Skip to main content

Stream Microbial Ecology

  • Chapter
  • First Online:
Stream Ecology

Abstract

Microbes include heterotrophs, especially bacteria and fungi that obtain energy from detrital material as well as from organic compounds in the surrounding water, and some autotrophs. They occur on virtually all surfaces in streams as biofilms that include bacteria, fungi, algae, protists, detrital particles, various exudates, exoenzymes, and metabolic products in an organic microlayer. Biofilms are important sites of organic matter processing and nutrient cycling. Organic molecules exuded by actively growing algae can be used by microbes, while microbial decomposition of non-living organic matter releases inorganic compounds beneficial to algal production. Microbial production forms the base of many stream food webs, and the flow of carbon and elements through microbial communities and into higher trophic levels involves complex linkages. Fungi and bacteria aid in the breakdown of organic matter such as autumn-shed leaves, making this energy source accessible to higher trophic levels. The microbial tissue in biofilms is available to a wide range of micro-consumers, including protozoans and small metazoans termed meiofauna. Still relatively under-studied, a food web involving meiofauna exists within biofilms and in plankton assemblages, possibly serving as a link to higher trophic levels, and possibly dissipating most of the energy available within a “microbial loop”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Admiraal W, Breebaart L, Tubbing G et al (1994) Seasonal variation in composition and production of planktonic communities in the lower River Rhine. Freshw Biol 32:519–531

    Article  Google Scholar 

  • Ann V, Freixa A, Butturini A, Romani AM (2019) Interplay between sediment properties and stream flow conditions influences surface sediment organic matter and microbial biomass in a Mediterranean river. Hydrobiologia 828:199–212

    Article  Google Scholar 

  • Aubeneau A, Hanrahan B, Bolster D et al (2016) Biofilm growth in gravel bed streams controls solute residence time distributions. J Geophys Res Biogeo 121:1840–1850

    Article  Google Scholar 

  • Azam F, Fenchel T, Field J et al (1983) The ecological role of water-column microbes. Mar Ecol Prog Ser 10:257–263

    Article  Google Scholar 

  • Barlöcher F, Murdoch JH (1989) Hyporheic biofilms-a potential food source for interstitial animals. Hydrobiologia 184:61–67

    Article  Google Scholar 

  • Baschien C, Manz W, Neu TR et al (2008) In situ detection of freshwater fungi in an alpine stream by new taxon-specific fluorescence in situ hybridization probes. App Environ Micro 74:6427–6436

    Article  CAS  Google Scholar 

  • Battin TJ, Besemer K, Bengtsson MM, Romani AM, Packmann AI (2016) The ecology and biogeochemistry of stream biofilms. Nat Rev Microbio 14:251

    Article  CAS  Google Scholar 

  • Battin TJ, Kaplan LA, Findlay S et al (2008) Biophysical controls on organic carbon fluxes in fluvial networks. Nat Geosci 1:95–100

    Article  CAS  Google Scholar 

  • Battin TJ, Kaplan LA, Newbold JD et al (2003) Effects of current velocity on the nascent architecture of stream microbial biofilms. App Environ Micro 69:5443–5452

    Article  CAS  Google Scholar 

  • Battin TJ, Kaplan LA, Newbold JD et al (2003) Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature 426:439–442

    Article  CAS  PubMed  Google Scholar 

  • Battin TJ, Sloan WT, Kjelleberg S et al (2007) Microbial landscapes: new paths to biofilm research. Nat Rev Microbio 5:76–81

    Article  CAS  Google Scholar 

  • Battin TJ, Wille A, Psenner R, et al. (2004) Large-scale environmental controls on microbial biofilms in high-alpine streams.Biogeosciences 1:159–171

    Google Scholar 

  • Beaulieu JJ, Tank JL, Hamilton SK et al (2011) Nitrous oxide emission from denitrification in stream and river networks. Proc Natl Acad Sci U S a 108:214–219

    Article  CAS  PubMed  Google Scholar 

  • Benner R, Opsahl S, Chin-Leo G et al (1995) Bacterial carbon metabolism in the Amazon River system. Limnol Oceanogr 40:1262–1270

    Article  Google Scholar 

  • Besemer K (2015) Biodiversity, community structure and function of biofilms in stream ecosystems. Res Microbiol 166:774–781

    Article  PubMed  PubMed Central  Google Scholar 

  • Besemer K (2016) Microbial biodiversity in natural biofilms. In: Romani AM, Guasch H, Balaguer MD (eds) Aquatic Biofilms: Ecology, Water Quality and Wastewater Treatment. Caister Academic Press, Wymondham, pp 63–88

    Google Scholar 

  • Besemer K, Peter H, Logue JB et al (2012) Unraveling assembly of stream biofilm communities. ISME J 6:1459–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Besemer K, Singer G, Limberger R et al (2007) Biophysical controls on community succession in stream biofilms. App Environ Microbio 73:4966–4974

    Article  CAS  Google Scholar 

  • Besemer K, Singer G, Quince C et al (2013) Headwaters are critical reservoirs of microbial diversity for fluvial networks. Proc R Soc B-Biol Sci 280:8

    Google Scholar 

  • Bohme A, Risse-Buhl U, Kusel K (2009) Protists with different feeding modes change biofilm morphology. Fems Microbio Ecol 69:158–169

    Article  CAS  Google Scholar 

  • Borchardt MA, Bott TL (1995) Meiofaunal grazing of bacteria and algae in a piedmont stream. J N Am Benthol Soc 14:278–298

    Article  Google Scholar 

  • Bott TL, Kaplan LA (1990) Potential for protozoan grazing of bacteria in streambed sediments. J N Am Benthol Soc 9:336–345

    Article  Google Scholar 

  • Bott TL, Newbold JD (2013) Ecosystem metabolism and nutrient uptake in Peruvian headwater streams. Int Rev Hydrobiol 98:117–131

    Article  CAS  Google Scholar 

  • Brugger A, Wett B, Kolar I, Reitner B, Herndl GJ (2001) Immobilization and bacterial utilization of dissolved organic carbon entering the riparian zone of the alpine Enns River. Austria Aqua Microb Eco 24:129–142

    Article  Google Scholar 

  • Brunke M, Fischer H (1999) Hyporheic bacteria - relationships to environmental gradients and invertebrates in a prealpine stream. Arch Hydrobiol 146:189–217

    Article  Google Scholar 

  • Buttigieg PL, Ramette A (2014) A guide to statistical analysis in microbial ecology: a community-focused, living review of multivariate data analyses. Fems Microbio Ecol 90:543–550

    Article  CAS  Google Scholar 

  • Cardinale BJ, Palmer MA, Swan CM, Brooks S, Poff NL (2002) The influence of substrate heterogeneity on biofilm metabolism in a stream ecosystem. Ecology 83:412–422

    Article  Google Scholar 

  • Carlough LA, Meyer JL (1991) Bacterivory by sestonic protists in a southeastern blackwater river. Limnol Oceanogr 36:873–883

    Article  Google Scholar 

  • Caruso A, Boano F, Ridolfi L, Chopp DL, Packman A (2017) Biofilm-induced bioclogging produces sharp interfaces in hyporheic flow, redox conditions, and microbial community structure. Geophys Res Lett 44:4917–4925

    Article  Google Scholar 

  • Castillo MM, Allan JD, Sinsabaugh RL et al (2004) Seasonal and interannual variation of bacterial production in lowland rivers of the Orinoco basin. Freshw Biol 49:1400–1414

    Article  Google Scholar 

  • Castillo MM, Kling GW, Allan JD (2003) Bottom-up controls on bacterial production in tropical lowland rivers. Limnol Oceanogr 48:1466–1475

    Article  CAS  Google Scholar 

  • Cole JJ, Caraco NF (2001) Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism. Mar Freshwat Res 52:101–110

    Article  CAS  Google Scholar 

  • Cole JJ, Findlay S, Pace ML (1988) Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar Ecol Prog Ser 43:1–10

    Article  Google Scholar 

  • Collins SM, Sparks JP, Thomas SA et al (2016) Increased light availability reduces the importance of bacterial carbon in headwater stream food webs. Ecosystems 19:396–410

    Article  CAS  Google Scholar 

  • Comte J, Fauteux L, del Giorgio PA (2013) Links between metabolic plasticity and functional redundancy in freshwater bacterioplankton communities. Front in Micro 4:11

    Article  Google Scholar 

  • Costerton JW, Geesey GG, Cheng KJ (1978) How Bacteria Stick. Sci Amer 238:86–95

    CAS  PubMed  Google Scholar 

  • Crocker MT, Meyer JL (1987) Interstitial dissolved organic carbon in sediments of a southern Appalachian headwater stream. J N Am Benthol Soc 6:159–167

    Article  Google Scholar 

  • Dann LM, Smith RJ, Jeffries TC et al (2017) Persistence, loss and appearance of bacteria upstream and downstream of a river system. Mar Freshw Res 68:851–862

    Article  Google Scholar 

  • deMelo ML, Kothawala DN, Bertilsson S et al (2020) Linking dissolved organic matter composition and bacterioplankton communities in an Amazon floodplain system. Limnol Oceanogr 65:63–76

    Article  CAS  Google Scholar 

  • de Oliveira LFV, Margis RJPo, (2015) The source of the river as a nursery for microbial diversity. PLoSO One 10:e0120608

    Article  CAS  Google Scholar 

  • Demars B, Friberg N, Kemp J, et al. (2018) Reciprocal carbon subsidies between autotrophs and bacteria in stream food webs under stoichiometric constraints. bioRxiv:447987

    Google Scholar 

  • Demars BO (2019) Hydrological pulses and burning of dissolved organic carbon by stream respiration. Limnol Oceanogr 64:406–421

    Article  CAS  Google Scholar 

  • Dodds WK, Hutson RE, Eichem AC et al (1996) The relationship of floods, drying, and light to primary production and producer biomass in a prairie stream. Hydrobiologia 333:151–159

    Article  CAS  Google Scholar 

  • Dopheide A, Lear G, He ZL et al (2015) Functional gene composition, diversity and redundancy in microbial stream biofilm communities. PLoS ONE 10:21

    Article  CAS  Google Scholar 

  • dos Reis MC, Bagatini IL, de Oliveira VL et al (2019) Spatial heterogeneity and hydrological fluctuations drive bacterioplankton community composition in an Amazon floodplain system. PLoS ONE 14:e0220695

    Article  CAS  Google Scholar 

  • Edling H, Tranvik LJ (1996) Effects of pH on glucosidase activity and availability of DOC to bacteria in lakes. Arch. Hydrobiol. Spec. Issues Adv. Limnol 48:123–132

    CAS  Google Scholar 

  • Edwards R, Meyer J (1987) Metabolism of a sub-tropical low gradient black water river. Freshw Biol 71:251–263

    Article  Google Scholar 

  • Farjalla VF, Esteves FA, Bozelli RL, Roland FJ (2002) Nutrient limitation of bacterial production in clear water Amazonian ecosystems. Hydrobiologia 489:197–205

    Article  CAS  Google Scholar 

  • Fasching C, Wilson HF, D’Amario SC, Xenopoulos MA (2019) Natural land cover in agricultural catchments alters flood effects on DOM composition and decreases nutrient levels in streams. Ecosystems 22:1530–1545

    Article  CAS  Google Scholar 

  • Fenchel T (2008) The microbial loop–25 years later. J Exp Mar Biol Ecol 366:99–103

    Article  Google Scholar 

  • Fierer N (2008) Microbial biogeography: patterns in microbial diversity across space and time. In: Zengler K (ed) Accessing Uncultivated Microorganisms. American Society of Microbiology, Washington DC, pp 95–115

    Google Scholar 

  • Fierer N, Morse JL, Berthrong ST, Bernhardt ES, Jackson RB (2007) Environmental controls on the landscape-scale biogeography of stream bacterial communities. Ecology 88:2162–2173

    Article  PubMed  Google Scholar 

  • Findlay S (2003) Bacterial response to variation in dissolved organic matter. In: Findlay SEG, Sinsabaugh R (eds) Aquatic Ecosystems. Elsevier, pp 363–379

    Google Scholar 

  • Findlay S (2010) Stream microbial ecology. J N Am Benthol Soc 29:170–181

    Article  Google Scholar 

  • Findlay S (2016) Stream microbial ecology in a changing environment. In: Jones J, Stanely E (eds) Stream Ecosystems in a Changing Environment. Elsevier, Amsterdam, pp 135–150

    Chapter  Google Scholar 

  • Findlay S, Howe K, Fontvielle D (1993) Bacterial-algal relationships in streams of the Hubbard Brook experimental forest. Ecology 74:2326–2336

    Article  Google Scholar 

  • Findlay S, Meyer JL, Risley R (1986) Benthic bacterial biomass and production in two blackwater rivers. Can J Fish 43:1271–1276

    Article  Google Scholar 

  • Findlay S, Pace ML, Lints D et al (1991) Weak coupling of bacterial and algal production in a heterotrophic ecosystem: the Hudson River estuary. Limnol Oceanogr 36:268–278

    Article  Google Scholar 

  • Findlay S, Quinn JM, Hickey CW et al (2001) Effects of land use and riparian flowpath on delivery of dissolved organic carbon to streams. Limnol Oceanogr 46:345–355

    Article  CAS  Google Scholar 

  • Findlay S, Sinsabaugh R (2006) Large-scale variation in subsurface stream biofilms: a cross-regional comparison of metabolic function and community similarity. Microb Ecol 52:491–500

    Article  CAS  PubMed  Google Scholar 

  • Findlay S, Sinsabaugh RL (1999) Unravelling the sources and bioavailability of dissolved organic matter in lotic aquatic ecosystems. Mar Freshw Res 50:781–790

    CAS  Google Scholar 

  • Findlay S, Sinsabaugh RL (2003) Response of hyporheic biofilm metabolism and community structure to nitrogen amendments. Aquat Microb Ecol 33:127–136

    Article  Google Scholar 

  • Findlay S, Sinsabaugh RL, Fischer DT et al (1998) Sources of dissolved organic carbon supporting planktonic bacterial production in the tidal freshwater Hudson River. Ecosystems 1:227–239

    Article  CAS  Google Scholar 

  • Findlay S, Sobczak W (2000) Microbial communities in hyporheic sediments. In: Jones JB, Mullholland PJ (eds) Streams and Ground Waters. Academic Press, San Diego, pp 287–306

    Chapter  Google Scholar 

  • Findlay S, Sobczak WV (1996) Variability in removal of dissolved organic carbon in hyporheic sediments. J N Am Benthol Soc 15:35–41. https://doi.org/10.2307/1467431

    Article  Google Scholar 

  • Findlay S, Tank J, Dye S et al (2002) A cross-system comparison of bacterial and fungal biomass in detritus pools of headwater streams. Microb Ecol 43:55–66

    Article  CAS  PubMed  Google Scholar 

  • Findlay SEG, Arsuffi TL (1989) Microbial-growth and detritus transformations during decomposition of leaf litter in a stream. Freshw Biol 21:261–269

    Article  Google Scholar 

  • Fischer H (2003) The role of biofilms in the uptake and transformation of dissolved organic matter. In: Findlay SEG, Sinsabaugh R (eds) Aquatic Ecosystems. Elsevier, pp 285–313

    Google Scholar 

  • Fischer H, Pusch M (2001) Comparison of bacterial production in sediments, epiphyton and the pelagic zone of a lowland river. Freshw Biol 46:1335–1348

    Article  Google Scholar 

  • Fischer H, Wanner SC, Pusch M (2002) Bacterial abundance and production in river sediments as related to the biochemical composition of particulate organic matter (POM). Biogeochemistry 61:37–55

    Article  CAS  Google Scholar 

  • Fisher SG, Gray LJ, Grimm NB et al (1982) Temporal succession in a desert stream ecosystem following flash flooding. Ecol Monogr 52:93–110

    Article  CAS  Google Scholar 

  • Foreman C, Franchini P, Foreman R (1998) The trophic dynamics of riverine bacterioplankton: relationships among substrate availability, ectoenzyme kinetics, and growth. Limnol Oceanogr 43:1344–1352

    Article  CAS  Google Scholar 

  • Freeman C, Lock MA (1995) The biofilm polysaccharide matrix-a buffer against changing organic substrate supply. Limnol Oceanogr 40:273–278

    Article  CAS  Google Scholar 

  • Freixa A, Ejarque E, Crognale S et al (2016) Sediment microbial communities rely on different dissolved organic matter sources along a Mediterranean river continuum. Limnol Oceanogr 61:1389–1405

    Article  Google Scholar 

  • Gamfeldt L, Hillebrand H, Jonsson PR (2008) Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology 89:1223–1231

    Article  PubMed  Google Scholar 

  • Geesey G, Mutch R, Jt C et al (1978) Sessile bacteria: An important component of the microbial population in small mountain streams. Limnol Oceanogr 23:1214–1223

    Article  CAS  Google Scholar 

  • Gessner MO, Chauvet E (1993) Ergosterol to biomass conversion factors for aquatic hyphyomycetes. App Environ Microbio 59:502–507

    Article  CAS  Google Scholar 

  • Golladay SW, Sinsabaugh RL (1991) Biofilm development on leaf and wood surfaces in a boreal river. Freshw Biol 25:437–450

    Article  CAS  Google Scholar 

  • Graeber D, Poulson JR, Heinz M et al (2018) Going with the flow: Planktonic processing of dissolved organic carbon in streams. Sci Total Environ 625:519–530

    Article  CAS  PubMed  Google Scholar 

  • Grimm NB, Faeth SH, Golubiewski NE et al (2008) Global change and the ecology of cities. Science 319:756–760

    Article  CAS  PubMed  Google Scholar 

  • Guenet B, Danger M, Abbadie L et al (2010) Priming effect: bridging the gap between terrestrial and aquatic ecology. Ecology 91:2850–2861

    Article  PubMed  Google Scholar 

  • Haack TK, McFeters GA (1982) Nutritional relationships among relationships among microorganisms in an epilithing biofilm community. Microb Ecol 8:115–126

    Article  CAS  PubMed  Google Scholar 

  • Hakenkamp CC, Morin A (2000) The importance of meiofauna to lotic ecosystem functioning. Freshw Biol 44:165–175

    Article  Google Scholar 

  • Hall RO, Meyer JL (1998) The trophic significance of bacteria in a detritus-based stream food web. Ecology 79:1995–2012

    Article  Google Scholar 

  • Halvorson HM, Barry JR, Lodato MB et al (2019a) Periphytic algae decouple fungal activity from leaf litter decomposition via negative priming. Funct Ecol 33:188–201

    Google Scholar 

  • Halvorson HM, Francoeur SN, Findlay RH et al (2019b) Algal-mediated priming effects on the ecological stoichiometry of leaf litter decomposition: a meta-analysis. Front Earth Sci 7:76

    Google Scholar 

  • Hassell N, Tinker KA, Moore T, Ottesen EA (2018) Temporal and spatial dynamics in microbial community composition within a temperate stream network. Environ Microb 20:3560–3572

    Article  Google Scholar 

  • Hayer M, Schwartz E, Marks JC et al (2016) Identification of growing bacteria during litter decomposition in freshwater through quantitative stable isotope probing. Environ Microb Rep 8:975–982

    Article  CAS  Google Scholar 

  • Hieber M, Gessner MO (2002) Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology 83:1026–1038

    Article  Google Scholar 

  • Hosen JD, Febria CM, Crump BC et al (2017) Watershed urbanization linked to differences in stream bacterial community composition. Front Microbiol 8:17

    Article  Google Scholar 

  • Hudson JJ, Roff JC, Burnison BK (1992) Bacterial productivity in forested and open streams in southern Ontario. Can J Fish 49:2412–2422

    Article  Google Scholar 

  • Kamjunke N, Herzsprung P, Neu TR (2015) Quality of dissolved organic matter affects planktonic but not biofilm bacterial production in streams. Sci Total Environ 506:353–360

    Article  PubMed  CAS  Google Scholar 

  • Kaplan L, Cory R (2016) Dissolved organic matter in stream ecosystems: forms, functions, and fluxes of watershed tea. In: Jones J, Stanely E (eds) Stream Ecosystems in a Changing Environment. Elsevier, Amsterdam, pp 241–320

    Chapter  Google Scholar 

  • Kaplan LA, Bott TL (1982) Diel fluctuations of DOC generated by algae in a piedmont stream. Limnol Oceanogr 27:1091–1100

    Article  CAS  Google Scholar 

  • Kaplan LA, Bott TL (1989) Diel fluctuations in bacterial activity on streambed substrata during vernal algal blooms: effects of temperature, water chemistry, and habitat. Limnol Oceanogr 34:718–733

    Article  CAS  Google Scholar 

  • Kaplan LA, Wiegner TN, Newbold J et al (2008) Untangling the complex issue of dissolved organic carbon uptake: A stable isotope approach. Freshw Biol 53:855–864

    Article  CAS  Google Scholar 

  • Koch BJ, McHugh TA, Hayer M et al (2018) Estimating taxon-specific population dynamics in diverse microbial communities. Ecosphere 9:e02090

    Article  Google Scholar 

  • Kreutzweiser DP, Capell SS (2003) Benthic microbial utilization of differential dissolved organic matter sources in a forest headwater stream. Can J For Res 33:1444–1451

    Article  Google Scholar 

  • Lancaster J, Robertson A (1995) Microcrustacean prey and macroinvertebrate predators in a stream food web. Freshw Biol 34:123–134

    Article  Google Scholar 

  • Lau MP, Niederdorfer R, Sepulveda-Jauregui A et al (2018) Synthesizing redox biogeochemistry at aquatic interfaces. Limnologica 68:59–70

    Article  CAS  Google Scholar 

  • Lawrence JR, Scharf B, Packroff G et al (2002) Microscale evaluation of the effects of grazing by invertebrates with contrasting feeding modes on river biofilm architecture and composition. Microb Ecol 44:199–207

    Article  CAS  PubMed  Google Scholar 

  • Lear G, Washington V, Neale M et al (2013) The biogeography of stream bacteria. Glob Ecol Biogeogr 22:544–554

    Article  Google Scholar 

  • LeBrun ES, King RS, Back JA et al (2018) Microbial community structure and function decoupling across a phosphorus gradient in streams. Microb Ecol 75:64–73

    Article  CAS  PubMed  Google Scholar 

  • Lock M (1981) River epilithon—a light and organic energy transducer. In: Lock MA, Williams DD (eds) Perspectives in Running Water Ecology. Springer, Berlin, pp 3–40

    Chapter  Google Scholar 

  • Lock M, Wallace R, Costerton J, Ventullo R, Charlton S (1984) River epilithon: toward a structural-functional model. Oikos:10–22

    Google Scholar 

  • Lodge DM, Barker JW, Strayer D et al (1988) Spatial heterogeneity and habitat interactions in lake communities. In: Carpenter SR (ed) Complex Interactions in Lake Communities. Springer, Berlin, pp 181–208

    Chapter  Google Scholar 

  • Mansfeldt C, Deiner K, Mächler E et al (2020) Microbial community shifts in streams receiving treated wastewater effluent. Sci Tot Environ 709:135727

    Article  CAS  Google Scholar 

  • Mao YF, Liu Y, Li H, He Q, Ai HN, Gu WK, Yang GF (2019) Distinct responses of planktonic and sedimentary bacterial communities to anthropogenic activities: case study of a tributary of the Three Gorges Reservoir, China. Sci Total Environ 682:324–332

    Article  CAS  PubMed  Google Scholar 

  • Marks JC (2019) Revisiting the fates of dead leaves that fall into streams. Ann Rev Ecol Evol Syst 50:547–568

    Article  Google Scholar 

  • McCutchan JH, Lewis WM (2002) Relative importance of carbon sources for macroinvertebrates in a Rocky Mountain stream. Limnol Oceanogr 47:742–752

    Article  Google Scholar 

  • Mcnamara CJ, Leff LG (2004) Response of biofilm bacteria to dissolved organic matter from decomposing maple leaves. Microb Ecol 48:324–330

    Article  CAS  PubMed  Google Scholar 

  • Melo LF, Bott TR (1997) Biofouling in water systems. Exp Therm Fluid Sci 14:375–381

    Article  CAS  Google Scholar 

  • Methvin BR, Suberkropp K (2003) Annual production of leaf-decaying fungi in 2 streams. J N Am Benthol Soc 22:554–564

    Article  Google Scholar 

  • Meyer J (1994) The microbial loop in flowing waters. Microb Ecol 28:195–199

    Article  CAS  PubMed  Google Scholar 

  • Meyer JL, Edwards RT, Risley R (1987) Bacterial growith on dissolved organic carbon from a blackwater river. Microb Ecol 13:13–29

    Article  CAS  PubMed  Google Scholar 

  • Miao L, Wang P, Hou J, a. (2019) Distinct community structure and microbial functions of biofilms colonizing microplastics. Sci Tot Environ 650:2395–2402

    Article  CAS  Google Scholar 

  • Milner AM, Khamis K, Battin TJ et al (2017) Glacier shrinkage driving global changes in downstream systems. Proc Nat Acad Sci 114:9770–9778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran MA, Hodson RE (1990) Bacterial production on humic and nonhumic components of dissolved organic carbon. Limnol Oceanogr 35:1744–1756

    Article  CAS  Google Scholar 

  • Mulholland PJ, Helton AM, Poole GC et al (2008) Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature 452:202–246

    Article  CAS  PubMed  Google Scholar 

  • Münster U, Einiö P, Nurminen J et al (1992) Extracellular enzymes in a polyhumic lake: important regulators in detritus processing. Hydrobiologia 229:225–238

    Article  Google Scholar 

  • Niederdorfer R, Besemer K, Battin TJ et al (2017) Ecological strategies and metabolic trade-offs of complex environmental biofilms. NPJ Biofilms and Microbiomes 3:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Niño-García JP, Ruiz-González C, del Giorgio PA (2016) Interactions between hydrology and water chemistry shape bacterioplankton biogeography across boreal freshwater networks. the ISME Journal 10:1755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Brien JM, Warburton HJ, Graham SE et al (2017) Leaf litter additions enhance stream metabolism, denitrification, and restoration prospects for agricultural catchments. Ecosphere 8:e02018

    Article  Google Scholar 

  • Pace NR (2006) Time for a change. Nature 441:289–289

    Article  CAS  PubMed  Google Scholar 

  • Peipoch M, Miller SR, Antao TR, Valett HM (2019) Niche partitioning of microbial communities in riverine floodplains. Sci Rep 9:13

    Article  CAS  Google Scholar 

  • Perlmutter DG, Meyer JL (1991) The impact of a stream-dwelling harpacticoid copepod upon detritally associated bacteria. Ecology 72:2170–2180

    Article  Google Scholar 

  • Peter H, Ylla I, Gudasz C et al (2011) Multifunctionality and diversity in bacterial biofilms. PLoS ONE 6:8

    Article  CAS  Google Scholar 

  • Polz MF, Cordero OX (2016) Genomics of Metabolic Trade-Offs. Nat Microbiol 1:2

    Google Scholar 

  • Pomeroy LR, Williams PJ, Azam F et al (2007) The microbial loop. Oceanography 20:28–33

    Article  Google Scholar 

  • Pomeroy LR, Wiebe WJ (1988) Energetics of microbial food webs. Hydrobiologia 159:7–18

    Article  Google Scholar 

  • Portillo MC, Anderson SP, Fierer N (2012) Temporal variability in the diversity and composition of stream bacterioplankton communities. Environ Microbio 14:2417–2428

    Article  Google Scholar 

  • Pusch M, Fiebig D, Brettar I et al (1998) The role of micro-organisms in the ecological connectivity of running waters. Freshwat Biol 40:453–495

    Article  Google Scholar 

  • Raymond PA, Hartman J, Lauerwald R et al (2013) Global carbon dioxide emissions from inland waters. Nature 503:355

    Article  CAS  PubMed  Google Scholar 

  • Read DS, Gweon HS, Bowes MJ et al (2015) Catchment-scale biogeography of riverine bacterioplankton. the ISME Journal 9:516

    Article  CAS  PubMed  Google Scholar 

  • Rier ST, Kuehn KA, Francoeur SN (2007) Algal regulation of extracellular enzyme activity in stream microbial communities associated with inert substrata and detritus. J N Am Benthol Soc 26:439–449

    Article  Google Scholar 

  • Rier ST, Stevenson RJ (2002) Effects of light, dissolved organic carbon, and inorganic nutrients on the relationship between algae and heterotrophic bacteria in stream periphyton. Hydrobiologia 489:179–184

    Article  CAS  Google Scholar 

  • Risse-Buhl U, Trefzger N, Seifert AG et al (2012) Tracking the autochthonous carbon transfer in stream biofilm food webs. Fems Microbio Ecol 79:118–131

    Article  CAS  Google Scholar 

  • Robertson AL (2000) Lotic meiofaunal community dynamics: colonisation, resilience and persistence in a spatially and temporally heterogeneous environment. Freshwat Biol 44:135–147

    Article  Google Scholar 

  • Roller BRK, Stoddard SF, Schmidt TM (2016) Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. Nat Microbio 1:7

    Google Scholar 

  • Romani A, Guasch H, Munoz I et al (2004) Biofilm structure and function and possible implications for riverine DOC dynamics. Microb Ecol 47:316–328

    Article  CAS  PubMed  Google Scholar 

  • Romani AM, Sabater S (2001) Structure and activity of rock and sand biofilms in a Mediterranean stream. Ecology 82:3232–3245

    Article  Google Scholar 

  • Rosselli R, Romoli O, Vitulo N et al (2016) Direct 16S rRNA-seq from bacterial communities: a PCR-independent approach to simultaneously assess microbial diversity and functional activity potential of each taxon. Sci Rep 6:32165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-González C, Niño-García JP, Lapierre JF et al (2015) The quality of organic matter shapes the functional biogeography of bacterioplankton across boreal freshwater ecosystems. Glob Ecol Biogeogr 24:1487–1498

    Article  Google Scholar 

  • Rundle S, Hildrew A (1992) Small fish and small prey in the food webs of some southern English streams. Archiv Fuer Hydrobiologie 125:25–35

    Article  Google Scholar 

  • Savio D, Sinclair L, Ijaz UZ et al (2015) Bacterial diversity along a 2600 km river continuum. Environ Microbiol 17:4994–5007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid-Araya J, Schmid P (2000) Trophic relationships: integrating meiofauna into a realistic benthic food web. Freshw Biol 44:149–163

    Article  Google Scholar 

  • Schmid-Araya JM, Schmid PE, Tod SP et al (2016) Trophic positioning of meiofauna revealed by stable isotopes and food web analyses. Ecology 97:3099–3109

    Article  PubMed  Google Scholar 

  • Schmid P, Schmid-Araya J (1997) Predation on meiobenthic assemblages: resource use of a tanypod guild (Chironomidae, Diptera) in a gravel stream. Freshw Biol 38:67–91

    Article  Google Scholar 

  • Sgier L, Freimann R, Zupanic A et al (2016) Flow cytometry combined with viSNE for the analysis of microbial biofilms and detection of microplastics. Nat Commun 7:10

    Article  CAS  Google Scholar 

  • Siboni N, Lidor M, Kramarsky-Winter E et al (2007) Conditioning film and initial biofilm formation on ceramics tiles in the marine environment. FEMS Microbiol Lett 274:24–29

    Article  CAS  PubMed  Google Scholar 

  • Simon KS, Simon MA, Benfield EF (2009) Variation in ecosystem function in Appalachian streams along an acidity gradient. Ecol Appl 19:1147–1160

    Article  CAS  PubMed  Google Scholar 

  • Singer G, Besemer K, Schmitt-Kopplin P, Hodl I, Battin TJ (2010) Physical heterogeneity increases biofilm resource use and its molecular diversity in stream mesocosms. PLoS ONE 5:11

    Article  Google Scholar 

  • Sinsabaugh R, Foreman C (2003) Integrating dissolved organic matter metabolism and microbial diversity: an overview of conceptual models. In: Findlay SEG, Sinsabaugh RL (eds) Aquatic Ecosystems. Elsevier, Amsterdam, pp 425–454

    Chapter  Google Scholar 

  • Sinsabaugh RL, Belnap J, Findlay SG et al (2014) Extracellular enzyme kinetics scale with resource availability. Biogeochemistry 121:287–304

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Findlay S, Franchini P et al (1997) Enzymatic analysis of riverine bacterioplankton production. Limnol Oceanogr 42:29–38

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Repert D, Weiland T et al (1991) Exoenzyme accumulation in epilithic biofilms. Hydrobiologia 222:29–37

    Article  CAS  Google Scholar 

  • Sobczak WV (1996) Epilithic bacterial responses to variations in algal biomass and labile dissolved organic carbon during biofilm colonization. J N Am Benthol Soc 15:143–154

    Article  Google Scholar 

  • Sobczak WV, Findlay S (2002) Variation in bioavailability of dissolved organic carbon among stream hyporheic flowpaths. Ecology 83:3194–3209

    Article  Google Scholar 

  • Staley C, Gould TJ, Wang P et al (2015) Species sorting and seasonal dynamics primarily shape bacterial communities in the Upper Mississippi River. Sci Total Environ 505:435–445

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Perdue E, Meyer J et al (1997) Use of elemental composition to predict bioavailability of dissolved organic matter in a Georgia river. Limnol Oceanogr 42:714–721

    Article  CAS  Google Scholar 

  • Székely AJ, Langenheder S (2017) Dispersal timing and drought history influence the response of bacterioplankton to drying–rewetting stress. the ISME Journal 11:1764

    Article  PubMed  PubMed Central  Google Scholar 

  • Tank JL, Dodds WK (2003) Nutrient limitation of epilithic and epixylic biofilms in ten North American streams. Freshw Biol 48:1031–1049

    Article  CAS  Google Scholar 

  • Tank JL, Webster JR (1998) Interaction of substrate and nutrient availability on wood biofilm processes in streams. Ecology 79:2168–2179

    Article  Google Scholar 

  • Tank JL, Webster JR, Benfield EF, Sinsabaugh RL (1998) Effect of leaf litter exclusion on microbial enzyme activity associated with wood biofilms in streams. J N Am Benthol Soc 17:95–103

    Article  Google Scholar 

  • Teachey ME, McDonald JM, Ottesen EA (2019) Rapid and stable microbial community assembly in the headwaters of a third-order stream. App Environ Microbio 85:15

    Google Scholar 

  • Tranvik LJ, Bertilsson S (2001) Contrasting effects of solar UV radiation on dissolved organic sources for bacterial growth. Ecol Lett 4:458–463

    Article  Google Scholar 

  • Tranvik LJ (1990) Bacterioplankton growth on fractions of dissolved organic carbon of different molecular weights from humic and clear waters Applied. Environ Microbiol 56:1672–1677

    Article  CAS  Google Scholar 

  • Twining CW, Brenna JT, Hairston NG Jr et al (2016) Highly unsaturated fatty acids in nature: what we know and what we need to learn. Oikos 125:749–760

    Article  CAS  Google Scholar 

  • Twining CW, Josephson DC, Kraft CE et al (2017) Limited seasonal variation in food quality and foodweb structure in an Adirondack stream: insights from fatty acids. Freshw Sci 36:877–892

    Article  Google Scholar 

  • UNDES (2018) World Urbanization Prospects 2018. United Nations, New York

    Google Scholar 

  • Valdivia-Anistro JA, Eguiarte-Fruns D-S et al (2016) Variability of rRNA operon copy number and growth rate dynamics of Bacillus isolated from an extremely oligotrophic aquatic ecosystem. Front Microbio 6:15

    Article  Google Scholar 

  • Veach AM, Stegen JC, Brown SP et al (2016) Spatial and successional dynamics of microbial biofilm communities in a grassland stream ecosystem. Molec Ecol 25:4674–4688

    Article  CAS  Google Scholar 

  • Wagner K, Bengtsson MM, Findlay RH et al (2017) High light intensity mediates a shift from allochthonous to autochthonous carbon use in phototrophic stream biofilms. Biogeosciences 122:1806–1820

    Article  CAS  Google Scholar 

  • Walsh CJ, Roy AH, Feminella JW et al (2005) The urban stream syndrome: current knowledge and the search for a cure. J N Am Benthol Soc 24:706–723

    Article  Google Scholar 

  • Ward CP, Nalven SG, Crump BC et al (2017) Photochemical alteration of organic carbon draining permafrost soils shifts microbial metabolic pathways and stimulates respiration. Nat Comm 8:1–8

    Article  CAS  Google Scholar 

  • Weitere M, Erken M, Majdi N et al (2018) The food web perspective on aquatic biofilms. Ecol Monogr 88:543–559

    Article  Google Scholar 

  • Wey JK, Jurgens K, Weitere M (2012) Seasonal and successional influences on bacterial community composition exceed that of protozoan grazing in river biofilms. App Environ Microbiol 78:2013–2024

    Article  CAS  Google Scholar 

  • Wiegner TN, Kaplan LA, Newbold JD et al (2005) Contribution of dissolved organic C to stream metabolism: a mesocosm study using 13C-enriched tree-tissue leachate. J N Am Benthol Soc 24:48–67

    Article  Google Scholar 

  • Wilcox HS, Wallace JB, Meyer JL et al (2005) Effects of labile carbon addition on a headwater stream food web. Limnol Oceanogr 50:1300–1312

    Article  CAS  Google Scholar 

  • Woodcock S, Besemer K, Battin TJ et al (2013) Modelling the effects of dispersal mechanisms and hydrodynamic regimes upon the structure of microbial communities within fluvial biofilms. Environ Microbiol 15:1216–1225

    Article  PubMed  Google Scholar 

  • Wotton R (1994) Particulate and dissolved organic matter as food. In: Wooton RS (ed) The Biology of Particles in Aquatic Systems. Lewis Publishers, Ann Arbo, pp 235–288

    Google Scholar 

  • Zak DR, Blackwood CB, Waldrop MP (2006) A molecular dawn for biogeochemistry. Trends Ecol Evol 21:288–295

    Article  PubMed  Google Scholar 

  • Zeglin LH (2015) Stream microbial diversity in response to environmental changes: review and synthesis of existing research. Front Microbiol 6:454

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeglin LH, Crenshaw CL, Dahm CN et al (2019) Watershed hydrology and salinity, but not nutrient chemistry, are associated with arid-land stream microbial diversity. Freshw Sci 38:77–91

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. David Allan .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Allan, J.D., Castillo, M.M., Capps, K.A. (2021). Stream Microbial Ecology. In: Stream Ecology . Springer, Cham. https://doi.org/10.1007/978-3-030-61286-3_8

Download citation

Publish with us

Policies and ethics