Skip to main content

Cremona Transformations of Weighted Projective Planes, Zariski Pairs, and Rational Cuspidal Curves

  • Conference paper
  • First Online:
Singularities and Their Interaction with Geometry and Low Dimensional Topology

Abstract

In this work, we study a family of Cremona transformations of weighted projective planes which generalize the standard Cremona transformation of the projective plane. Starting from special plane projective curves we construct families of curves in weighted projective planes with special properties. We explain how to compute the fundamental groups of their complements, using the blow-up-down decompositions of the Cremona transformations, we find examples of Zariski pairs in weighted projective planes (distinguished by the Alexander polynomial). As another application of this machinery we study a family of singularities called weighted Lê–Yomdin, which provide infinitely many examples of surface singularities with a rational homology sphere link. To end this paper we also study a family of surface singularities generalizing Brieskorn–Pham singularities in a different direction. This family contains infinitely many examples of integral homology sphere links, answering a question by Némethi.

To András Némethi, source of inspiration in singularity theory

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Artal, E.: Forme de Jordan de la monodromie des singularités superisolées de surfaces. Mem. Am. Math. Soc. 109(525), x+ 84 (1994)

    Google Scholar 

  2. Artal, E.: Sur les couples de Zariski. J. Algebraic Geom. 3(2), 223–247 (1994)

    MathSciNet  MATH  Google Scholar 

  3. Artal, E., Carmona, J.: Zariski pairs, fundamental groups and Alexander polynomials. J. Math. Soc. Jpn 50(3), 521–543 (1998)

    MathSciNet  MATH  Google Scholar 

  4. Artal, E., Cogolludo-Agustín, J.I., Martín-Morales, J.: Cyclic branched coverings of surfaces with abelian quotient singularities. Indiana U. Math. J. (2019). arXiv:1912.08670 [math.AG]

    Google Scholar 

  5. Artal, E., Cogolludo-Agustín, J.I., Matei, D.: Orbifold groups, quasi-projectivity and covers. J. Singul. 5, 33–47 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Artal, E., Cogolludo-Agustín, J.I., Ortigas-Galindo, J.: Kummer covers and braid monodromy. J. Inst. Math. Jussieu 13(3), 633–670 (2014)

    Article  MathSciNet  Google Scholar 

  7. Artal, E., Fernández de Bobadilla, J., Luengo, I., Melle, A.: Milnor number of weighted-Lê-Yomdin singularities. Int. Math. Res. Not. IMRN 2010(22), 4301–4318 (2010)

    Google Scholar 

  8. Artal, E., Martín-Morales, J., Ortigas-Galindo, J.: Intersection theory on abelian-quotient V -surfaces and Q-resolutions. J. Singul. 8, 11–30 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Blasco-García, R., Cogolludo-Agustín, J.I.: Quasi-projectivity of even Artin groups. Geom. Topol. 22(7), 3979–4011 (2018)

    Article  MathSciNet  Google Scholar 

  10. Borodzik, M., Livingston, C.: Heegaard Floer homology and rational cuspidal curves. Forum Math. Sigma 2, e28, 23 (2014)

    Google Scholar 

  11. Cogolludo-Agustín, J.I.: Fundamental group for some cuspidal curves. Bull. Lond. Math. Soc. 31(2), 136–142 (1999)

    Article  MathSciNet  Google Scholar 

  12. Dolgachev, I.: Weighted projective varieties. In: Group actions and vector fields (Vancouver, B.C., 1981). Lecture Notes in Mathematics, vol. 956, pp. 34–71. Springer, Berlin (1982)

    Google Scholar 

  13. Esnault, H.: Fibre de Milnor d’un cône sur une courbe plane singulière. Invent. Math. 68(3), 477–496 (1982)

    Article  MathSciNet  Google Scholar 

  14. Esnault, H., Viehweg, E.: Revêtements cycliques. In: Algebraic threefolds (Varenna, 1981). Lecture Notes in Mathematics, vol. 947, pp. 241–250. Springer, Berlin-New York (1982)

    Google Scholar 

  15. Fernández de Bobadilla, J., Luengo, I., Melle, A., Némethi, A.: On rational cuspidal projective plane curves. Proc. Lond. Math. Soc. (3) 92(1), 99–138 (2006)

    Google Scholar 

  16. Flenner, H., Zaı̆denberg, M.G.: On a class of rational cuspidal plane curves. Manuscripta Math. 89(4), 439–459 (1996)

    Google Scholar 

  17. Fujita, T.: On the topology of noncomplete algebraic surfaces. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29(3), 503–566 (1982)

    MathSciNet  MATH  Google Scholar 

  18. Fulton, W.: Intersection theory, 2nd ed.. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 2, Springer, Berlin (1998)

    Google Scholar 

  19. Koras, M., Palka, K.: The Coolidge-Nagata conjecture. Duke Math. J. 166(16), 3085–3145 (2017)

    Article  MathSciNet  Google Scholar 

  20. Koras, M., Palka, K.: Complex planar curves homeomorphic to a line have at most four singular points (2019). Preprint arXiv:1905.11376 [math.AG]

    Google Scholar 

  21. Libgober, A.: Alexander polynomial of plane algebraic curves and cyclic multiple planes. Duke Math. J. 49(4), 833–851 (1982)

    Article  MathSciNet  Google Scholar 

  22. Libgober, A.: Characteristic varieties of algebraic curves. In: Applications of Algebraic Geometry to Coding Theory, Physics and Computation (Eilat, 2001), pp. 215–254. Kluwer, Dordrecht (2001)

    Google Scholar 

  23. Loeser, F., Vaquié, M.: Le polynôme d’Alexander d’une courbe plane projective. Topology 29(2), 163–173 (1990)

    Article  MathSciNet  Google Scholar 

  24. Luengo, I.: The μ-constant stratum is not smooth. Invent. Math. 90(1), 139–152 (1987)

    Article  MathSciNet  Google Scholar 

  25. Luengo, I., Melle, A., Némethi, A.: Links and analytic invariants of superisolated singularities. J. Algebraic Geom. 14(3), 543–565 (2005)

    Article  MathSciNet  Google Scholar 

  26. Martín-Morales, J.: Semistable reduction of a normal crossing \(\mathbb {Q}\)-divisor. Ann. Mat. Pura Appl. (4) 195(5), 1749–1769 (2016)

    Google Scholar 

  27. Martín-Morales, J., Veys, W., Vos, L.: The monodromy conjecture for a space monomial curve with a plane semigroup. Publ. Math. (accepted)

    Google Scholar 

  28. Mumford, D.: The topology of normal singularities of an algebraic surface and a criterion for simplicity. Inst. Hautes Études Sci. Publ. Math. 9, 5–22 (1961)

    Article  MathSciNet  Google Scholar 

  29. Neumann, W.D., Wahl, J.: Complex surface singularities with integral homology sphere links. Geom. Topol. 9, 757–811 (2005)

    Article  MathSciNet  Google Scholar 

  30. Project Jupyter, et al.: Binder 2.0—Reproducible, interactive, sharable environments for science at scale. In: Akici, F., Lippa, D., Niederhut, D., Pacer, M (eds.) Proceedings of the 17th Python in Science Conference, pp. 113–120 (2018)

    Google Scholar 

  31. Sabbah, C.: Modules d’Alexander et \(\mathcal D\)-modules. Duke Math. J. 60(3), 729–814 (1990)

    Google Scholar 

  32. Steenbrink, J.H.M.: Mixed Hodge structure on the vanishing cohomology. Real and complex singularities. In: Proceedings of the Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976, pp. 525–563 (1977)

    Google Scholar 

  33. Stein et al., W.A.: Sage Mathematics Software (Version 8.9). The Sage Development Team (2019). http://www.sagemath.org

  34. The GAP Group, GAP—Groups, Algorithms, and Programming, Version 4.10.2 (2019)

    Google Scholar 

  35. Vaquié, M.: Irrégularité des revêtements cycliques des surfaces projectives non singulières. Am. J. Math. 114(6), 1187–1199 (1992)

    Article  MathSciNet  Google Scholar 

  36. Zariski, O.: On the irregularity of cyclic multiple planes. Ann. of Math. (2) 32(3), 485–511 (1931)

    Google Scholar 

Download references

Acknowledgements

We thank the anonymous referee for their valuable suggestions which have helped to improve the manuscript.

Partially supported by MTM2016-76868-C2-2-P and Gobierno de Aragón (Grupo de referencia “Álgebra y Geometría”), E22_17R and E22_20R, cofunded by Feder 2014–2020 “Construyendo Europa desde Aragón”. The third author is also partially supported by FQM-333 “Junta de Andalucía”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Artal Bartolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bartolo, E.A., Cogolludo-Agustín, J.I., Martín-Morales, J. (2021). Cremona Transformations of Weighted Projective Planes, Zariski Pairs, and Rational Cuspidal Curves. In: Fernández de Bobadilla, J., László, T., Stipsicz, A. (eds) Singularities and Their Interaction with Geometry and Low Dimensional Topology . Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-61958-9_7

Download citation

Publish with us

Policies and ethics