Skip to main content

Design and Analysis of RNA Sequencing Data

  • Chapter
  • First Online:
Book cover Next Generation Sequencing and Data Analysis

Part of the book series: Learning Materials in Biosciences ((LMB))

What you will learn

In this chapter, we introduce the concept of RNA-Seq analyses. First, we start to provide an overview of a typical RNA-Seq experiment that includes extraction of sample RNA, enrichment, and cDNA library preparation. Next, we review tools for quality control and data pre-processing followed by a standard workflow to perform RNA-Seq analyses. For this purpose, we discuss two common RNA-Seq strategies, that is a reference-based alignment and a de novo assembly approach. We learn how to do basic downstream analyses of RNA-Seq data, including quantification of expressed genes, differential gene expression (DE) between different groups as well as functional gene analysis. Eventually, we provide a best-practice example for a reference-based RNA-Seq analysis from beginning to end, including all necessary tools and steps on GitHub: https://github.com/grimmlab/BookChapter-RNA-Seq-Analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crick F. Central dogma of molecular biology. Nature. 1970;227(5258):561–3.

    Article  CAS  PubMed  Google Scholar 

  2. de Smith AJ, Walters RG, Froguel P, Blakemore AI. Human genes involved in copy number variation: mechanisms of origin, functional effects and implications for disease. Cytogenet Genome Res. 2008;123(1-4):17–26.

    Article  PubMed  Google Scholar 

  3. Jonkhout N, Tran J, Smith MA, Schonrock N, Mattick JS, Novoa EM. The RNA modification landscape in human disease. RNA. 2017;23(12):1754–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Martin JA, Wang Z. Next-generation transcriptome assembly. Nat Rev Genet. 2011;12(10):671–82.

    Article  CAS  PubMed  Google Scholar 

  5. Byron SA, Van Keuren-Jensen KR, Engelthaler DM, Carpten JD, Craig DW. Translating RNA sequencing into clinical diagnostics: opportunities and challenges. Nat Rev Genet. 2016;17(5):257–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Becker-Andre M, Hahlbrock K. Absolute mRNA quantification using the polymerase chain reaction (PCR). A novel approach by a PCR aided transcript titration assay (PATTY). Nucleic Acids Res. 1989;17(22):9437–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hoheisel JD. Microarray technology: beyond transcript profiling and genotype analysis. Nat Rev Genet. 2006;7(3):200–10.

    Article  CAS  PubMed  Google Scholar 

  9. Bumgarner R. Overview of DNA microarrays: types, applications, and their future. Curr Protoc Mol Biol. 2013;101:22-1.

    Google Scholar 

  10. Russo G, Zegar C, Giordano A. Advantages and limitations of microarray technology in human cancer. Oncogene. 2003;22(42):6497–507.

    Article  CAS  PubMed  Google Scholar 

  11. Zhao S, Fung-Leung WP, Bittner A, Ngo K, Liu X. Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells. PLoS One. 2014;9(1):e78644.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Schuierer S, Carbone W, Knehr J, Petitjean V, Fernandez A, Sultan M, et al. A comprehensive assessment of RNA-seq protocols for degraded and low-quantity samples. BMC Genomics. 2017;18(1):442.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Holik AZ, Law CW, Liu R, Wang Z, Wang W, Ahn J, et al. RNA-seq mixology: designing realistic control experiments to compare protocols and analysis methods. Nucleic Acids Res. 2017;45(5):e30.

    Article  PubMed  CAS  Google Scholar 

  14. Kukurba KR, Montgomery SB. RNA sequencing and analysis. Cold Spring Harb Protoc. 2015;2015(11):951–69.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Scholes AN, Lewis JA. Comparison of RNA isolation methods on RNA-Seq: implications for differential expression and meta-analyses. BMC Genomics. 2020;21(1):249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ali N, Rampazzo RCP, Costa ADT, Krieger MA. Current nucleic acid extraction methods and their implications to point-of-care diagnostics. Biomed Res Int. 2017;2017:9306564.

    PubMed  PubMed Central  Google Scholar 

  17. Gallego Romero I, Pai AA, Tung J, Gilad Y. RNA-seq: impact of RNA degradation on transcript quantification. BMC Biol. 2014;12:42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Bivens NJ, Zhou M. RNA-Seq library construction methods for transcriptome analysis. Curr Protoc Plant Biol. 2016;1(1):197–215.

    Article  PubMed  Google Scholar 

  19. Wang L, Felts SJ, Van Keulen VP, Pease LR, Zhang Y. Exploring the effect of library preparation on RNA sequencing experiments. Genomics. 2019;111(6):1752–9.

    Article  CAS  PubMed  Google Scholar 

  20. Liu L, Li Y, Li S, Hu N, He Y, Pong R, et al. Comparison of next-generation sequencing systems. J Biomed Biotechnol. 2012;2012:251364.

    PubMed  PubMed Central  Google Scholar 

  21. Kovaka S, Zimin AV, Pertea GM, Razaghi R, Salzberg SL, Pertea M. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol. 2019;20(1):278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hwang B, Lee JH, Bang D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med. 2018;50(8):96.

    Article  PubMed Central  CAS  Google Scholar 

  23. Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics. 2012;13:341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mohorianu I, Bretman A, Smith DT, Fowler EK, Dalmay T, Chapman T. Comparison of alternative approaches for analysing multi-level RNA-seq data. PLoS One. 2017;12(8):e0182694.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Andrews S. FASTQC. A quality control tool for high throughput sequence data. 2010.

    Google Scholar 

  26. Planet E, Attolini CS, Reina O, Flores O, Rossell D. htSeqTools: high-throughput sequencing quality control, processing and visualization in R. Bioinformatics. 2012;28(4):589–90.

    Article  CAS  PubMed  Google Scholar 

  27. Lassmann T, Hayashizaki Y, Daub CO. SAMStat: monitoring biases in next generation sequencing data. Bioinformatics. 2011;27(1):130–1.

    Article  CAS  PubMed  Google Scholar 

  28. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17(1):3.

    Article  Google Scholar 

  29. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Leinonen R, Sugawara H, Shumway M. International nucleotide sequence database C. The sequence read archive. Nucleic Acids Res. 2011;39(Database issue):D19–21.

    Article  CAS  PubMed  Google Scholar 

  31. Armstrong J, Fiddes IT, Diekhans M, Paten B. Whole-genome alignment and comparative annotation. Annu Rev Anim Biosci. 2019;7:41–64.

    Article  CAS  PubMed  Google Scholar 

  32. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016;17:13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Lee RS, Behr MA. Does choice matter? Reference-based alignment for molecular epidemiology of tuberculosis. J Clin Microbiol. 2016;54(7):1891–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sherman RM, Salzberg SL. Pan-genomics in the human genome era. Nat Rev Genet. 2020;21(4):243–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Engstrom PG, Steijger T, Sipos B, Grant GR, Kahles A, Ratsch G, et al. Systematic evaluation of spliced alignment programs for RNA-seq data. Nat Methods. 2013;10(12):1185–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Trapnell C, Salzberg SL. How to map billions of short reads onto genomes. Nat Biotechnol. 2009;27(5):455–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Baruzzo G, Hayer KE, Kim EJ, Di Camillo B, FitzGerald GA, Grant GR. Simulation-based comprehensive benchmarking of RNA-seq aligners. Nat Methods. 2017;14(2):135–9.

    Article  CAS  PubMed  Google Scholar 

  38. Bushnell B, editor. BBMap: a fast, accurate, splice-aware aligner. Berkeley: Lawrence Berkeley National Lab.(LBNL); 2014.

    Google Scholar 

  39. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2012;29(1):15–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Wu TD, Watanabe CK. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics. 2005;21(9):1859–75.

    Article  CAS  PubMed  Google Scholar 

  41. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14(4):R36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Benjamin AM, Nichols M, Burke TW, Ginsburg GS, Lucas JE. Comparing reference-based RNA-Seq mapping methods for non-human primate data. BMC Genomics. 2014;15:570.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zakeri M, Srivastava A, Almodaresi F, Patro R. Improved data-driven likelihood factorizations for transcript abundance estimation. Bioinformatics. 2017;33(14):i142–i51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu DC, Yao J, Ho KS, Lambowitz AM, Wilke CO. Limitations of alignment-free tools in total RNA-seq quantification. BMC Genomics. 2018;19(1):510.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li H, Ruan J, Durbin R. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res. 2008;18(11):1851–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Frankish A, Diekhans M, Ferreira A-M, Johnson R, Jungreis I, Loveland J, et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 2018;47(D1):D766–D73.

    Article  PubMed Central  CAS  Google Scholar 

  48. Schaarschmidt S, Fischer A, Zuther E, Hincha DK. Evaluation of seven different RNA-Seq alignment tools based on experimental data from the model plant Arabidopsis thaliana. Int J Mol Sci. 2020;21(5):1720.

    Article  CAS  PubMed Central  Google Scholar 

  49. Holzer M, Marz M. De novo transcriptome assembly: a comprehensive cross-species comparison of short-read RNA-Seq assemblers. Gigascience. 2019;8(5):giz039.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Moreton J, Izquierdo A, Emes RD. Assembly, assessment, and availability of De novo generated eukaryotic transcriptomes. Front Genet. 2015;6:361.

    PubMed  Google Scholar 

  51. Gopinath GR, Cinar HN, Murphy HR, Durigan M, Almeria M, Tall BD, et al. A hybrid reference-guided de novo assembly approach for generating Cyclospora mitochondrion genomes. Gut Pathog. 2018;10:15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lischer HEL, Shimizu KK. Reference-guided de novo assembly approach improves genome reconstruction for related species. BMC Bioinform. 2017;18(1):474.

    Article  Google Scholar 

  53. Martin J, Bruno VM, Fang Z, Meng X, Blow M, Zhang T, et al. Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads. BMC Genomics. 2010;11:663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD, et al. De novo assembly and analysis of RNA-seq data. Nat Methods. 2010;7(11):909–12.

    Article  CAS  PubMed  Google Scholar 

  55. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Compeau PE, Pevzner PA, Tesler G. How to apply de Bruijn graphs to genome assembly. Nat Biotechnol. 2011;29(11):987–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18(5):821–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schulz MH, Zerbino DR, Vingron M, Birney E. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics. 2012;28(8):1086–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. O’Neil ST, Emrich SJ. Assessing De Novo transcriptome assembly metrics for consistency and utility. BMC Genomics. 2013;14:465.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Moreno-Santillan DD, Machain-Williams C, Hernandez-Montes G, Ortega J. De Novo transcriptome assembly and functional annotation in five species of bats. Sci Rep. 2019;9(1):6222.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Evangelistella C, Valentini A, Ludovisi R, Firrincieli A, Fabbrini F, Scalabrin S, et al. De novo assembly, functional annotation, and analysis of the giant reed (Arundo donax L.) leaf transcriptome provide tools for the development of a biofuel feedstock. Biotechnol Biofuels. 2017;10:138.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. UniProt C. The universal protein resource (UniProt). Nucleic Acids Res. 2008;36(Database issue):D190–5.

    Google Scholar 

  63. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. Pfam: the protein families database. Nucleic Acids Res. 2014;42(Database issue):D222–30.

    Article  CAS  PubMed  Google Scholar 

  64. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35(9):3100–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Almagro Armenteros JJ, Tsirigos KD, Sonderby CK, Petersen TN, Winther O, Brunak S, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019;37(4):420–3.

    Article  CAS  PubMed  Google Scholar 

  66. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21(18):3674–6.

    Article  CAS  PubMed  Google Scholar 

  67. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Barnett DW, Garrison EK, Quinlan AR, Stromberg MP, Marth GT. BamTools: a C++ API and toolkit for analyzing and managing BAM files. Bioinformatics. 2011;27(12):1691–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. Sambamba: fast processing of NGS alignment formats. Bioinformatics. 2015;31(12):2032–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tischler G, Leonard S. biobambam: tools for read pair collation based algorithms on BAM files. Source Code Biol Med. 2014;9(1):13.

    Article  PubMed Central  Google Scholar 

  72. Wang L, Wang S, Li W. RSeQC: quality control of RNA-seq experiments. Bioinformatics. 2012;28(16):2184–5.

    Article  CAS  PubMed  Google Scholar 

  73. Buels R, Yao E, Diesh CM, Hayes RD, Munoz-Torres M, Helt G, et al. JBrowse: a dynamic web platform for genome visualization and analysis. Genome Biol. 2016;17:66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29(1):24–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The human genome browser at UCSC. Genome Res. 2002;12(6):996–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kallio MA, Tuimala JT, Hupponen T, Klemela P, Gentile M, Scheinin I, et al. Chipster: user-friendly analysis software for microarray and other high-throughput data. BMC Genomics. 2011;12:507.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Jin H, Wan YW, Liu Z. Comprehensive evaluation of RNA-seq quantification methods for linearity. BMC Bioinform. 2017;18(Suppl 4):117.

    Article  CAS  Google Scholar 

  78. Teng M, Love MI, Davis CA, Djebali S, Dobin A, Graveley BR, et al. A benchmark for RNA-seq quantification pipelines. Genome Biol. 2016;17:74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–9.

    Article  CAS  PubMed  Google Scholar 

  80. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Roberts A, Pachter L. Streaming fragment assignment for real-time analysis of sequencing experiments. Nat Methods. 2013;10(1):71–3.

    Article  CAS  PubMed  Google Scholar 

  83. Anders S, Reyes A, Huber W. Detecting differential usage of exons from RNA-seq data. Genome Res. 2012;22(10):2008–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang T, Li B, Nelson CE, Nabavi S. Comparative analysis of differential gene expression analysis tools for single-cell RNA sequencing data. BMC Bioinform. 2019;20(1):40.

    Article  Google Scholar 

  85. Lamarre S, Frasse P, Zouine M, Labourdette D, Sainderichin E, Hu G, et al. Optimization of an RNA-Seq differential gene expression analysis depending on biological replicate number and library size. Front Plant Sci. 2018;9:108.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016;17:13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Gonzalez E, Joly S. Impact of RNA-seq attributes on false positive rates in differential expression analysis of de novo assembled transcriptomes. BMC Res Notes. 2013;6:503.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Mandelboum S, Manber Z, Elroy-Stein O, Elkon R. Recurrent functional misinterpretation of RNA-seq data caused by sample-specific gene length bias. PLoS Biol. 2019;17(11):e3000481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Li X, Cooper NGF, O’Toole TE, Rouchka EC. Choice of library size normalization and statistical methods for differential gene expression analysis in balanced two-group comparisons for RNA-seq studies. BMC Genomics. 2020;21(1):75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bullard JH, Purdom E, Hansen KD, Dudoit S. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinform. 2010;11:94.

    Article  CAS  Google Scholar 

  92. Evans C, Hardin J, Stoebel DM. Selecting between-sample RNA-Seq normalization methods from the perspective of their assumptions. Brief Bioinform. 2018;19(5):776–92.

    Article  CAS  PubMed  Google Scholar 

  93. Li P, Piao Y, Shon HS, Ryu KH. Comparing the normalization methods for the differential analysis of Illumina high-throughput RNA-Seq data. BMC Bioinform. 2015;16:347.

    Article  CAS  Google Scholar 

  94. Costa-Silva J, Domingues D, Lopes FM. RNA-Seq differential expression analysis: an extended review and a software tool. PLoS One. 2017;12(12):e0190152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Soneson C, Delorenzi M. A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinform. 2013;14:91.

    Article  Google Scholar 

  96. Zhou Y, Zhu J, Tong T, Wang J, Lin B, Zhang J. A statistical normalization method and differential expression analysis for RNA-seq data between different species. BMC Bioinform. 2019;20(1):163.

    Article  Google Scholar 

  97. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.

    Article  CAS  PubMed  Google Scholar 

  99. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Huang Y, Pan J, Chen D, Zheng J, Qiu F, Li F, et al. Identification and functional analysis of differentially expressed genes in poorly differentiated hepatocellular carcinoma using RNA-seq. Oncotarget. 2017;8(22):35973–83.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Martin D, Brun C, Remy E, Mouren P, Thieffry D, Jacq B. GOToolBox: functional analysis of gene datasets based on Gene ontology. Genome Biol. 2004;5(12):R101.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Boyle EI, Weng S, Gollub J, Jin H, Botstein D, Cherry JM, et al. GO::TermFinder--open source software for accessing gene ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics. 2004;20(18):3710–5.

    Article  CAS  PubMed  Google Scholar 

  103. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Philipp Torkler (Senior Bioinformatics Scientist, Exosome Diagnostics, a Bio-Techne brand, Munich, Germany) for critically reading this text. We thank for correcting our mistakes and suggesting relevant improvements to the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik G. Grimm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bharti, R., Grimm, D.G. (2021). Design and Analysis of RNA Sequencing Data. In: Kappelmann-Fenzl, M. (eds) Next Generation Sequencing and Data Analysis. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-030-62490-3_11

Download citation

Publish with us

Policies and ethics