Skip to main content

Case Study: Reachability and Scalability in a Unified Combat-Command-and-Control Model

  • Conference paper
  • First Online:
  • 287 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12448))

Abstract

Reachability analysis computes an envelope encompassing the reachable states of a hybrid automaton within a given time horizon. It is known to be a computationally intensive task. In this case study paper, we consider the application of reachability analysis on a mathematical model unifying two key warfighting functions: Combat, and Command-and-Control (C2). Reachability here has a meaning of whether, given a range of initial combat forces and a C2 network and various uncertainties, one side can survive combat with intact forces while the adversary is diminished to zero. These are questions which arise in military Operations Research (OR). This paper is the first to utilize the notions of a hybrid automaton and reachability analysis in the area of OR. We explore the applicability and scalability of Taylor-model based reachability techniques in this domain. Our experiments demonstrate the potential of reachability analysis in the context of OR.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://github.com/kpotomkin/ReachabilityBenchmarks.

References

  1. JuliaReach. https://github.com/JuliaReach (2017)

  2. Acebrón, J.A., Bonilla, L.L., Vicente, C.J.P., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Modern Phys. 77(1), 137 (2005)

    Article  Google Scholar 

  3. Ahern, R., Zuparic, M., Kalloniatis, A., Hoek, K.: Unifying warfighting functions in mathematical modelling: combat, Manoeuvre and C2. Submitted to Journal of the Operational research Society (JORS)

    Google Scholar 

  4. Althoff, M.: Reachability analysis and its application to the safety assessment of autonomous cars. Ph.D. thesis, Technische Universität München (2010)

    Google Scholar 

  5. Althoff, M.: Reachability analysis of nonlinear systems using conservative polynomialization and non-convex sets. In: Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, pp. 173–182. ACM (2013)

    Google Scholar 

  6. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an algorithmic approach to the specification and verification of hybrid systems. In: Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991-1992. LNCS, vol. 736, pp. 209–229. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57318-6_30

    Chapter  Google Scholar 

  7. Bak, S., Bogomolov, S., Henzinger, T.A., Johnson, T.T., Prakash, P.: Scalable static hybridization methods for analysis of nonlinear systems. In: 19th International Conference on Hybrid Systems: Computation and Control (HSCC 2016), pp. 155–164. ACM

    Google Scholar 

  8. Bansal, S., Chen, M., Herbert, S., Tomlin, C.J.: Hamilton-Jacobi reachability: a brief overview and recent advances. In: IEEE 56th Annual Conference on Decision and Control (CDC), pp. 2242–2253. IEEE (2017)

    Google Scholar 

  9. Benet, L., Sanders, D.: TaylorSeries.jl: Taylor expansions in one and several variables in Julia. J. Open Source Softw. 4, 1043 (2019)

    Article  Google Scholar 

  10. Benet, L., Sanders, D.P.: JuliaDiff/TaylorSeries.jl, March 2019. https://doi.org/10.5281/zenodo.2601942

  11. Benet, L., Sanders, D.P.: JuliaIntervals/TaylorModels.jl, March 2019. https://doi.org/10.5281/zenodo.2613103

  12. Berz, M., Makino, K.: Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models. Reliable Comput. 4(4), 361–369 (1998). https://doi.org/10.1023/A:1024467732637

    Article  MathSciNet  MATH  Google Scholar 

  13. Bogomolov, S., et al.: Guided search for hybrid systems based on coarse-grained space abstractions. Int. J. Softw. Tools Tech. Trans. 18(4), 449–467 (2015). https://doi.org/10.1007/s10009-015-0393-y

    Article  MathSciNet  Google Scholar 

  14. Bogomolov, S., Forets, M., Frehse, G., Potomkin, K., Schilling, C.: JuliaReach: a toolbox for set-based reachability. In: 22nd ACM International Conference on Hybrid Systems: Computation and Control (HSCC 2019), pp. 39–44. ACM (2019)

    Google Scholar 

  15. Bogomolov, S., Mitrohin, C., Podelski, A.: Composing reachability analyses of hybrid systems for safety and stability. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 67–81. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15643-4_7

    Chapter  MATH  Google Scholar 

  16. Bronski, J., deVille, L., Park, M.J.: Fully synchronous solutions and the synchronization phase transition for the finite-N Kuramoto model. Chaos 22(3), 033133 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bünger, F.: Shrink wrapping for Taylor models revisited. Numer. Algorithms 78(4), 1001–1017 (2017). https://doi.org/10.1007/s11075-017-0410-1

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, X., Abraham, E., Sankaranarayanan, S.: Taylor model flowpipe construction for non-linear hybrid systems. In: IEEE 33rd Real-Time Systems Symposium, pp. 183–192. IEEE (2012)

    Google Scholar 

  19. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_18

    Chapter  Google Scholar 

  20. Chen, X., Sankaranarayanan, S.: Decomposed reachability analysis for nonlinear systems. In: IEEE Real-Time Systems Symposium (RTSS), pp. 13–24. IEEE (2016)

    Google Scholar 

  21. Dekker, A., Taylor, R.: Synchronization properties of trees in the Kuramoto model. SIAM J. Appl. Dyn. Sys. 12(2), 596–617 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. D’silva, V., Kroening, D., Weissenbacher, G.: A survey of automated techniques for formal software verification. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(7), 1165–1178 (2008)

    Article  Google Scholar 

  23. da Fonseca, J., Abud, C.: The Kuramoto model revisited. J. Stat. Mech: Theory Exp. 2018(10), 103204 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_30

    Chapter  Google Scholar 

  25. Girard, A., Guernic, C.L.: Efficient reachability analysis for linear systems using support functions. IFAC Proc. Vol. 41, 8966–8971 (2008)

    Article  Google Scholar 

  26. Gomez-Gardenes, J., Moreno, Y., Arenas, A.: Synchronizability determined by coupling strengths and topology on complex networks. Phys. Rev. E 75, 066106 (2007)

    Article  MathSciNet  Google Scholar 

  27. Gupta, A.: Formal hardware verification methods: a survey. Form Method Syst. Des. 1, 151–238 (1992). In: Computer-Aided Verification. pp. 5–92. Springer

    Article  Google Scholar 

  28. Hasík, J.: Beyond the briefing: theoretical and practical problems in the works and legacy of John Boyd. Contemp. Secur. Policy 34(3), 583–599 (2013)

    Article  Google Scholar 

  29. Hong, H., Choi, M.Y., Kim, B.J.: Synchronization on small-world networks. Phys. Rev. E 65(2), 026139 (2002)

    Article  Google Scholar 

  30. Ichinomiya, T.: Frequency synchronization in a random oscillator network. Phys. Rev. E 70(2), 026116 (2004)

    Article  Google Scholar 

  31. Immler, F., et al.: ARCH-COMP19 category report: Continuous and hybrid systems with nonlinear dynamics. In: ARCH19. 6th International Workshop on Applied Verification of Continuous and Hybrid Systemsi, part of CPS-IoT Week 2019, Montreal, QC, Canada, pp. 41–61 (2019)

    Google Scholar 

  32. Immler, F., et al.: ARCH-COMP19 category report: continuous and hybrid systems with nonlinear dynamics. EPiC Ser. Comput. 61, 41–61 (2019)

    Article  Google Scholar 

  33. Joldes, M.M.: Rigorous polynomial approximations and applications. Ph.D. thesis (2011)

    Google Scholar 

  34. Kalloniatis, A., Hoek, K., Zuparic, M.: Network synchronisation and next generation combat models - a dynamical systems approach. In: 86th Military Operations Research Society Symposium (2018)

    Google Scholar 

  35. Kalloniatis, A., McLennan-Smith, T., Roberts, D.: Modelling distributed decision-making in command and control using stochastic network synchronisation. Eur. J. Oper. Res. (2020). https://doi.org/10.1016/j.ejor.2019.12.033

    Article  MATH  Google Scholar 

  36. Kuramoto, Y.: International Symposium on Mathematical Problems in Theoretical Physics. Lecture Notes in Physics, p. 420. Springer, Heidelberg (1975). https://doi.org/10.1007/BFb0013294

    Book  Google Scholar 

  37. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Courier Corporation (2003)

    Google Scholar 

  38. Lanchester, F.W.: Aircraft in Warfare: The Dawn of the Fourth Arm. Constable limited (1916)

    Google Scholar 

  39. Leavitt, H.J.: Some effects of certain communication patterns on group performance. J. Abnorm. Soc. Psychol. 46(1), 38–50 (1951)

    Article  Google Scholar 

  40. Makino, K., Berz, M.: Taylor models and other validated functional inclusion methods. Int. J. Pure Appl. Math. 6, 239–316 (2003)

    MathSciNet  MATH  Google Scholar 

  41. Meyer, P.J., Devonport, A., Arcak, M.: Tira: toolbox for interval reachability analysis. In: Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control, pp. 224–229. ACM (2019)

    Google Scholar 

  42. Mitchell, I.M.: Comparing forward and backward reachability as tools for safety analysis. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 428–443. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71493-4_34

    Chapter  Google Scholar 

  43. Morse, P., Kimball, G.: Methods of Operations Research. Massachusetts Institute of Technology (1951)

    Google Scholar 

  44. Nedialkov, N.S.: Interval tools for ODEs and DAEs. In: 12th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN 2006), p. 4. IEEE (2006)

    Google Scholar 

  45. Osinga, F.: “Getting” a discourse on winning and losing: a primer on Boyd’s “theory of intellectual evolution”. Contemp. Secur. Policy 34(3), 603–624 (2013)

    Article  Google Scholar 

  46. Pérez-Hernández, J.A., Benet, L.: Perezhz/taylorintegration.jl, February 2019. https://doi.org/10.5281/zenodo.2562353

  47. Ray, R., Gurung, A., Das, B., Bartocci, E., Bogomolov, S., Grosu, R.: XSpeed: accelerating reachability analysis on multi-core processors. In: Piterman, N. (ed.) HVC 2015. LNCS, vol. 9434, pp. 3–18. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26287-1_1

    Chapter  Google Scholar 

  48. Rogge, J.A., Aeyals, D.: Stability of phase locking in a ring of unidirectionally coupled oscillators. SIAM J. Appl. Dyn. Syst. 37, 11135–11148 (2004)

    MathSciNet  MATH  Google Scholar 

  49. Rwth, X.C., Sankaranarayanan, S., Ábrahám, E.: Under-approximate flowpipes for non-linear continuous systems. In: Formal Methods in Computer-Aided Design (FMCAD), pp. 59–66. IEEE (2014)

    Google Scholar 

  50. Tam, J.H.: Application of Lanchester combat model in the Ardennes campaign. Nat. Resour. Model. 11(2), 95–116 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Acknowlegements

The authors would like to thank Alexander C. Kalloniatis from Joint and Operations Analysis Division, Defence Science and Technology Group for many productive discussions.

This research was collaboration between the Commonwealth of Australia represented by the Defence Science and Technology Group and Australian National University, where this work was initiated, through a Defence Science Partnerships agreement. The research was conducted under the auspices of the Modelling Complex Warfighting initiative and was supported in part by the Air Force Office of Scientific Research under award number FA2386-17-1-4065. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the United States Air Force.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostiantyn Potomkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bogomolov, S., Forets, M., Potomkin, K. (2020). Case Study: Reachability and Scalability in a Unified Combat-Command-and-Control Model. In: Schmitz, S., Potapov, I. (eds) Reachability Problems. RP 2020. Lecture Notes in Computer Science(), vol 12448. Springer, Cham. https://doi.org/10.1007/978-3-030-61739-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61739-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61738-7

  • Online ISBN: 978-3-030-61739-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics