Skip to main content

Streamwater Chemistry

  • Chapter
  • First Online:
Stream Ecology

Abstract

Chemical variation among streams is primarily governed by the type and composition of rocks in the drainage, and by the amount and chemical composition of precipitation. In addition, human activities can significantly influence the chemical composition of rivers and streams, indirectly by changing land use and the chemical composition of precipitation, and directly by the input of agricultural, industrial, and domestic waste. This chapter focuses on the dissolved major ions (Ca2+, Na+, Mg2+, K+, HCO3-, SO42-, Cl-) and gases (O2 and CO2). Exchange with the atmosphere maintains both gases at close to their equilibrium concentrations in solution, although photosynthesis and respiration have noticeable effects in highly productive systems, and pollution in the form of excessive organic waste can deplete O2 levels. Important causes of pollution of fresh waters includes salinization due to salts used to melt ice from roads and faulty irrigation practices, increased acidity from mine drainage and fossil fuel use, legacy contaminants such as PCBs and DDT, and emerging chemicals of concern such as pharmaceuticals and personal care products, and plastic. Where pollutants occur at sufficient concentrations, their presence is detectable in organism tissue and may significantly limit populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ã…gren A, Haei M, Kohler S et al (2010) Regulation of stream water dissolved organic carbon (DOC) concentrations during snowmelt: the role of discharge, winter climate and memory effects. Biogeosciences 7:2901–2913

    Article  CAS  Google Scholar 

  • Annett R, Habibi HR, Hontela A (2014) Impact of glyphosate and glyphosate-based herbicides on the freshwater environment. J Appl Toxicol 34:458–479

    Article  CAS  PubMed  Google Scholar 

  • Baker J, Van Sickle J, Gagen C et al (1996) Episodic acidification of small streams in the northeastern United States: effects on fish populations. Ecol Appl 6:422–437

    Article  Google Scholar 

  • Baldwin BS, Carpenter M, Rury K et al (2012) Low dissolved ions may limit secondary invasion of inland waters by exotic round gobies and dreissenid mussels in North America. Biol Invasions 14:1157–1175

    Article  Google Scholar 

  • Beatty SJ, Morgan DL, Rashnavadi M et al (2011) Salinity tolerances of endemic freshwater fishes of south-western Australia: implications for conservation in a biodiversity hotspot. Mar Freshw Res 62:91–100

    Article  CAS  Google Scholar 

  • Berner EK, Berner RA (2012) Global environment: water, air, and geochemical cycles. Princeton University Press, Princeton, NJ

    Book  Google Scholar 

  • Bird DL, Groffman PM, Salice CJ et al (2018) Steady-state land cover but non-steady-state major ion chemistry in urban streams. Environ Sci Technol 52:13015–13026

    Article  CAS  PubMed  Google Scholar 

  • Bukowski SJ, Auld JR (2014) The effects of calcium in mediating the inducible morphological defenses of a freshwater snail, Physa acuta. Aquat Ecol 48:85–90

    Article  CAS  Google Scholar 

  • Callaghan NI, MacCormack TJ (2017) Ecophysiological perspectives on engineered nanomaterial toxicity in fish and crustaceans. Compar Biochem Physi Part C: Toxic Pharma 193:30–41

    CAS  Google Scholar 

  • Capps KA, Bentsen CN, Ramirez A (2016) Poverty, urbanization, and environmental degradation: urban streams in the developing world. Freshw Sci 35:429–435. https://doi.org/10.1086/684945

    Article  Google Scholar 

  • Carson R (1962) Silent spring. Houghton Mifflin Harcourt, New York

    Google Scholar 

  • Christensen ER, Li A (2014) Physical and chemical processes in the aquatic environment. Wiley, Hoboken, NJ

    Google Scholar 

  • Collier KJ, Ball OJ, Graesser AK et al (1990) Do organic and anthropogenic acidity have similar effects on aquatic fauna? Oikos 33–38

    Google Scholar 

  • Connor R, Renata A, Ortigara C et al (2017) The United Nations World Water Development Report 2017. Wastewater: The untapped resource. The United Nations World Water Development Report. United Nations Educational, Scientific and Cultural Organization, Paris

    Google Scholar 

  • Crosa G, Froebrich J, Nikolayenko V et al (2006) Spatial and seasonal variations in the water quality of the Amu Darya River (Central Asia). Water Res 40:2237–2245

    Article  CAS  PubMed  Google Scholar 

  • Dangles O, Gessner MO, Guerold F et al (2004a) Impacts of stream acidification on litter breakdown: implications for assessing ecosystem functioning. J Appl Ecol 41:365–378

    Article  CAS  Google Scholar 

  • Dangles O, Malmqvist B, Laudon H (2004b) Naturally acid freshwater ecosystems are diverse and functional: evidence from boreal streams. Oikos 104:149–155

    Article  Google Scholar 

  • Dodds WK, Smith VH (2016) Nitrogen, phosphorus, and eutrophication in streams. Inland Waters 6:155–164. https://doi.org/10.5268/IW-6.2.909

    Article  CAS  Google Scholar 

  • Downing JA (2014) Limnology and oceanography: two estranged twins reuniting by global change. Inland Waters 4:215–232

    Article  Google Scholar 

  • Dutton CL, Subalusky AL, Hamilton SK et al (2018) Organic matter loading by hippopotami causes subsidy overload resulting in downstream hypoxia and fish kills. Nat Commun 9:1951

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ebele AJ, Abdallah MA-E, Harrad S (2017) Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerging Contaminants 3:1–16

    Article  Google Scholar 

  • Entrekin S, Evans-White M, Johnson B et al (2011) Rapid expansion of natural gas development poses a threat to surface waters. Front Ecol Environ 9:503–511

    Article  Google Scholar 

  • Fay L, Shi X (2012) Environmental impacts of chemicals for snow and ice control: state of the knowledge. Water Air Soil Pollut 223:2751–2770

    Article  CAS  Google Scholar 

  • Ferreira V, Guérold F (2017) Leaf litter decomposition as a bioassessment tool of acidification effects in streams: evidence from a field study and meta-analysis. Ecol Indic 79:382–390

    Article  CAS  Google Scholar 

  • Gameson A, Wheeler A (1977) Restoration and recovery of the Thames estuary. In: Cairns J, Dickinson KL, Herricks EE (eds) Recovery and restoration of damaged ecosystems. University of Virginia Press, Charlottesville, VA, pp 72–101

    Google Scholar 

  • Gibbs R (1970) Mechanisms controlling world water chemistry. Science 170:1088–1090

    Article  CAS  PubMed  Google Scholar 

  • Golterman H (1975) Chemistry. In: Whitton B (ed) River ecology. Volume 2. Studies in ecology. University of California Press, Berkeley, pp 39–80

    Google Scholar 

  • Grant CJ, Lutz AK, Kulig AD et al (2016) Fracked ecology: response of aquatic trophic structure and mercury biomagnification dynamics in the Marcellus Shale Formation. Ecotoxicology 25:1739–1750

    Article  CAS  PubMed  Google Scholar 

  • Griffith MB (2014) Natural variation and current reference for specific conductivity and major ions in wadeable streams of the conterminous USA. Freshw Sci 33:1–17

    Article  Google Scholar 

  • Hall RJ, Ide FP (1987) Evidence of acidification effects on stream insect communities in central Ontario between 1937 and 1985. Can J Fish Aquat Sci 44:1652–1657

    Article  Google Scholar 

  • Harkness JS, Dwyer GS, Warner NR et al (2015) Iodide, bromide, and ammonium in hydraulic fracturing and oil and gas wastewaters: environmental implications. Environ Sci Technol 49:1955–1963. https://doi.org/10.1021/es504654n

    Article  CAS  PubMed  Google Scholar 

  • Hasler C, Butman D, Jeffrey J et al (2015) Freshwater biota and rising pCO2? 19:98–108. https://doi.org/10.1111/ele.12549

  • Higgins CL, Wilde GR (2005) The role of salinity in structuring fish assemblages in a prairie stream system. Hydrobiologia 549:197–203

    Article  Google Scholar 

  • Hintz WD, Relyea RA (2017) Impacts of road deicing salts on the early-life growth and development of a stream salmonid: salt type matters. Environ Pollut 223:409–415

    Article  CAS  PubMed  Google Scholar 

  • Hoagstrom CW (2009) Causes and impacts of salinization in the lower Pecos River. Great Plains Res 2009:27–44

    Google Scholar 

  • Hoagstrom CW, Zymonas ND, Davenport SR et al (2010) Rapid species replacements between fishes of the North American plains: a case history from the Pecos River. Aquat Invasions 5:141–153

    Article  Google Scholar 

  • Hoellein T, Rojas M, Pink A et al (2014) Anthropogenic litter in urban freshwater ecosystems: distribution and microbial interactions. PLoS One 9:e98485

    Google Scholar 

  • Hoellein TJ, Shogren AJ, Tank JL et al (2019) Microplastic deposition velocity in streams follows patterns for naturally occurring allochthonous particles. Sci Rep 9:1–11

    Article  CAS  Google Scholar 

  • Horton AA, Dixon SJ (2018) Microplastics: an introduction to environmental transport processes. Wiley Interdiscip Rev-Water 5:10. https://doi.org/10.1002/wat2.1268

    Article  Google Scholar 

  • Hotchkiss E, Hall R Jr, Sponseller R et al (2015) Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nat Geosci 8:696

    Article  CAS  Google Scholar 

  • Hunter WR, Apley ML, Burky AJ et al (1967) Interpopulation variations in calcium metabolism in the stream limpet, Ferrissia rivularis (Say). Science 155:338–340

    Article  CAS  PubMed  Google Scholar 

  • Hynes HBN (1970) The ecology of stream insects. Ann Rev Ent 15:25–42

    Google Scholar 

  • Johnson C, Needham P (1966) Ionic composition of Sagehen Creek, California, following an adjacent fire. Ecology 47:636–639

    Article  CAS  Google Scholar 

  • Johnson E, Austin BJ, Inlander E et al (2015) Stream macroinvertebrate communities across a gradient of natural gas development in the Fayetteville Shale. Sci Total Environ 530:323–332

    Article  PubMed  CAS  Google Scholar 

  • Kaushal SS, Groffman PM, Likens GE et al (2005) Increased salinization of fresh water in the northeastern United States. Proc Natl Acad Sci 102:13517–13520

    Article  CAS  PubMed  Google Scholar 

  • Kaushal SS, Likens GE, Pace ML et al (2018) Freshwater salinization syndrome on a continental scale. Proc Nat Acad Sci 115:E574–E583

    Article  CAS  PubMed  Google Scholar 

  • Kempe S, Pettine M, Cauwet G (1991) Biogeochemistry of European rivers. In: Degens ET, Kempe S, Richey JE (eds) Biogeochemistry of major world rivers. SCOPE 42. Scientific Committee on Problems of the Environment (SCOPE). Wilely, New York, pp 169–212

    Google Scholar 

  • Kilham P (1990) Mechanisms controlling the chemical composition of lakes and rivers: data from Africa. Limnol Oceanogr 35:80–83

    Article  CAS  Google Scholar 

  • Kilham SS, Kreeger DA, Lynn SG et al (1998) COMBO: a defined freshwater culture medium for algae and zooplankton. Hydrobiologia 377:147–159

    Article  CAS  Google Scholar 

  • Kimmel WG, Argent DG (2010) Stream fish community responses to a gradient of specific conductance. Water Air Soil Pollut 206:49–56

    Article  CAS  Google Scholar 

  • Kwak TJ, Waters TF (1997) Trout production dynamics and water quality in Minnesota streams. Trans Amer Fishs Soci 126:35–48

    Article  Google Scholar 

  • Lauerwald R, Laruelle GG, Hartmann J et al (2015) Spatial patterns in CO2 evasion from the global river network. Glob Biogeochem Cycle 29:534–554

    Article  CAS  Google Scholar 

  • Lepori F, Barbieri A, Ormerod SJ (2003) Effects of episodic acidification on macroinvertebrate assemblages in Swiss Alpine streams. Freshw Biol 48:1873–1885

    Article  CAS  Google Scholar 

  • Lewis WM, Saunders JF (1989) Concentration and transport of dissolved and suspended substances in the Orinoco River. Biogeochemistry 7:203–240

    Article  CAS  Google Scholar 

  • Likens GE, Bormann FH (1995) Biogeochemistry of a forested ecosystem. Springer, Berlin

    Book  Google Scholar 

  • Likens G, Bormann F, Johnson N et al (1967) The calcium, magnesium, potassium, and sodium budgets for a small forested ecosystem. Ecology 48:772–785

    Article  CAS  Google Scholar 

  • Likens GE, Bormann FH, Johnson NM et al (1970) Effects of forest cutting and herbicide treatmetn on nutrient budgets in a Hubbard Brook watershed-ecosystem. Ecol Monogr 40:23–47. https://doi.org/10.2307/1942440

  • Livingstone DA (1963) Chemical composition of rivers and lakes (vol. 440). US Government Printing Office, Washington, DC

    Google Scholar 

  • Lodge DM, Brown KM, Klosiewski SP et al (1987) Distribution of freshwater snails: spatial scale and the relative importance of physicochemical and biotic factors. Am Malacol Bull 5:73–84

    Google Scholar 

  • Lucas RW, Sponseller RA, Laudon H (2013) Controls over base cation concentrations in stream and river waters: a long-term analysis on the role of deposition and climate. Ecosystems 16:707–721

    Article  CAS  Google Scholar 

  • Lutz BD, Mulholland PJ, Bernhardt ES (2012) Long-term data reveal patterns and controls on stream water chemistry in a forested stream: Walker Branch, Tennessee. Ecol Monogr 82:367–387

    Article  Google Scholar 

  • Macneale KH, Kiffney PM, Scholz NL (2010) Pesticides, aquatic food webs, and the conservation of Pacific salmon. Front Ecol Environ 8:475–482

    Article  Google Scholar 

  • Magbanua FS, Townsend CR, Hageman KJ et al (2016) Individual and combined effects of fine sediment and glyphosate herbicide on invertebrate drift and insect emergence: a stream mesocosm experiment. Freshw Sci 35:139–151

    Article  Google Scholar 

  • Magin K, Somlai-Haase C, Schäfer RB et al (2017) Regional-scale lateral carbon transport and CO2 evasion in temperate stream catchments. Biogeosciences 14:5003–5014

    Article  CAS  Google Scholar 

  • Mani T, Hauk A, Walter U et al (2015) Microplastics profile along the Rhine River. Sci Rep 5:17988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marino GR, DiLorenzo JL, Litwack HS, Najarian TO, Thatcher ML (1991) General water quality assessment and trends analysis of the delaware estuary, part one: status and trend analysis. Najarian Associates, Eatontown, NJ. http://www.najarian.com/

  • McCormick AR, Hoellein TJ, London MG et al (2016) Microplastic in surface waters of urban rivers: concentration, sources, and associated bacterial assemblages. Ecosphere 7:22. https://doi.org/10.1002/ecs2.1556

    Article  Google Scholar 

  • Meybeck M (1977) Dissolved and suspended matter carried by rivers: composition, time and space variations and world balance. Paper presented at the Interactions between sediments and freshwater, Amsterdam

    Google Scholar 

  • Navrátil T, Norton SA, Fernandez IJ et al (2010) Twenty-year inter-annual trends and seasonal variations in precipitation and stream water chemistry at the Bear Brook Watershed in Maine, USA. Environ Monit Assess 171:23–45

    Article  PubMed  CAS  Google Scholar 

  • Nilsen E, Smalling KL, Ahrens L et al (2019) Critical review: grand challenges in assessing the adverse effects of contaminants of emerging concern on aquatic food webs. Environ Toxicol Chem 38:46–60. https://doi.org/10.1002/etc.4290

    Article  CAS  PubMed  Google Scholar 

  • Økland J, Økland K (1986) The effects of acid deposition on benthic animals in lakes and streams. Experientia 42:471–486

    Article  Google Scholar 

  • Ormerod S, Edwards R (1987) The ordination and classification of macroinvertebrate assemblages in the catchment of the River Wye in relation to environmental factors. Freshw Biol 17:533–546

    Article  Google Scholar 

  • Ormerod S, Boole P, McCahon C et al (1987) Short-term experimental acidification of a Welsh stream: comparing the biological effects of hydrogen ions and aluminium. Freshw Biol 17:341–356

    Article  CAS  Google Scholar 

  • Petty JT, Lamothe PJ, Mazik PM (2005) Spatial and seasonal dynamics of brook trout populations inhabiting a central Appalachian watershed. Trans Am Fish Soc 134:572–587

    Article  Google Scholar 

  • Pringle CM, Triska FJ (1991) Effects of geothermal groundwater on nutrient dynamics of a Lowland Costa Rican stream. Ecology 72:951–965. https://doi.org/10.2307/1940596

    Article  CAS  Google Scholar 

  • Raymond PA, Hartmann J, Lauerwald R et al (2013) Global carbon dioxide emissions from inland waters. Nature 503:355

    Article  CAS  PubMed  Google Scholar 

  • Reid AJ, Carlson AK, Creed IF et al (2018) Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol Rev 94:849–873

    Google Scholar 

  • Richardson SD, Kimura SY (2016) Water analysis: emerging contaminants and current issues. Anal Chem 88:546–582. https://doi.org/10.1021/acs.analchem.5b04493

    Article  CAS  PubMed  Google Scholar 

  • Richardson SD, Temes TA (2018) Water analysis: emerging contaminants and current issues. Anal Chem 90:398–428. https://doi.org/10.1021/acs.analchem.7b04577

    Article  CAS  PubMed  Google Scholar 

  • Richmond EK, Grace MR, Kelly JJ et al (2017) Pharmaceuticals and personal care products (PPCPs) are ecological disrupting compounds (EcoDC). Elementa-Sci Anthrop 5:8. https://doi.org/10.1525/elementa.252

    Article  Google Scholar 

  • Richmond EK, Rosi EJ, Walters DM et al (2018) A diverse suite of pharmaceuticals contaminates stream and riparian food webs. Nat Commun 9:9. https://doi.org/10.1038/s41467-018-06822-w

    Article  CAS  Google Scholar 

  • Rosi EJ, Bechtold HA, Snow D et al (2018) Urban stream microbial communities show resistance to pharmaceutical exposure. Ecosphere 9:16. https://doi.org/10.1002/ecs2.2041

    Article  Google Scholar 

  • Scherer C, Weber A, Lambert S et al (2018) Interactions of microplastics with freshwater biota. Freshw Microplast. Springer, Cham, pp 153–180

    Chapter  Google Scholar 

  • Schmidt TS, Kraus JM, Walters DM et al (2013) Emergence flux declines disproportionately to larval density along a stream metals gradient. Environ Sci Technol 47:8784–8792. https://doi.org/10.1021/es3051857

    Article  CAS  PubMed  Google Scholar 

  • Schuler MS, Relyea RA (2018a) A review of the combined threats of road salts and heavy metals to freshwater systems. Bioscience 68:327–335

    Article  Google Scholar 

  • Schuler MS, Relyea RA (2018b) Road salt and organic additives affect mosquito growth and survival: an emerging problem in wetlands. Oikos 127:866–874

    Article  CAS  Google Scholar 

  • Smith VH (2016) Effects of eutrophication on maximum algal biomass in lake and river ecosystems. Inland Waters 6:147–154

    Article  Google Scholar 

  • Stallard R, Edmond J (1983) Geochemistry of the Amazon: 2. The influence of geology and weathering environment on the dissolved load. J Geophys Res: Oceans 88:9671–9688

    Article  CAS  Google Scholar 

  • Sutcliffe D, Carrick T (1983) Relationships between chloride and major cations in precipitation and streamwaters in the Windermere catchment (English Lake District). Freshw Biol 13:415–441

    Article  CAS  Google Scholar 

  • Swank WT, Vose J, Elliott K (2001) Long-term hydrologic and water quality responses following commercial clearcutting of mixed hardwoods on a southern Appalachian catchment. For Ecol Manage 143:163–178

    Article  Google Scholar 

  • Thompson K, Christofferson W, Robinette D et al (2006) Characterizing and managing salinity loadings in reclaimed water systems. American Water Works Association, Alexandria, VA

    Google Scholar 

  • Trexler R, Solomon C, Brislawn CJ et al (2014) Assessing impacts of unconventional natural gas extraction on microbial communities in headwater stream ecosystems in Northwestern Pennsylvania. Front Microbiol 5:522

    Article  PubMed  PubMed Central  Google Scholar 

  • Turusov V, Rakitsky V, Tomatis L (2002) Dichlorodiphenyltrichloroethane (DDT): ubiquity, persistence, and risks. Environ Health Perspect 110:125–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyree M, Clay N, Polaskey S et al (2016) Salt in our streams: even small sodium additions can have negative effects on detritivores. Hydrobiologia 775:109–122

    Article  CAS  Google Scholar 

  • Van Den Berg H, Manuweera G, Konradsen F (2017) Global trends in the production and use of DDT for control of malaria and other vector-borne diseases. Malaria J 16:401

    Article  Google Scholar 

  • Visser PM, Verspagen JM, Sandrini G et al (2016) How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. Harmful Algae 54:145–159

    Article  CAS  PubMed  Google Scholar 

  • Walling D (1984) Dissolved loads and their measurement. Erosion and sediment yield: some methods of measurement and modelling. Geo Books, Regency House, Norwich, pp 111–177

    Google Scholar 

  • Walling D, Webb B (1975) Spatial variation of river water quality: a survey of the River Exe. Trans Instit Brit Geogr 1975:155–171. https://doi.org/10.2307/621615

    Article  Google Scholar 

  • Warren DR, Kraft CE, Josephson DC et al (2017) Acid rain recovery may help to mitigate the impacts of climate change on thermally sensitive fish in lakes across eastern North America. Glob Change Biol 23:2149–2153

    Article  Google Scholar 

  • Weiner ER (2012) Applications of environmental aquatic chemistry: a practical guide, 3rd edn. CRC Press

    Google Scholar 

  • Welch KA, Lyons WB, Whisner C et al (2010) Spatial variations in the geochemistry of glacial meltwater streams in the Taylor Valley, Antarctica. Antarct Sci 22:662–672

    Article  Google Scholar 

  • Wen Y, Schoups G, Van De Giesen N (2017) Organic pollution of rivers: combined threats of urbanization, livestock farming and global climate change. Sci Rep 7:43289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wetzel RG (2001) Limnology: lake and river ecosystems. Academic Press, San Diego, CA

    Google Scholar 

  • Wigington PJ Jr, DeWalle DR, Murdoch PS, et al (1996) Episodic acidification of small streams in the northeastern United States: ionic controls of episodes. Ecol Appl 6:389–407

    Google Scholar 

  • Williams M, Williams W (1991) Salinity tolerances of four species of fish from the Murray-Darling river system. Hydrobiologia 210:145–150

    Article  Google Scholar 

  • Willoughby L, Mappin R (1988) The distribution of Ephemerella ignita (Ephemeroptera) in streams: the role of pH and food resources. Freshw Biol 19:145–155

    Article  Google Scholar 

  • Windsor FM, Tilley RM, Tyler CR et al (2019) Microplastic ingestion by riverine macroinvertebrates. Sci Total Environ 646:68–74

    Article  CAS  PubMed  Google Scholar 

  • Winterbourn M, Collier K (1987) Distribution of benthic invertebrates in acid, brown water streams in the South Island of New Zealand. Hydrobiologia 153:277–286

    Article  Google Scholar 

  • Young RG, Huryn AD (1998) Comment: improvements to the diurnal upstream-downstream dissolved oxygen change technique for determining whole-stream metabolism in small streams. Can J Fish Aquat Sci 55:1784–1785

    Article  Google Scholar 

  • Zimdahl RL (2015) Six chemicals that changed agriculture. Academic Press, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. David Allan .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Allan, J.D., Castillo, M.M., Capps, K.A. (2021). Streamwater Chemistry. In: Stream Ecology . Springer, Cham. https://doi.org/10.1007/978-3-030-61286-3_4

Download citation

Publish with us

Policies and ethics