5 in cancer: inflammation, immune response, and beyond. Front Endocrinol 10. https://doi.org/10.3389/fendo.2019.00471

  10. Legler DF et al (1998) B cell-attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5. J Exp Med 187:655–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gunn MD et al (1998) A B-cell-homing chemokine made in lymphoid follicles activates Burkitt’s lymphoma receptor-1. Nature 391:799–803. https://doi.org/10.1038/35876

    Article  CAS  PubMed  Google Scholar 

  12. Bieche I et al (2007) CXC chemokines located in the 4q21 region are up-regulated in breast cancer. Endocr Relat Cancer 14:1039–1052. https://doi.org/10.1677/erc.1.01301

    Article  CAS  PubMed  Google Scholar 

  13. Browning JL et al (2005) Lymphotoxin-beta receptor signaling is required for the homeostatic control of HEV differentiation and function. Immunity 23:539–550. https://doi.org/10.1016/j.immuni.2005.10.002

    Article  CAS  PubMed  Google Scholar 

  14. Suto H, Katakai T, Sugai M, Kinashi T, Shimizu A (2009) CXCL13 production by an established lymph node stromal cell line via lymphotoxin-beta receptor engagement involves the cooperation of multiple signaling pathways. Int Immunol 21:467–476. https://doi.org/10.1093/intimm/dxp014

    Article  CAS  PubMed  Google Scholar 

  15. Britanova LV, Kuprash DV (2009) New putative control elements in the promoter OF CXCL13 chemokine gene, a target of alternative NF-kappaB pathway. Mol Biol (Mosk) 43:657–665

    Article  CAS  Google Scholar 

  16. Yoshitomi H et al (2018) Human Sox4 facilitates the development of CXCL13-producing helper T cells in inflammatory environments. Nat Commun 9:3762. https://doi.org/10.1038/s41467-018-06187-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fan L et al (2017) CXCL13 is androgen-responsive and involved in androgen induced prostate cancer cell migration and invasion. Oncotarget 8:53244–53261. https://doi.org/10.18632/oncotarget.18387

    Article  PubMed  PubMed Central  Google Scholar 

  18. Biswas S et al (2019) RelA driven co-expression of CXCL13 and CXCR5 is governed by a multifaceted transcriptional program regulating breast cancer progression. Biochim Biophys Acta Mol basis Dis 1865:502–511. https://doi.org/10.1016/j.bbadis.2018.12.002

    Article  CAS  PubMed  Google Scholar 

  19. Dobner T, Wolf I, Emrich T, Lipp M (1992) Differentiation-specific expression of a novel G protein-coupled receptor from Burkitt’s lymphoma. Eur J Immunol 22:2795–2799. https://doi.org/10.1002/eji.1830221107

    Article  CAS  PubMed  Google Scholar 

  20. Kaiser E et al (1993) The G protein-coupled receptor BLR1 is involved in murine B cell differentiation and is also expressed in neuronal tissues. Eur J Immunol 23:2532–2539. https://doi.org/10.1002/eji.1830231023

    Article  CAS  PubMed  Google Scholar 

  21. Breitfeld D et al (2000) Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med 192:1545–1552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schaerli P et al (2000) CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J Exp Med 192:1553–1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Leon B et al (2012) Regulation of T(H)2 development by CXCR5+ dendritic cells and lymphotoxin-expressing B cells. Nat Immunol 13:681–690. https://doi.org/10.1038/ni.2309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Forster R et al (1996) A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 87:1037–1047. https://doi.org/10.1016/s0092-8674(00)81798-5

    Article  CAS  PubMed  Google Scholar 

  25. Geil WM, Yen A (2014) Nuclear Raf-1 kinase regulates the CXCR5 promoter by associating with NFATc3 to drive retinoic acid-induced leukemic cell differentiation. FEBS J 281:1170–1180. https://doi.org/10.1111/febs.12693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mitkin NA et al (2015) p53-dependent expression of CXCR5 chemokine receptor in MCF-7 breast cancer cells. Sci Rep 5:9330. https://doi.org/10.1038/srep09330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vaeth M et al (2014) Follicular regulatory T cells control humoral autoimmunity via NFAT2-regulated CXCR5 expression. J Exp Med 211:545–561. https://doi.org/10.1084/jem.20130604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Burkle A et al (2007) Overexpression of the CXCR5 chemokine receptor, and its ligand, CXCL13 in B-cell chronic lymphocytic leukemia. Blood 110:3316–3325. https://doi.org/10.1182/blood-2007-05-089409

    Article  CAS  PubMed  Google Scholar 

  29. El Haibi CP et al (2010) PI3Kp110-, Src-, FAK-dependent and DOCK2-independent migration and invasion of CXCL13-stimulated prostate cancer cells. Mol Cancer 9:85. https://doi.org/10.1186/1476-4598-9-85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. El-Haibi CP et al (2013) Differential G protein subunit expression by prostate cancer cells and their interaction with CXCR5. Mol Cancer 12:64. https://doi.org/10.1186/1476-4598-12-64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. El-Haibi CP et al (2012) Antibody microarray analysis of signaling networks regulated by Cxcl13 and Cxcr5 in prostate Cancer. J Proteomics Bioinform 5:177–184. https://doi.org/10.4172/jpb.1000232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Muller G, Lipp M (2001) Signal transduction by the chemokine receptor CXCR5: structural requirements for G protein activation analyzed by chimeric CXCR1/CXCR5 molecules. Biol Chem 382:1387–1397. https://doi.org/10.1515/BC.2001.171

    Article  CAS  PubMed  Google Scholar 

  33. Pevzner V, Wolf I, Burgstahler R, Forster R, Lipp M (1999) Regulation of expression of chemokine receptor BLR1/CXCR5 during B cell maturation. Curr Top Microbiol Immunol 246:79–84; discussion 85

    CAS  PubMed  Google Scholar 

  34. Cyster JG et al (2000) Follicular stromal cells and lymphocyte homing to follicles. Immunol Rev 176:181–193

    Article  CAS  PubMed  Google Scholar 

  35. Ansel KM et al (2000) A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 406:309–314. https://doi.org/10.1038/35018581

    Article  CAS  PubMed  Google Scholar 

  36. Mazzucchelli L et al (1999) BCA-1 is highly expressed in Helicobacter pylori-induced mucosa-associated lymphoid tissue and gastric lymphoma. J Clin Invest 104:R49–R54. https://doi.org/10.1172/JCI7830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fu YX, Chaplin DD (1999) Development and maturation of secondary lymphoid tissues. Annu Rev Immunol 17:399–433. https://doi.org/10.1146/annurev.immunol.17.1.399

    Article  CAS  PubMed  Google Scholar 

  38. Luther SA, Lopez T, Bai W, Hanahan D, Cyster JG (2000) BLC expression in pancreatic islets causes B cell recruitment and lymphotoxin-dependent lymphoid neogenesis. Immunity 12:471–481

    Article  CAS  PubMed  Google Scholar 

  39. Hopken UE, Achtman AH, Kruger K, Lipp M (2004) Distinct and overlapping roles of CXCR5 and CCR7 in B-1 cell homing and early immunity against bacterial pathogens. J Leukoc Biol 76:709–718. https://doi.org/10.1189/jlb.1203643

    Article  CAS  PubMed  Google Scholar 

  40. Ansel KM, Harris RB, Cyster JG (2002) CXCL13 is required for B1 cell homing, natural antibody production, and body cavity immunity. Immunity 16:67–76

    Article  CAS  PubMed  Google Scholar 

  41. Hardy RR (2006) B-1 B cell development. J Immunol 177:2749–2754

    Article  CAS  PubMed  Google Scholar 

  42. Li H, Fan X, Houghton J (2007) Tumor microenvironment: the role of the tumor stroma in cancer. J Cell Biochem 101:805–815. https://doi.org/10.1002/jcb.21159

    Article  CAS  PubMed  Google Scholar 

  43. Heinig K et al (2014) Access to follicular dendritic cells is a pivotal step in murine chronic lymphocytic leukemia B-cell activation and proliferation. Cancer Discov 4:1448–1465. https://doi.org/10.1158/2159-8290.CD-14-0096

    Article  CAS  PubMed  Google Scholar 

  44. Ticchioni M et al (2007) Homeostatic chemokines increase survival of B-chronic lymphocytic leukemia cells through inactivation of transcription factor FOXO3a. Oncogene 26:7081–7091. https://doi.org/10.1038/sj.onc.1210519

    Article  CAS  PubMed  Google Scholar 

  45. Chunsong H et al (2006) CXC chemokine ligand 13 and CC chemokine ligand 19 cooperatively render resistance to apoptosis in B cell lineage acute and chronic lymphocytic leukemia CD23+CD5+ B cells. J Immunol 177:6713–6722

    Article  PubMed  Google Scholar 

  46. Garg R et al (2017) Protein kinase C epsilon cooperates with PTEN loss for prostate tumorigenesis through the CXCL13-CXCR5 pathway. Cell Rep 19:375–388. https://doi.org/10.1016/j.celrep.2017.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Biswas S et al (2014) CXCL13-CXCR5 co-expression regulates epithelial to mesenchymal transition of breast cancer cells during lymph node metastasis. Breast Cancer Res Treat 143:265–276. https://doi.org/10.1007/s10549-013-2811-8

    Article  CAS  PubMed  Google Scholar 

  48. Ding Y et al (2015) CD40 controls CXCR5-induced recruitment of myeloid-derived suppressor cells to gastric cancer. Oncotarget 6:38901–38911. https://doi.org/10.18632/oncotarget.5644

    Article  PubMed  PubMed Central  Google Scholar 

  49. Duan Z et al (2015) Phenotype and function of CXCR5+CD45RA-CD4+ T cells were altered in HBV-related hepatocellular carcinoma and elevated serum CXCL13 predicted better prognosis. Oncotarget 6:44239–44253. https://doi.org/10.18632/oncotarget.6235

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wang X et al (2007) CCL19 and CXCL13 synergistically regulate interaction between B cell acute lymphocytic leukemia CD23+CD5+ B cells and CD8+ T cells. J Immunol 179:2880–2888

    Article  CAS  PubMed  Google Scholar 

  51. Chen X et al (2017) Histidine decarboxylase (HDC)-expressing granulocytic myeloid cells induce and recruit Foxp3+ regulatory T cells in murine colon cancer. Oncoimmunology 6:e1290034. https://doi.org/10.1080/2162402X.2017.1290034

    Article  PubMed  PubMed Central  Google Scholar 

  52. Silina K et al (2018) Germinal centers determine the prognostic relevance of tertiary lymphoid structures and are impaired by corticosteroids in lung squamous cell carcinoma. Cancer Res 78:1308–1320. https://doi.org/10.1158/0008-5472.CAN-17-1987

    Article  CAS  PubMed  Google Scholar 

  53. Pimenta EM, Barnes BJ (2014) Role of tertiary lymphoid structures (TLS) in anti-tumor immunity: potential tumor-induced cytokines/chemokines that regulate TLS formation in epithelial-derived cancers. Cancers (Basel) 6:969–997. https://doi.org/10.3390/cancers6020969

    Article  CAS  Google Scholar 

  54. van de Pavert SA, Mebius RE (2010) New insights into the development of lymphoid tissues. Nat Rev Immunol 10:664–674. https://doi.org/10.1038/nri2832

    Article  CAS  PubMed  Google Scholar 

  55. Xing J et al (2017) CXCR5+CD8+ T cells infiltrate the colorectal tumors and nearby lymph nodes, and are associated with enhanced IgG response in B cells. Exp Cell Res. https://doi.org/10.1016/j.yexcr.2017.04.014

  56. Bai M et al (2017) CXCR5(+) CD8(+) T cells potently infiltrate pancreatic tumors and present high functionality. Exp Cell Res 361:39–45. https://doi.org/10.1016/j.yexcr.2017.09.039

    Article  CAS  PubMed  Google Scholar 

  57. Zhou Y, Guo L, Sun H, Xu J, Ba T (2018) CXCR5(+) CD8 T cells displayed higher activation potential despite high PD-1 expression, in tumor-involved lymph nodes from patients with thyroid cancer. Int Immunopharmacol 62:114–119. https://doi.org/10.1016/j.intimp.2018.07.002

    Article  CAS  PubMed  Google Scholar 

  58. Mlecnik B, Bindea G, Pages F, Galon J (2011) Tumor immunosurveillance in human cancers. Cancer Metastasis Rev 30:5–12. https://doi.org/10.1007/s10555-011-9270-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jurlander J (2011) In: Schwab M (ed) Encyclopedia of Cancer. Springer, Berlin/Heidelberg, pp 1640–1644

    Chapter  Google Scholar 

  60. Stache V et al (2017) The splenic marginal zone shapes the phenotype of leukemia B cells and facilitates their niche-specific retention and survival. Oncoimmunology 6:e1323155. https://doi.org/10.1080/2162402X.2017.1323155

    Article  PubMed  PubMed Central  Google Scholar 

  61. Caligaris-Cappio F (2003) Role of the microenvironment in chronic lymphocytic leukaemia. Br J Haematol 123:380–388

    Article  PubMed  Google Scholar 

  62. Yamamoto K et al (2014) Anti-CXCL13 antibody can inhibit the formation of gastric lymphoid follicles induced by Helicobacter infection. Mucosal Immunol 7:1244–1254. https://doi.org/10.1038/mi.2014.14

    Article  CAS  PubMed  Google Scholar 

  63. Mori M et al (2003) BCA-1, A B-cell chemoattractant signal, is constantly expressed in cutaneous lymphoproliferative B-cell disorders. Eur J Cancer 39:1625–1631

    Article  CAS  PubMed  Google Scholar 

  64. Ohmatsu H, Sugaya M, Kadono T, Tamaki K (2007) CXCL13 and CCL21 are expressed in ectopic lymphoid follicles in cutaneous lymphoproliferative disorders. J Invest Dermatol 127:2466–2468. https://doi.org/10.1038/sj.jid.5700873

    Article  CAS  PubMed  Google Scholar 

  65. Husson H et al (2002) CXCL13 (BCA-1) is produced by follicular lymphoma cells: role in the accumulation of malignant B cells. Br J Haematol 119:492–495

    Article  CAS  PubMed  Google Scholar 

  66. Chan CC, Shen D, Hackett JJ, Buggage RR, Tuaillon N (2003) Expression of chemokine receptors, CXCR4 and CXCR5, and chemokines, BLC and SDF-1, in the eyes of patients with primary intraocular lymphoma. Ophthalmology 110:421–426. https://doi.org/10.1016/S0161-6420(02)01737-2

    Article  PubMed  Google Scholar 

  67. Trentin L et al (2004) Homeostatic chemokines drive migration of malignant B cells in patients with non-Hodgkin lymphomas. Blood 104:502–508. https://doi.org/10.1182/blood-2003-09-3103

    Article  CAS  PubMed  Google Scholar 

  68. Tang XF et al (2009) Expressions of CXCL13, CD10 and bcl-6 in angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma, not otherwise specified. Zhonghua Bing Li Xue Za Zhi 38:224–230

    CAS  PubMed  Google Scholar 

  69. Yu H, Shahsafaei A, Dorfman DM (2009) Germinal-center T-helper-cell markers PD-1 and CXCL13 are both expressed by neoplastic cells in angioimmunoblastic T-cell lymphoma. Am J Clin Pathol 131:33–41. https://doi.org/10.1309/AJCP62WRKERPXDRT

    Article  PubMed  Google Scholar 

  70. Ohtani H et al (2015) Follicular dendritic cell meshwork in angioimmunoblastic T-cell lymphoma is characterized by accumulation of CXCL13(+) cells. J Clin Exp Hematop 55:61–69. https://doi.org/10.3960/jslrt.55.61

    Article  PubMed  Google Scholar 

  71. Smith JR et al (2003) Expression of B-cell-attracting chemokine 1 (CXCL13) by malignant lymphocytes and vascular endothelium in primary central nervous system lymphoma. Blood 101:815–821. https://doi.org/10.1182/blood-2002-05-1576

    Article  CAS  PubMed  Google Scholar 

  72. Brunn A et al (2007) Expression pattern and cellular sources of chemokines in primary central nervous system lymphoma. Acta Neuropathol 114:271–276. https://doi.org/10.1007/s00401-007-0258-x

    Article  CAS  PubMed  Google Scholar 

  73. Dupuis J et al (2006) Expression of CXCL13 by neoplastic cells in angioimmunoblastic T-cell lymphoma (AITL): a new diagnostic marker providing evidence that AITL derives from follicular helper T cells. Am J Surg Pathol 30:490–494

    Article  PubMed  Google Scholar 

  74. Rubenstein JL et al (2013) CXCL13 plus interleukin 10 is highly specific for the diagnosis of CNS lymphoma. Blood 121:4740–4748. https://doi.org/10.1182/blood-2013-01-476333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hussain SK et al (2013) Serum levels of the chemokine CXCL13, genetic variation in CXCL13 and its receptor CXCR5, and HIV-associated non-hodgkin B-cell lymphoma risk. Cancer Epidemiol Biomark Prev 22:295–307. https://doi.org/10.1158/1055-9965.EPI-12-1122

    Article  CAS  Google Scholar 

  76. Kim SJ, Ryu KJ, Hong M, Ko YH, Kim WS (2015) The serum CXCL13 level is associated with the Glasgow Prognostic Score in extranodal NK/T-cell lymphoma patients. J Hematol Oncol 8:49. https://doi.org/10.1186/s13045-015-0142-4

    Article  PubMed  PubMed Central  Google Scholar 

  77. Wittke F et al (1999) Interleukin 10 (IL-10): an immunosuppressive factor and independent predictor in patients with metastatic renal cell carcinoma. Br J Cancer 79:1182–1184. https://doi.org/10.1038/sj.bjc.6690189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cha Z et al (2017) Circulating CXCR5+CD4+ T cells assist in the survival and growth of primary diffuse large B cell lymphoma cells through interleukin 10 pathway. Exp Cell Res 350:154–160. https://doi.org/10.1016/j.yexcr.2016.11.017

    Article  CAS  PubMed  Google Scholar 

  79. Tang J, Zha J, Guo X, Shi P, Xu B (2017) CXCR5(+)CD8(+) T cells present elevated capacity in mediating cytotoxicity toward autologous tumor cells through interleukin 10 in diffuse large B-cell lymphoma. Int Immunopharmacol 50:146–151. https://doi.org/10.1016/j.intimp.2017.06.020

    Article  CAS  PubMed  Google Scholar 

  80. Nedelkovska H et al (2016) Follicular lymphoma Tregs have a distinct transcription profile impacting their migration and retention in the malignant lymph node. PLoS One 11:e0155347. https://doi.org/10.1371/journal.pone.0155347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cha Z et al (2018) The prevalence and function of CD4(+)CXCR5(+)Foxp3(+) follicular regulatory T cells in diffuse large B cell lymphoma. Int Immunopharmacol 61:132–139. https://doi.org/10.1016/j.intimp.2018.05.025

    Article  CAS  PubMed  Google Scholar 

  82. Eide HA et al (2016) Non-small cell lung cancer is characterised by a distinct inflammatory signature in serum compared with chronic obstructive pulmonary disease. Clin Transl Immunol 5:e109. https://doi.org/10.1038/cti.2016.65

    Article  CAS  Google Scholar 

  83. Shiels MS et al (2013) Circulating inflammation markers and prospective risk for lung cancer. J Natl Cancer Inst 105:1871–1880. https://doi.org/10.1093/jnci/djt309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang Y et al (2016) MDC and BLC are independently associated with the significant risk of early stage lung adenocarcinoma. Oncotarget 7:83051–83059. https://doi.org/10.18632/oncotarget.13031

    Article  PubMed  PubMed Central  Google Scholar 

  85. Sun Y et al (2010) Secreted phosphoprotein 1 upstream invasive network construction and analysis of lung adenocarcinoma compared with human normal adjacent tissues by integrative biocomputation. Cell Biochem Biophys 56:59–71. https://doi.org/10.1007/s12013-009-9071-6

    Article  CAS  PubMed  Google Scholar 

  86. Singh R, Gupta P, Kloecker GH, Singh S, Lillard JW Jr (2014) Expression and clinical significance of CXCR5/CXCL13 in human nonsmall cell lung carcinoma. Int J Oncol 45:2232–2240. https://doi.org/10.3892/ijo.2014.2688

    Article  PubMed  PubMed Central  Google Scholar 

  87. Wang GZ et al (2015) The chemokine CXCL13 in lung cancers associated with environmental polycyclic aromatic hydrocarbons pollution. Elife 4. https://doi.org/10.7554/eLife.09419

  88. de Chaisemartin L et al (2011) Characterization of chemokines and adhesion molecules associated with T cell presence in tertiary lymphoid structures in human lung cancer. Cancer Res 71:6391–6399. https://doi.org/10.1158/0008-5472.CAN-11-0952

    Article  CAS  PubMed  Google Scholar 

  89. Thommen DS et al (2018) A transcriptionally and functionally distinct PD-1(+) CD8(+) T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat Med 24:994–1004. https://doi.org/10.1038/s41591-018-0057-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Panse J et al (2008) Chemokine CXCL13 is overexpressed in the tumour tissue and in the peripheral blood of breast cancer patients. Br J Cancer 99:930–938. https://doi.org/10.1038/sj.bjc.6604621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Razmkhah M et al (2012) Chemokine and chemokine receptors: a comparative study between metastatic and nonmetastatic lymph nodes in breast cancer patients. Eur Cytokine Netw 23:72–77. https://doi.org/10.1684/ecn.2012.0310

    Article  CAS  PubMed  Google Scholar 

  92. Chen L et al (2015) The expression of CXCL13 and its relation to unfavorable clinical characteristics in young breast cancer. J Transl Med 13:168. https://doi.org/10.1186/s12967-015-0521-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Xu L, Liang Z, Li S, Ma J (2018) Signaling via the CXCR5/ERK pathway is mediated by CXCL13 in mice with breast cancer. Oncol Lett 15:9293–9298. https://doi.org/10.3892/ol.2018.8510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ma JJ et al (2018) CXCL13 inhibition induce the apoptosis of MDA-MB-231 breast cancer cells through blocking CXCR5/ERK signaling pathway. Eur Rev Med Pharmacol Sci 22:8755–8762. https://doi.org/10.26355/eurrev_201812_16641

    Article  PubMed  Google Scholar 

  95. Mitkin NA et al (2017) p63 and p73 repress CXCR5 chemokine receptor gene expression in p53-deficient MCF-7 breast cancer cells during genotoxic stress. Biochim Biophys Acta 1860:1169–1178. https://doi.org/10.1016/j.bbagrm.2017.10.003

    Article  CAS  Google Scholar 

  96. Zhang L et al (2012) C-Src-mediated RANKL-induced breast cancer cell migration by activation of the ERK and Akt pathway. Oncol Lett 3:395–400. https://doi.org/10.3892/ol.2011.487

    Article  CAS  PubMed  Google Scholar 

  97. Pimenta EM et al (2015) IRF5 is a novel regulator of CXCL13 expression in breast cancer that regulates CXCR5(+) B- and T-cell trafficking to tumor-conditioned media. Immunol Cell Biol 93:486–499. https://doi.org/10.1038/icb.2014.110

    Article  CAS  PubMed  Google Scholar 

  98. Gu-Trantien C et al (2017) CXCL13-producing TFH cells link immune suppression and adaptive memory in human breast cancer. JCI Insight 2. https://doi.org/10.1172/jci.insight.91487

  99. Gu-Trantien C et al (2013) CD4(+) follicular helper T cell infiltration predicts breast cancer survival. J Clin Invest 123:2873–2892. https://doi.org/10.1172/JCI67428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Schmidt M et al (2018) Prognostic impact of CD4-positive T cell subsets in early breast cancer: a study based on the FinHer trial patient population. Breast Cancer Res 20:15. https://doi.org/10.1186/s13058-018-0942-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Heimes AS et al (2017) Subtype-specific prognostic impact of different immune signatures in node-negative breast cancer. Breast Cancer Res Treat 165:293–300. https://doi.org/10.1007/s10549-017-4327-0

    Article  CAS  PubMed  Google Scholar 

  102. Criscitiello C et al (2018) A gene signature to predict high tumor-infiltrating lymphocytes after neoadjuvant chemotherapy and outcome in patients with triple-negative breast cancer. Ann Oncol 29:162–169. https://doi.org/10.1093/annonc/mdx691

    Article  CAS  PubMed  Google Scholar 

  103. Yau C et al (2010) A multigene predictor of metastatic outcome in early stage hormone receptor-negative and triple-negative breast cancer. Breast Cancer Res 12:R85. https://doi.org/10.1186/bcr2753

    Article  PubMed  PubMed Central  Google Scholar 

  104. Singh S et al (2009) Serum CXCL13 positively correlates with prostatic disease, prostate-specific antigen and mediates prostate cancer cell invasion, integrin clustering and cell adhesion. Cancer Lett 283:29–35. https://doi.org/10.1016/j.canlet.2009.03.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. El-Haibi CP, Singh R, Sharma PK, Singh S, Lillard JW Jr (2011) CXCL13 mediates prostate cancer cell proliferation through JNK signalling and invasion through ERK activation. Cell Prolif 44:311–319. https://doi.org/10.1111/j.1365-2184.2011.00757.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Singh S et al (2009) Clinical and biological significance of CXCR5 expressed by prostate cancer specimens and cell lines. Int J Cancer 125:2288–2295. https://doi.org/10.1002/ijc.24574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yang L et al (2015) The differential expression and function of the inflammatory chemokine receptor CXCR5 in benign prostatic hyperplasia and prostate cancer. Int J Med Sci 12:853–861. https://doi.org/10.7150/ijms.11713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ammirante M, Shalapour S, Kang Y, Jamieson CA, Karin M (2014) Tissue injury and hypoxia promote malignant progression of prostate cancer by inducing CXCL13 expression in tumor myofibroblasts. Proc Natl Acad Sci U S A 111:14776–14781. https://doi.org/10.1073/pnas.1416498111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ammirante M, Luo JL, Grivennikov S, Nedospasov S, Karin M (2010) B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature 464:302–305. https://doi.org/10.1038/nature08782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Meijer J, Zeelenberg IS, Sipos B, Roos E (2006) The CXCR5 chemokine receptor is expressed by carcinoma cells and promotes growth of colon carcinoma in the liver. Cancer Res 66:9576–9582. https://doi.org/10.1158/0008-5472.CAN-06-1507

    Article  CAS  PubMed  Google Scholar 

  111. Qi XW et al (2014) Expression features of CXCR5 and its ligand, CXCL13 associated with poor prognosis of advanced colorectal cancer. Eur Rev Med Pharmacol Sci 18:1916–1924

    PubMed  Google Scholar 

  112. Li C et al (2015) The effect of C-X-C motif chemokine 13 on hepatocellular carcinoma associates with Wnt signaling. Biomed Res Int 2015:345413. https://doi.org/10.1155/2015/345413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Meng X et al (2018) Distribution of circulating follicular helper T cells and expression of interleukin-21 and chemokine C-X-C ligand 13 in gastric cancer. Oncol Lett 16:3917–3922. https://doi.org/10.3892/ol.2018.9112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wei Y et al (2018) CXCL13 expression is prognostic and predictive for postoperative adjuvant chemotherapy benefit in patients with gastric cancer. Cancer Immunol Immunother 67:261–269. https://doi.org/10.1007/s00262-017-2083-y

    Article  CAS  PubMed  Google Scholar 

  115. Wharry CE, Haines KM, Carroll RG, May MJ (2009) Constitutive non-canonical NFkappaB signaling in pancreatic cancer cells. Cancer Biol Ther 8:1567–1576. https://doi.org/10.4161/cbt.8.16.8961

    Article  CAS  PubMed  Google Scholar 

  116. Yan Q et al (2015) The expression and significance of CXCR5 and MMP-13 in colorectal cancer. Cell Biochem Biophys 73:253–259. https://doi.org/10.1007/s12013-015-0624-6

    Article  CAS  PubMed  Google Scholar 

  117. Zhu Z et al (2015) CXCL13-CXCR5 axis promotes the growth and invasion of colon cancer cells via PI3K/AKT pathway. Mol Cell Biochem 400:287–295. https://doi.org/10.1007/s11010-014-2285-y

    Article  CAS  PubMed  Google Scholar 

  118. Wei Y et al (2017) CXCL13 expression is prognostic and predictive for postoperative adjuvant chemotherapy benefit in patients with gastric cancer. Cancer Immunol Immunother. https://doi.org/10.1007/s00262-017-2083-y

  119. Zheng Z et al (2018) CXCL13/CXCR5 Axis predicts poor prognosis and promotes progression through PI3K/AKT/mTOR pathway in clear cell renal cell carcinoma. Front Oncol 8:682. https://doi.org/10.3389/fonc.2018.00682

    Article  PubMed  Google Scholar 

  120. Ziober AF et al (2006) Identification of a gene signature for rapid screening of oral squamous cell carcinoma. Clin Cancer Res 12:5960–5971. https://doi.org/10.1158/1078-0432.CCR-06-0535

    Article  CAS  PubMed  Google Scholar 

  121. Sambandam Y et al (2013) CXCL13 activation of c-Myc induces RANK ligand expression in stromal/preosteoblast cells in the oral squamous cell carcinoma tumor-bone microenvironment. Oncogene 32:97–105. https://doi.org/10.1038/onc.2012.24

    Article  CAS  PubMed  Google Scholar 

  122. Pandruvada SN et al (2010) Role of CXC chemokine ligand 13 in oral squamous cell carcinoma associated osteolysis in athymic mice. Int J Cancer 126:2319–2329. https://doi.org/10.1002/ijc.24920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yuvaraj S et al (2009) A novel function of CXCL13 to stimulate RANK ligand expression in oral squamous cell carcinoma cells. Mol Cancer Res 7:1399–1407. https://doi.org/10.1158/1541-7786.MCR-08-0589

    Article  CAS  PubMed  Google Scholar 

  124. Brufsky A (2010) Trastuzumab-based therapy for patients with HER2-positive breast cancer: from early scientific development to foundation of care. Am J Clin Oncol 33:186–195

    Article  CAS  PubMed  Google Scholar 

  125. Garrett CR, Eng C (2011) Cetuximab in the treatment of patients with colorectal cancer. Expert Opin Biol Ther 11:937–949

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

M.H. is supported by CAS-TWAS President’s Fellowship for international PhD students.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinsong Liu or Guang-Biao Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hussain, M., Liu, J., Wang, GZ., Zhou, GB. (2021). CXCL13 Signaling in the Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1302. Springer, Cham. https://doi.org/10.1007/978-3-030-62658-7_6

Download citation

Publish with us

Policies and ethics